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Abstract

In this paper we propose a systematic theoretical procedure for the constructive approxim-
ation of non-linear operators and show how this procedure can be applied to the modelling
of dynamical systems. We extend previous work to show that the model is stable to small
disturbances in the input signal and we pay special attention to the role of real number
parameters in the modelling process. The implications of computability are also discussed.
A number of specific examples are presented for the particular purpose of illustrating the
theoretical procedure.

1. Introduction

In this paper we propose a systematic theoretical procedure for the constructive ap-
proximation of non-linear operators and show how this procedure can be applied to
the modelling of dynamical systems. There are several properties which we have
sought to preserve in the modelling process. In many cases the only given informa-
tion about such a system is information pertaining to an abstract operator F. We wish
to construct an approximating operator 5 which can be realised in physical terms,
will approximate F with a given accuracy and must be stable to small disturbances.
The operator 5 defines our model of the real system and will be constructed from an
algebra of elementary continuous functions by a process of finite arithmetic. For this
reason we regard 5 as computer-processable.

A number of specific examples are presented for the particular purpose of illustrat-
ing the theoretical results. Although the examples have been simplified for computa-
tional convenience and are somewhat artificial they are none-the-less representative
of real situations. In these examples we have used an underlying polynomial algebra
but we note that this is simply a matter of theoretical convenience. A suitable wavelet
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algebra could be used instead. Another currently popular alternative is an algebra
generated by superpositions of a sigmoidal function. Such algebras are discussed in
detail by Cybenko [3] and Barron [1]. In general we require only that the underlying
algebra satisfy the conditions of Stone's Algebra [11]. For the purposes of this paper
we have assumed that the elementary continuous functions which generate the algebra
can be evaluated by a process of finite arithmetic. While this assumption may not
be strictly correct the errors involved are limited only by machine accuracy and in
principle do not disrupt our analysis.

This research has been motivated by a desire to understand the nature of the
modelling process for simulation of a real dynamical system. A dynamical system is
defined by a mapping that transforms a set of input signals to a corresponding set of
output signals. A signal is normally defined by a set of real number parameters. In
practice these parameter sets could be uncountably infinite. For a computer simulation
of the system each signal must be represented by a finite set of real number parameters
and the mapping must be represented by a finite arithmetical process. We must
nevertheless show that the simulated system is a good approximation to the real
system.

To justify the approximation process we impose a basic topological structure and
use the consequent notions of continuity to establish theorems of Weierstrass type.
In the case of a general continuous map F : X —> Y where X, Y are locally convex
topological vector spaces we will show that the approximation procedure can be used
on any given compact subset K c. X. Indeed if we assume that F is known only on K
then for some suitable neighbourhood e of zero in X the construction of an extended
operator S\ K + e^X—> y is an important ingredient in our approximation
procedure. The extension of the domain allows us to consider the effect of a small
disturbance in the input signal. Such disturbances are unavoidable in the modelling
process.

We emphasise that our paper describes a generic approach and is concerned with
applicable conditions that will allow the simulated system to represent the real system
to within an arbitrarily prescribed accuracy. The problem of relating the various error
bounds to the dimensions of the model is not considered and may be more effectively
resolved in a specific context. One could certainly consider these questions at the
level of our particular examples.

There are other aspects of the approximation process which we have not considered.
A real system is normally causal and may also be stationary or have finite memory.
It would be useful to know if these additional properties could be preserved in the
modelling process.
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2. Relation to previous studies

The extension of the classical Stone-Weierstrass theorem to the approximation
of continuous mappings on topological vector spaces by polynomial mappings has
been known for some time and was developed by Prenter [7], Istratescu [6], Prolla
and Machado [8] and Bruno [2]. In these papers the approximation procedure relies
directly on the classical theorem via an underlying algebra of real valued polynomials.

Our procedure is essentially an elaboration of the procedure used by Bruno but is
more explicitly constructive and we believe more directly related to the representation
of real dynamical systems. In particular we show that the model is stable to small
disturbances in the input signal. We have also considered the role of parameters in the
representation process and have adapted our methods accordingly. Our procedure is
not limited to polynomial approximation. On the other hand our analysis is restricted
to locally convex topological vector spaces. The present work is developed from an
approach used by Torokhti [13-16].

3. A remark on the compactness condition

The assumption of compactness for the set K on which the operator F is to be
approximated is an important part of the modelling process and cannot be totally
removed. For a continuous real valued function on the real line it is well known that
uniform approximation by a polynomial can be guaranteed only on a compact subset.

