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A TAUBERIAN THEOREM FOR A SCALE OF
LOGARITHMIC METHODS OF SUMMATION

R. PHILLIPS

1. Introduction. We suppose throughout that p is a non-negative integer,
and use the following notations:

1
= >
™ (%) logox . logye . . . logyx’ forx 2 ¢,
0, otherwise,

where logex = x for x = ¢y = 1, log,+1x = log(log,x) for x = ¢,41 = e®
n=0,1,2,...);

©

”ﬂ(x) = Z Tp(n)xn ('_1 <x < 1);

n=0

sn=Zak n=012...);
k=0

n

> mE)se (n = ep).

logy1m =6

I

We shall say that > 5o a, is summable L, to s and write

> ay = s(Ly) or s,—s(Ly),
n=0
if
lim —l—i mp(n)sx” = s.
751~ Up(x) n=0
We shall say that > s a, is summable /, to s, and write

©

Eanzs(lp) or Sn—”s(lp)y

ift, >sasn— 0.

Since > g o mp(n) = o the L, method is regular [3, Theorem 1], i.e., every
convergent series is summable to its natural sum. It is easily seen that the J,
method is equivalent to a (&, ¢,) method with ¢, = m,(z) and hence is regular
[4, p. 57].

It follows from a known result that the L, method is equivalent to a standard
logarithmic method L (see, for example, [2]). Using a standard result on N
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methods (see, for example, [4, Theorem 14]) the /, method can easily be shown
to be equivalent to the / method which has been considered by a number of
authors (see, for example, [4;5; 7]).

The aim of this paper is to establish the following Tauberian theorem.

THEOREM. If > 9o a, = s(L,) and if the following Tauberian condition holds:
(T,) lim inf(s, — sn) = 0 when n > m — © and logyrsn — log,om — 0,
then > w0 @, converges.

The case p = 0 of this result is due to Kwee [7]. An immediate consequence
of the above theorem and Lemmas 3 and 6 (below) is the following corollary,
the case p = 0 of which includes *¢”" Tauberian results established by
Ishiguro [5].

COROLLARY. If a series ) gm0 @y is L, or 1, summable and 1f for H a positive
constant a, = —Hwpr1(n) for n = eyy1, then the series converges.

Acknowledgement. 1 wish to acknowledge my indebtedness to Dr. D. Borwein
for suggesting the topic and for his help in the preparation of this paper. I
would also like to thank Dr. A. Meir for suggesting the proof of Lemma 2.

2. Preliminary results. We require the following lemmas.
LemMma 1. If

i‘iﬂl}gi% =c¢>0 andif lzi_lgg(x) = o0

where —0 < a < 0, then

lim logp+1,2 (x) =1

0 105118 (%) o

 logfG) .. logl f(x)/g(®)}
m e g@) ~ M fog ¢ (o)

the result holds for the case p = 0, and the general case can be established
by induction.

Proof. Since

+1=1,

LeMMA 2.
1 _
op(x) ~ logpi1 T—x & %= 1.
Proof. For p = 0 the result is obvious, and for » > 0 since
lim sup,e #mp(n) = 0

we obtain from a theorem due to Agnew [1, Theorem 1.1] that

o [1/10g z—1]
limsup | O &*m,(B) — D, mk)| =0,
51— k=0 k=0
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where [y] denotes the largest integer not exceeding v. Also, it is familiar that

n

(1) > m,(k) ~log,em as n— 0.

k=0

The lemma now follows by Lemma 1. Notice in particular that

(2) o,(e71?) ~ logyp1x as x— 0.
LemMaA 3. If Yo oa, = s(l,) and condition (T,) holds, then Y a—qa, con-
verges.

Proof. The proof is modelled on Kwee’s proof of the case p = 0[7, Lemma 3].
Assume, without loss of generality, that s = 0, and let IV be the integer such
that N — 1 < ¢y4a = N. Thenforw >m = N

ty logprin — tn logyrim = sppmp(m + 1) + ... 4+ s,m,(n).
Let € be an arbitrary positive number. By condition (T,) there are numbers
M=M(E =N and §=26(c) >0
such that: if # > m = M and log,4on — log,em = 4§, then s, — s, = —e and

hence

(5w —€) 2 mp(k) < tylogpiin — tylogyum < (s, +¢€) 2 . ,(k);
k=m+

k=m+1
ie.,

Sm— € = I:tnlig—”—ﬂﬁ — tm:l [Iogﬁlm > rp(k):l ,

log,1m k=m+1
and

log,+1m :I |: /

> SO8pt

Snte= [tn Tog.s1 log,vm ;”H— wp(k)_i
Keeping ¢ fixed and letting # > m — o0 subject to

16 < logprom — logyram = 6,

we get
limsup s, = ¢ and liminfs, = — ¢;
m-o n-0
since £, — 0,
log,+17 1
esg Lp+1 ;e‘5>1+%6
logys1m

and

& 1
I:logp+11n/ Z wp(k)]rv 0gp+1M
k=m+1

logyam — logyim

1
 (logyy1n/logpym — 1)

= 0(1).