We believe that the compactness assumption is reasonable in practice. Suppose
the dynamical system is defined by an operator F : X —> Y where X and Y are
topological vector spaces. Some knowledge of the operator is necessary if we wish
to simulate the given system. It may happen that F is known only on the basis of a
finite subset

{(*«, yn) \xn € X and yn = F(xn) e Y for n = 1, 2, . . . , TV} c X x Y

or alternatively on a set

{{xY, yY) | xY e X and yY = F(xy) eY for y e V c W] c X x Y,

where F is compact. Such knowledge may be empirical or based on a restricted
analysis of the system concerned. Of course there may be some situations where the
compactness assumption is not reasonable. If the set on which the approximation
is required is not compact then a stronger continuity condition is needed. In a
subsequent paper we will use stronger topological assumptions to consider this more
difficult problem.
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4. Preliminaries

We begin with some preliminary results.

DEFINITION 1. Let X, Y be real Hausdorff topological vector spaces and let A be a
subset of X. The map F : A -*• Y is uniformly continuous on A if for each open
neighbourhood of zero2 r c Y we can find a neighbourhood of zero a c X such that

F [(x + a) n A] c F(x) + T

for all * e A.

LEMMA 1. Let X,Y be real Hausdorff topological vector spaces and let K be a
compact subset of X. If F : K -*• Y is continuous on K then it is uniformly
continuous on K.

PROOF. Let r be a neighbourhood of zero in Y. Choose a neighbourhood of zero
v c Y with v — v c r. For each x e K we choose a neighbourhood of zero
/A 00 c X such that

F [(JC + /*(*)) n AT] c F(x) + v.

Now choose a neighbourhood of zero a(jc) c X such that <T(JC) + CT(X) C H(X). We
write fi(j:) = x + a(x). Since AT c U^eAr fi(x) and since K is compact we can find
a finite subcollection £2j, S22. • • • - ^r (where we write S2, = xt + a,, a, = a{x{) and
/u.,- = fi(Xi)) such that A" c [Jr

i=1 J2,-. Define CT = P|J_, cr,. It is clear that a is an open
neighbourhood of zero in X. If we choose any x e K then we can find k such that
x G £2*. Thus F(x) € F{xk) + v. Since

it follows that

F [(JC + a) n AT] c F(xk) + v

and hence

F [(x + a) n AT] - F(JC) = {F [(x + a) n AT] - F(xk)} - {F(x) - F(x*)}

c v — v

Therefore
F [(X + ( 7 ) 0 ^ ] ^ F{X) + T.

2In a topological vector space a set T with 0 e int(z) will be called a neighbourhood of zero.
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LEMMA 2. Let X be a normal3 topological vector space and let Y be a locally convex
topological vector space. Let K be a compact subset of X and F : K —>• Y a
continuous map. For each convex neighbourhood of zero r c Y there exists a
neighbourhood of zero o c X and a continuous map &a : K + a -> Y in the form

i = \

where x, G K for each i = 1, 2 , . . . , r and where K, : K + a —> K is continuous
with

(1) «f,-(«)e[0, 1], and
(2) £ ; = 1 K , ( « ) = 1 ,

such that F(x) — ^a{u) € T whenever x e K andx — u e o.

PROOF. Choose a neighbourhood of zero / i C X s o that for all x G K

F[(x + fi) n K] c F(JC) + r (1)

and choose a neighbourhood of zero a C X with a + CT c /x. Let fi* = x + a. Since

A- C | J £2, (2)

we can find a finite subcollection Qu£22, • • • ,&r such that

n,-. (3)
1=1

Since X is a normal topological vector space we can construct a collection of con-
tinuous functions Kt• : K + a -> D& for each / = 1,2,... ,r with the properties
that

(1) *,(")€ [0,1],

(2) E[=i */(«) = Land
(3) K,-(M) = 0 for u £ Qj.

We define a map &a : ^ + a -»• y by the formula

3A topological vector space is said to be normal if for each pair of disjoint closed sets A, B c. X there
exists a pair of disjoint open sets U,VCX with AC.U and B c. V.
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Now Kj(u) ^ 0 implies u G £2, and if x — u G a then we have x € *, + /A. Hence if
x e K then F(x) - F{xt) G T and so

F(x) - Ĵ O*) = £ *,(«)[*"(*) - F(*,)]

G T

since the right hand side is a convex combination and x is a convex set.

COROLLARY 1. If in addition to the conditions of Lemma 2 we have F(0) = 0 then we
can choose &* : K + a —> Y such that J?* satisfies the conditions of Lemma 2 and
also satisfies ^(0) = 0.

PROOF. Choose a neighbourhood of zero a0 c X such that F(a0) c r. Choose
another neighbourhood of zero a c X such that a + a c a0 and such that

whenever x e K and x — u e a. In accordance with Urysohn's Lemma [4] there is a
continuous function / : X ->• [0, 1] such that /(0) = 0 and such that f(u) = 1 when
u $. a. Let

When M ^ a we have

F(x) - &;(u) = F(x) - &a{u) e T

and when u G cr we have A: e<70 and hence

F(x) - &;{u) = [1 - / (K)]F(JC) + /(«)[F(*) - ^ ( M ) ] G T,

since F(JC) G T and F(x)—J?a(u) G T and the right hand side is a convex combination.

REMARK 1. The condition F(0) = 0 in Corollary 1 can be interpreted as follows. If
the operator F is the mathematical model of some dynamical system then the output
v is related to the input x by y = F(x). Thus the condition F(0) = 0 means that a
zero input produces a zero output.
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5. The main results

Recall that our aim has been the constructive definition of an operator S to approx-
imate the given operator F. Furthermore there are certain properties that must be
satisfied by 5 if we wish to construct a useful model of the real system.

DEFINITION 2. Let X be a topological vector space. We say that the space X pos-
sesses the Grothendieck property of approximation [12] if one can find a sequence
{Gm}m=i,2,... of continuous linear operators Gm e J£{X, Xm)4 where Xm c X is a sub-
space of dimension m and where the operators Gm are equicontinuous on compacta5

and are uniformly convergent to unit operators on the same compacta6.

REMARK 2. The conditions in Definition 2 are related. The condition that the sequence
of operators is equicontinuous on a compact set implies that a uniformly convergent
subsequence can be found. On the other hand if the sequence of operators converges
uniformly to the unit operator on a compact set then the sequence is equicontinuous.

Let X, Y be topological vector spaces with the Grothendieck property of approxim-
ation and with approximating sequences {Gm}m=ii2,..., [Hn}n=i2,... of continuous linear
operators Gm e 5£(X, Xm), Hn e 5?(Y, Yn) where Xm c X, Yn c Y are subspaces
of dimension m, n as described in Definition 2. Write

Xm = I xm e X \ x m =

and

k=\

where a = ( a , , a 2 , . . . ,am) e Rm,b = (bub2,... ,bn) € R" and {w,-};=li2,...,m,
{u*}*=i,2 n are bases in Xm, Yn respectively. Let {g} = Sf be an algebra of continuous
functions g : Km -»• K that satisfies the conditions of Stone's Algebra [11]. Define

4Jzf (X, Xm) denotes the set of all continuous linear mappings from X into Xm.
5The sequence {CmJ is said to be equicontinuous on compacta, if for any given compact set K c X and
any given neighbourhood of zero \i c X we can find a neighbourhood of zero a = a(n) c X such that
Gm(x\) — Gm(x2) 6 /n for all m = 1,2,... whenever x\, x^ e K and x\ — x-i e a.
6The sequence {Gm} is said to converge uniformly on the compact set K c X to the unit operator on K
if for any given neighbourhood of zero ^ c X w e can find M > 0 such that Gm(x) — x e fi whenever
x e K and m > M.
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the operators Q e Sf(Xm, OS"1)7, Z : Km - • K" and W e J2f(Rn, yn) by the formulae

Qixm) = a, Z(a) = (gi(a), g2ia),..., gn(a)), and W(z) =
k=\

where each gk e <g and z* = gk{a). Let 5 : X -> Fn be defined by the composition

A block diagram for the realisation of S is depicted in Figure 1.

Six)

FIGURE 1. Block diagram for realisation of 5.

Subject to an appropriate choice of the functions {gk} € Sf we now show that 5
supplies the required approximation to F.

THEOREM 1. Let X,Y be locally convex topological vector spaces with the Grothen-
dieck property of approximation and let X be normal. Let K c X be a compact set
and F : K -> Y a continuous map. For a given convex neighbourhood of zero x c Y
there exists a neighbourhood of zero a C X with an associated continuous operator
S : X —>• Yn in the form S = WZQGm and a neighbourhood of zero e C X such that
for all x e K and all x' € X with x' — x € e we have

F(x) - S(x') € T.

This theorem can be regarded as a generalisation of the famous Weierstrass ap-
proximation theorem. To prove the theorem we need to establish that certain sets are
7It is necessary to justify our assertion that Q e S£ (Xm, Rm). This will be done shortly.
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compact. Since Gm e Jif(X, Xm) is continuous and since K is compact it follows that
Gm(K) is compact. To show that the set QGm(K) is compact we need to establish
that Q € &(Xm, Km). Since G(£J=i ajitj) = a we need to show that there exists a
constant MQ and a seminorm p : X —> K with ||a|| < Mg/oQ^JL, OjUj).

We have the following preliminary results.

LEMMA 3. Let X be a locally convex topological vector space and let Xm be the

subspace defined above. We canfinda sequence {ps}s=x2 rofseminorms ps : X —>• K
where r <m such that the function p : X —> K defined by

p(x) =

is a norm on Xm.

PROOF. Let {ps },=i,2 r be a sequence of seminorms and let p: X —> K be the function
defined above. Let Ns = {x \ x e Xm and ps (x) = 0} for each s = \,2,... ,r and
let N = [x | x e Xm and p(jc) = 0}. It is easy shown that

(1) p is a seminorm,
(2) Nj is a subspace of Xm for each s = 1 ,2 , . . . , r,

(3) Af = p)i=i ^ ' s a^so a subspace of Xm.