It follows that lim, . s, = 0.
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Lemma 4. If 0 < d < 1 and if g(x) is a real valued function, continuous on
each of the intervals [0, @), [d, 1], which tends to a finite limit as x — d—, and
if s, = 0 and s, — s(L,), then

©

lim -L-Z m,(n)sx"g(x") = s - g(1).

z51- Op (x) n=0

Proof. By Lemmas 1 and 2, we have, for ¢ = 0,

sl c+1
. 1 x
lim mp(M)S xn . xm = lim a————p(x ) _ (c+Dn
21— Op (%) 7; p(1)5n 11— 0p(%) Up(xCH) 1; Ty (1) 5%
c+1
= s lim p (0" )
21— 0p(%)
= s lim logya (1 — x*)~"

w1 loga(l —x)7"
=s.
Thus the lemma holds for g(x) = x¢ and the full result follows by an argument
similar to that used by Ishiguro [6, Lemma 2].
Lemma 5. If s, — s(L,) and s, = — M, then s, — s(I,).

Proof. The proof is similar to Ishiguro’s proof of the case p =0
[6, Theorem 2]. Let

glx) = 0 for0 =<x < 1/e,
1/x forl/e = x =1,

so that g(1) = 1 and g(x*) = 0 if » > 1/log(1/x). Hence, by Lemma 4,

limL Z m,(n) (s, + M) = s + M.

71~ Up(x) n=1/(log(1/z))

Putting x = ¢~!/*, we get, by (1) and (2),

n

lim ———1:,,—);’ 7y (B) (s + M) = lim Sy (B)se + M = s + I,

10 Op (e N300 log, 17 =6

LEMMA 6. If for H a positive constant a, = —Hwpi1(n) for n = e,y1, then
the condition (T,) is satisfied.

Proof. There is a positive number H such that

ay 2 —Hmpa(k) (kB 2 ¢11),

so that for n > m = ey41,

n n

Su—Sm= 9o, @y = —H Z“ mpi1(k) ~ — H(log,ian — log,om).

k=m+1 k=m
Hence, lim inf(s, — sn) = 0 when # > m — o0 and log,i:n — logyrem — 0,
and condition (T,) is satisfied.

https://doi.org/10.4153/CJM-1973-095-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-095-x

A TAUBERIAN THEOREM 901

LEMMA 7. Let ® be an increasing continuous non-negative function in [0, 00 )
such that ®(u) — 0 and ®(u) — ®(u — 1) >0 as u — 0, and let

7(x) = f Cn(x)s, for x > 0.

n=0

Suppose that the following conditions are satisfied:
(i) @) ) =20 (x>0),
b) ¢ (x) >0 asx— 0,
(€) 2i=0c(x) =1 (x> 0);
(i) (@) Xalocn(x) — 0 when x > M — 00 and ®(x) — (M) — © ;
(b)) X wc(x)(®(n) — ®(M)) —> 0 when M > x — 0 and
(M) — ®(x) > 0;
(iii) liminf(s(t) — s()) =2 0 when t>u—>0 and &) — () — 0,
where s(t) = s, forn £t <n+1;
(iv) 7(x) is bounded for x > x,.
Then s, is bounded.

Kwee [7], using a result due to Vijayaraghavan (see [4, Theorem 238]), has
proved this lemma with the additional condition

o)

> cu(x) —0 when M > x— o0 and ®(M) — &(x) — 0.
=M
It has been pointed out that in fact this condition is redundant (see
[8, Chapter 11, Theorem 9]).

3. Proof of the Theorem. The proof is based on Kwee's proof [7] of the
case p = 0. Let
®(u) = {log,,+21¢ for u = epys,
u/eprs  for 0 = u < epra,
and, for x > 0, let

)

T(x) = _l/z) Z Ty ()5 = D Cu()sn,

n=0
where

T (n) e

w0 e

Clearly ®(u) is a strictly increasing non-negative continuous function which
tends to infinity as « tends to infinity, and by Lemma 1, ®(#) — ®(x — 1) — 0

as u — 0,
We now show that the other conditions of Lemma 7 are satisfied. Since,
by (2),
< < 7"1?(”) ~ Tp(n)
3) 0=k = e "~ Togyar 0 < x— o),

we obtain (i) (a) and (i) (b); (i) (c) holds by definition of o,(e~'/*). Now
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using (1) and (3), and letting x > M — o subject to log,;sx — log, s M — 0,

(i1) (a) follows from
M

my(n) _ logy 1M

S logprx | logyx
For (ii) (b), we will show that X 5_s ¢,(x)¢(n) >0 when M > x — 00,
which is more than required by condition (ii) (b). Since m,(¢) log, st is a
decreasing function of ¢ for ¢ = e,12 we have, for M = ¢, .,

— 0.

© [eo)

0= Z Ca()®(n) ~ [logyyrx]” Z 7"p (n) logyian

= [lOgﬂ+1x] mp (M) logys2 M Z e
~ [Ing+lx]_ xm, (M) logy 2 M
< Mlogy M1 ', (M) log, s M — 0 (M > x— ).

Condition (iii) is implied by condition (T,) of the theorem.
Since s, — s(L,), we have

lim 7(x) = 11m _(t)z m(n)sd" = s,

T

and hence condition (iv) is satisﬁed.

We have thus shown all the conditions of Lemma 7 are satisfied and it follows
that s, is bounded. Hence, by Lemma 5, s, — s(J,) and so, by Lemma 3, >_%_; a,
converges.
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