Since X is a locally convex linear topological space we can choose a sequence
{Ps}s=i,2,-,r of seminorms so that r < m and TV = {0}. In this case the function
p: X ->• K defined above is the required norm on Xm.

LEMMA 4. Let X be a locally convex topological vector space and let Xm be the
subspace defined above. Ifp.X^ Ris a norm on Xm then we can find a > 0 such
that

for each a e Km.

PROOF. It is sufficient to prove that there exists some a > 0 with

whenever ||a|| = 1. If not we can find {a(p)}p=ii2,... such that
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and \\a(p) || = 1. Thus we can find a convergent subsequence (which for convenience
we also denote by {a(p)}p=ix..) with a(p) ->• a as p -» oo for some a € Km. It now
follows that

and also that ||a|| = 1. But

(
)

Since ||a|| = 1 this is a contradiction.

We are now able to prove Theorem 1.

PROOF. By the approximation property of the space X, for any neighbourhood of zero
£ c X and for all x € K, we can find M — M{£) > 0 such that Gm{x) - x e % for
m > M. By Lemma 2 we can choose a and a continuous map £Pa : K + a -> K
given by

with the property that

when * — M 6 o and hence if we choose % Qo and m > M then

for each * s K. If we write

Gm{x) - ^ajuj

then

r I m

;=1 / , = 1 \ ; = 1
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and hence

L'=' \/=i
F{x,)

k=\

We note that J?aGm(K) c Y is a compact subset. By the approximation property of
the space Y, for any given neighbourhood of zero v c Y, we can choose Nm > 0 so
that

Hn&aGm{x)-&aGm{x)ev

for all x G AT when n > Nm. We also note that

HnjraGm(x) - S(x) = Hn&aGm(x) - WZQGm(x)

k=\

If we suppose that the algebra <£ satisfies the conditions of Stone's Algebra then
sincexa 6 QGmiK) and since QGmiK) is compact it follows that we can choose
{gk)k=i,2 n e ^ so that

Hn&aGmix) - Six) e v.

Thus, if we choose v c J then
o

&aGmix) - Six) e - + - c -8 g _ 4

and hence

4 4 "" 2'

Finally we note that

n r

Six) - Six + Ax) = ]P[gt(a) - gkia + Aa)]vk e -,
k=\ l

where Aa 6 W is defined by

Gmix + Ax) =

provided we choose A* e e where e is a sufficiently small neighbourhood of zero in
X. Now it follows that

Fix) - Six') £X- + X-QT,

where x' = x + Ax.
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REMARK 3. Theorem 1 can have the following interpretation. The operator S repres-
ents a mathematical model of the real system [9,14]. In this context x is the input
signal, F[x) is the output signal from the real system, Ax is the noise that is added to
the input signal in practice, and S(x + Ax) is the output signal from the constructed
system. Thus S is a practical realisation of the given abstract operator F. Note
that the noise term in the input signal could result from truncation of the parametric
description.

Next we show how the operator 5 = WZQGm could be constructed to give, in
some definite sense, the best possible approximation to the operator F. Let X, Y be
Banach spaces having the Grothendieck property of approximation and consider the
following procedure. We now suppose that Z = Zc with

Zc(a) = (gi(ci;a), g2(c2\ a),... , gn(cn; a))

and

gk(ck; a) =
j=0

where p = (px, p2,... , pm) e 3f" is given and 2?+ = {0, 1, 2 , . . .} denotes the
set of non-negative integers and where c — (cu c 2 , . . . , cn), ck = {c*iiS}iea™ and
cktS € 0& for each k — 1,2,... ,n and each permissible s e 2f™. We assume
that each rs : Km -> K is continuous and that the collection {rs}s€3r? generates
an algebra that satisfies the conditions of Stone's Algebra. We could for example
take rs(a) = as = a\lc^ .. .a%. We assume that the functions {rs}se^ are linearly
independent. Introduce the class S? of operators given by

y = {S | 5 : X -+ Yn and 5 = Sc = WZcQGm)

with fixed operators Gm, Q, Hn and W and with fixed functions {rs]se&m. Thus the
operator Sc is completely defined by the coefficients [cks]. Let {g*(c£; a)} denote the
functions which best approximate the given functions {/*(«)} on the set QGm(K) c

We can now state our second theorem.

THEOREM 2. Let X,Y be Banach spaces with the Grothendieck property of approx-
imation, let K c X be a compact set and F : K -> Y a continuous map. Let the
operator Z* : Km -> OS" be defined by

Z* = Zc>.
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Then for some fixed e > 0 and for all x, x' G X with \\x' — x\\ < e the operator
S* = Sc. : X -> Yn in the form

S* = WZ*QGm

satisfies the equality

sup ||F(JC) - S*(x')\\ = inf (sup \\F(x) - S(x')
xeK

We illustrate these theorems with an example although we do not seek a best
approximation in the strict sense of Theorem 2.

EXAMPLE 1. Let X — Y = ^[—1, 1] be the Banach space of continuous functions on
[ -1 , 1] with the uniform norm | | / | | = sup,e[_, „ | / ( r ) | . For each y = (yu y2, y3) e
R3 define xy(t) = yx cos(y2f + y3) and yY(t) = (y, cos y3)

4 cosh(y2r) and let K c X
be the compact set given by

K = {x | x = xY for some y <= V = [0, 1] x [|, l] x [0, 2n] c K3}.

Lxt the non-linear operator F : K -> L = F(K) c Y be defined by the formula
F(xy) = yK and consider the dynamical system described by the mapping F : K -*• L.

We wish to construct a practical model of the given system. We suppose that the
input signal is disturbed by an additional noise term that is essentially unrelated in
structure to the true input signal. In this example we choose to approximate the input
signal by a polynomial and hence it is convenient for the noise term to be modelled
by a polynomial of the same degree. Thus we assume that the actual input signal x' is
given by

x' = x + Ax = xy + Ax

for some y e T where Ax = h is an appropriate polynomial. We will also approximate
the output signal by a polynomial.

For some given tolerance a > 0 and a corresponding restriction h e e on the
magnitude of the noise term (in this context e is some suitable neighbourhood of zero)
we wish to find an operator 5 : K + e -> Y such that \\F(x) — S(x')\\ < a for all
x £ K a n d all x ' — x e e .

To construct the operator 5 it is necessary to extend the given set K of input
signals to include the additional noise terms. Some initial discussion of calculation
procedures is therefore desirable. To this end let &s denote the space of polynomials
with real coefficients and of degree at most 5 — 1. We define a Chebyshev projection
operator Us : # [ - 1 , 1] - • &, by the formula

/=•
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where 7}_|(cos#) = cos(j — 1)0 is the Chebyshev polynomial of the first kind and
where the coefficients c, = C,(M) are defined by the formulae

1 /"' u(t)dt
c\ = —

for each y = 2, 3 , . . . , s. In this example we will not use the integral formulae but will
calculate approximate Chebyshev coefficients where necessary by using a standard
economisation procedure [5].

Let Xm = &>m and Yn = &>„. We define linear operators Gm : X ->• Xm,
Hn : Y -> yn by setting Gm = nm, //„ = nn . For convenience we will use the
following approximate calculation procedure to determine Xm(xY) = x[y,m] for
xy e K and Hn(yY) = y[y, n] for yY e L. For any given values of ix, v > 0 we
can choose m = m(/z), n = n(v) and polynomials pm,qm € ^*m and rn e ^ n with
P«(T) = Eff'^-.r2^2, 9m(T) = Eff '^r2^1 andrn(r) = Ejf'^-ir2^2

such that

\pm{x) — cosr| + \qm(x) — sinr| < n and |rn(r) - coshr| < v

for all r e [ -1 , 1]. Now define x[y, m] e 3*m and y[y, n] e g?n by

= Y\
j=

and

y[Y> "](O = (yi cos;

and note that

\xy(t) - x[y, m](OI < fi and \yY(t) - y[y, n](t)\ < v

forallr e [ -1 , 1]. By observing that Gm (p) = p,Hn{q) = gwhen/> 6 8?m,q € @>n

and by using the linearity of the operators Gm, Hn we can extend the above calculation
procedure to polynomial neighbourhoods of K, L.

Since the hypothetical input signal xY e K is approximated by a polynomial
x[y, m] e &m we suppose that the noise term is also modelled by a polynomial
h € 0Pm. Thus we assume that

M0 =
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where w = {wu w2, ... , wm) € W" is an unknown constant.
At this stage we need to point out that we will not follow the specific construction

procedure described in our theoretical development. In this example the compact
set K is described by a parameter y e T and the preceding theory suggests that
we should choose an appropriate neighbourhood of zero a c X and construct an
operator &a : K + a -» Y by choosing a finite collection {y(()},=i,2 r of points
in r and an appropriate partition of unity. In practice it is often easier to choose a
neighbourhood of zero £ c Xm c X and use direct methods to construct an operator
&S : Gm(K + f) = Gm(K) + £ ->• Yn which effectively replaces the operator &a

used in the theoretical development by providing an approximate representation of the
formal composition Hn^aGm~x. We will show that the operator R : Gm(K) —> Hn(L)
given by

R(x[y,m]) = y[y,n]

can be extended to provide the desired approximation. To define R we note that

, \riY2k~i(cos y3)pk ifk is odd
] = \

I — Y\ Yi (sin K3)?/t if * is even

and

, r , fyi4y2*~'(cos)/3)4rt if k is odd
^[y ,w] = j

10 if A: is even.

In particular we note that

, r T (ai[y,m]\3 (ak\y1rn\\
bk[y, m] = rk

\ P\ ) \ Pk )
for each k = 1 ,2 , . . . , n. Therefore if we define

gk(a)= — — \rk

for each k = 1,2,... ,n and set

i(l) Gm(xY)=x[y,m],
(2) Q(x[y, m\) = {a^y, m], a2[y, m], . . . , am[y, m]) = a[y, m],
(3) Z(a) = (gl(a), g2(a), ..., gn(a)) = g(a), and
(4) W(b[y,n])=y[y,n]

then the desired operator R : Gm{K) —> Hn(L) is given by /? = WZQ. For any
fixed neighbourhood of zero £ e ^"m the extended operator^ : Gm(K + £) -»• Kn

is simply defined by noting that
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(1) Gm(xy+h) = x[y,m] + h, and
(2) Q(x[y, m]+h) = (al[y,m] + Wi,a2[y,m] + w2,... ,am[y,m] + wm).

The operator S : K + £ -* Yn is now given by the composition S = WZ(2Gm. We
note that S(x[y, m]) = y[y, n] and that

S(x[Y, m]
PI

Suppose that the actual level of approximation required is given by

Of course it is necessary to understand that the achievable level of approximation
will be limited by the magnitude of h. By the same token we can only quantify this
limitation when we have decided on the precise structure of 5. To begin the process we
let m = n = 3 and construct the necessary polynomial approximations by applying a
standard Chebyshev economization procedure [5] to the appropriate Maclaurin series.
We have

r2 r4 r6

_ + _ _ _

1763^,, ^ 353

4585 353 2

4608~ 768T

T3 r5

+

169
192T
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2917 139
7

1280™ 1

23040™
2917 139
2304™ + 512™
4583 139 2

~ 4608 256T

= r3(r).

With these approximations it can be seen that

|/73(T) — cosr| + \qs(r) — sinr|

for all T e [ -1, 1]. It follows that

.05 and |r3(r) — coshr| < .006

\\xy - x[y, 3]|| < .05 and \\yy - y[y, 3]|| < .006.

Now we have

(1) x[y, 3](0 = H y , cos/3 - Tiy1/2(siny3)^ - l / .y2
2(cosy3) ' 2

(2) a[y,3] = C^yicosy3, -^yiy2siny3, - | |y l K 22Cosy3) ,
(1) o(n\ — f4583x(4608)3 4 A 139x768x(4608)3 3 x J

( j ; £ W - (—^i s—«i , 0, 256x353X(4585)3a1 a3), and

(4) y[y, 3](r) = ^ | ( y , cos y3)
4 - ^ ( y , cos y3)

4y2
2'2-

In this particular example we suppose that the noise term has the form h(t) = wt2

where |io| < .002. Therefore

r , i /x 139x768x4608 , ,
W ( 0 = y[y. 3](0 + 2 5 6 x 3 5 3 x 4 5 8 5 ( K . - y 3 ) V

and hence

Therefore

- S(x')\\ < \\yy - y[y, 3

< .006 + .003

< .01.

\\y[y, 3] - S(x')
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In the above example we note that the input signal depends on a finite number of
real parameters. It is natural to investigate what happens when the error in the input
signal is caused by an inherent uncertainty in our knowledge of the parameter values.
We will motivate further discussion by considering a second example.

EXAMPLE 2. We consider the system described in Example 1 and suppose that the error
in the input signal is due entirely to an inherent uncertainty Ay in our knowledge
of the value of y. For convenience we write y' = y + Ay and x' = xY>. For a
sufficiently small neighbourhood of zero 9 c. R3 and with the same definitions as we
used in Example 1 we can define an operator 5 : Kr+g -*• Yn such that

= y[y',n]

whenever y' — y e 6. Since

F(xy) - S(x') = y Y - y[yf, n ]

it follows that

HFOc,) - S(JC')II < || v, - yy.\\ + \\yy, - y[y',n]\\.

It is now easy to see that the achievable level of approximation is limited by the
uncertainty in y. In particular we note that

yyif) - yy(t) « l^-COAy, + ^(t)Ay2 + ^
dyi dy2 9y3

= 4(y, cos y3)
3(cos y3)(cosh y2t)Ay{ + (y, cos y3)

4(sinh y2t)t Ay2

- 4(y, cos y3)Vi (sin y3)(cosh y2t) Ay3

and hence calculate that || yY>—yY || < x/(32cosh2 1+sinh2 l)||Ay||. If we suppose that
||Ay|| < .0005 we have \\yy> — yY\\ < .042. Suppose the actual level of approximation
required is given by ||F(JC) — 5(x')|| < .05. If we let m = n = 3 as we did in the
previous example then we again obtain \\yY — v[y, 3]|| < .006 and hence

||F(JC) - SOOH < .042 + .006 < .05.

REMARK 4. The problem of parameter estimation in signal analysis is well known
to electrical engineers and has been studied extensively. The determination of a
suitable estimate y for the parameter y e K3 in the above examples is a classic
single-tone estimation problem and is discussed in detail by Rife and Boorstyn [10].
The estimation procedure is based on the following observation. If we define

1 /•'
E(c) = - l |y, exp[/(y2f + y3)] - c, exp[i(c2r + c3)]\2dt
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for each e e l 3 then

j , . . 2 rsin[(c2 - y2) + (c3 - y3)] - sin[(c2 - y2) - (c3 -
L c2-y2

and it is now easy to establish that

min £(c) = £(c,, c2, y3) = Ki2 -
C2-K2

,y2, y3) = yi2-2y,c, +c,2

and

min£(cj, y2, y3) = E(y) = 0.

The estimate y for y is found by an elementary search over a suitably chosen finite
set [c] c K3. On the basis of the above analysis the search procedure can be
seen to consist of three consecutive one dimensional searches. When the full signal
Yx exp[/(y2f + y3)] is not known we define

=\L(f) = 2 I ^ ' cos(y2r + y3) - c, cos(c2r + c3)]
2dt

and search over {c} c R3 to find the minimum value E\ (y) = 0. The search is a true
three dimensional search because the problem is no longer separable. On the other
hand if the signal yx cos(y2f + y3) is observed for all t € (—00, 00) then we have

_ l f°• , , . - 1 / 1 cos(y2f + y3)y, sin(y2j + y3) = - / dt

which reconstructs the full signal and allows us to use the original method. Although
our explanation does not consider the influence of noise on the estimation process the
above procedure is valid in the presence of additive Gaussian noise.

6. Simplification of the canonical structure in the approximating operator

Consider application of the above approach in the approximation of real non-linear
dynamical systems where the system is completely described by a finite number of
real parameters.

Let X, Y be locally convex topological vector spaces and let F : K C X —> Y be
a given continuous map. As above we will consider F as an abstract model of some
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dynamical system where the sets K and L = F(K) c Y are understood to be the sets
of input and output signals respectively. It may be that both sets depend continuously
on a finite number of real parameters. In this regard we will therefore assume the
existence of closed and bounded intervals r c | " and A C | " and continuous maps
(p : F -*• Kr = K and V : A -> LA = L with <p(y) = xY and x//(8) = ys, where
F(xy) = ys- If we also assume that \jr is a homeomorphism (thus we assume that x// is
a one to one map and that ^ ~' is continuous) then we effectively assume the existence
of a continuous map R : F —> A defined by the composition R — \J/~lF<p which
describes the continuous dependence S = R(y) of the output parameters on the input
parameters. The non-linear system described by the continuous map F : Kr -*• LA,
where

Kr = {x | x = xy where y e F}

and

LA = {y I y = ys where <5 € A}

can now be represented in alternative form on the compact set F c p by the
continuous map R : F ->• A.

For each neighbourhood of zero i) c I* we can use Lemma 2 to find a neigh-
bourhood of zero £ c Km and a continuous map 3&K : F + f - • W such that
R(y) - @s(y) € r) whenever y € F and y — y e >;. We choose £ to be closed
and bounded and assume that the map S$K can be represented approximately on the
compact set F + £ by a continuous map Z : F + t, -> K" with the property that
Z(y) - ^ (y) e ?j whenever y e F + £. This representation is normally constructed
from a given algebra {g\=<g of continuous functions g : Km -> 1" that satisfies the
conditions of Stone's Algebra.

In practice our knowledge of the parameter values is subject to systematic and
pseudo-random instrumental errors. Thus the assumed parameter value is given by
y' = y + Ay where y is the true value and where the error Ay is bounded by Ay e 6
for some known neighbourhood of zero 9 C.W". We will assume that 6 + 9 c f.

In addition to the problem of instrumental errors it may be necessary to use some
prescribed method of approximate calculation to determine the parameter values from
measurements of the input signal. To this end we assume that for each 9 we can
choose a neighbourhood of zero | c ^ and a continuous operator V$ : Kr+e -> F + £
which is used to calculate the parameter value y and for which the calculated value
y' = ViC*,, ) satisfies the constraint y' - y' e f for all y' e F + 9. Thus y' € F + £.

To describe the system we define an operator S : Kr+e -*• LA + T in the form of a
composition

5 = WZ%.
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We can now state the following theorem.

THEOREM 3. Let X, Y be locally convex linear topological spaces and let F : Kr c
X —> LA ^ Y be a continuous map as described above. Then, for each given
neighbourhood of zero x c y , we can find neighbourhoods of zero § c 0 c 0&m and
an operator S : Kr+e -> LA + r in the form of a composition S = WZV% such that

F(xy) - S(xy) € T

whenever y € F «/«/ y' — y efl.

PROOF. In terms of the notation introduced above we define W = i/r and let r) =
Tfr~x(v) where the neighbourhood of zero v c y is chosen so that v + v c T. We
also suppose that the neighbourhoods of zero £ c 0 c X are chosen in the manner
suggested in the above preamble. Now we can write

F(xy) - WfyV^Xy.) = flir'1 F<p](y) -

We choose £ so that R{y) — M?(y') e rj whenever y e F and y' — y el;. Hence

Since y' € F + f it follows that ^ (/') - Z(y') G 17 and hence

G V + V

G T.

This completes the proof.

REMARK 5. Practical considerations allow us, as a rule, to determine R on a set F + £
for some neighbourhood of zero | ; c | " and hence we can set 3?,K = R.

Now consider the idea of best approximation to the operator F : Kr -» Y by the
operator S = WZV^. Let X, Y be Banach spaces. As before we suppose that Z = Zc

with

Zc(y) = (g\(cl;y),g2(c2; y),... ,&,(cn;y))
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and

t
5=0

where p = {p\, p2, •.. , pm) G 2£™ is fixed and where

The neighbourhoods of zero £, 0,.f c Rm can be chosen to be closed and bounded.
Fix £, 9, i, and the method of calculation of the parameters and introduce the class 3?
of operators given by

y = {S\S: Kr+e ->- Y and 5 = Sc = WZCQ%).

Thus the operator Sc is completely defined by the coefficients {c^,}. We suppose the
map @K : T + t, ->- 0T is written in the form ^ ( y ) = (/i(y), /2(y), • • • , My))
and let {g,t(c£; y)} denote the functions which best approximate the given functions
{fk(y)} on the closed and bounded interval V + £ c lm .

We have the following theorem.

THEOREM 4. LetX, Y be Banach spaces, let K c X be a compact set and F : K -> Y
a continuous map. Let the operator Z* : W" —*• K" be defined by

Z* = ZC..

Then for some fixed a > 0 and for all x, x' G X with \\x' — x\\ < a the operator
S* = Sc. :X -+ Y in the form

S* = WZ*Vt

satisfies the equality

sup ||F(JC) - S*(x')\\ = inf (sup ||F(JC) - 5(*')ll
xeK Se> [xsK

The scheme of numerical realisation of the operator 5 consists of the following
steps. Firstly it is necessary to implement a method for approximate determination
of the parameter y. Secondly it is necessary to construct the functions g\,gi,... , gn

and consequently the operator Z and thirdly it is necessary to construct an appropriate
operator W. We will illustrate these procedures with an example involving parameter
estimation.
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EXAMPLE 3. Consider the following situation. Let X be a space of measurable func-
tions. We will suppose that a set of incoming signals has the form K = {xY}Y^r

where each signal xY e X is completely specified by the value of a parameter
y € F c Km. By observing an individual signal from this set we obtain a meas-
urement S = R(y) e A c K" from which we wish to estimate the value of the
unknown parameter y.

Therefore the natural estimation procedure can be regarded as a dynamical system
represented by a mapping/? : r -» A with input y e P c Km and output 8 e A c W.
We wish to construct a best possible approximation to this system in the sense of
Theorem 4. Thus we must show that the mapping R : F -> A can be approximated
by an operator 5 : Rm -» W. Since the output from the system is the parameter 8
itself we have ys — 8 and the general output structure is simplified.

In our example we let X = L x L where L is the space of all measurable functions
x : [0, co) - • K such that

/»OO

11*11 = / \x{t)\dt < oo.
Jo

We assume that the observed signal has the form xY = {XYA,XY,2) e X where

xY
i(t) = exp(-0 (cosyxt + S1"^2 j and xY,2{t) = txyA{t)

and where y = (yx, y2) 6 [— 1, 1] x [— 1, 1] = V c OS2 is the unknown para-
meter. To estimate y we take a Fourier cosine transform for xY. In particu-
lar the transform is used to determine the DC-component of each signal. Define
&Y(co) = (&YA((O), SCYil{oi)). It is easily shown that

= /
Jo

-I— arctan(ct) + y2) — arctan(a> — y2)

and

I xy2(t) cos cotdt

(.<o-Yx)2Y\

+ r
(co-y2)

2}
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Thus we calculate

and

Sx = <ry,,(0) = 2 + arctan y2

s2 = sc "^ Y] • Yl

[1 + Ki2]2 1 + X22'

In effect we have defined a non-linear system which is described by a map R : F —> K2

given by S = R(y) where 5 = (<$,, S2) G R2. The non-linear system has input y € F
and output S € R(T) = A. It is clear that the above formulae for S = &Y(0) can be
applied to all y e (R2 to define an extended map & : K2 ->• K2.

We seek the best possible approximation to the extended operator^ in the following
sense. Let / / be the Hilbert space of measurable functions / : [— 1, 1 ] -> K such that

< oo

with inner product

f(s)g(s)ds

Let &m Q H be the subspace of polynomials of degree at most m — 1. For each
/ e H there exists a unique polynomial pm = pm(f) 6 ^m which minimises the
integral

E(f, p) = 11/ - p\\2 = {f-p,f-p)

over all p e £?m. It is well known that p m ( / ) = n m ( / ) where nm : H -+ &>m is the
Chebyshev projection operator denned in Example 1. Therefore

where 7}_i is the Chebyshev polynomial of the first kind of degree y — 1 and where the
coefficients c, = cj ( / ) are calculated using the integral formulae given in Example 1.
We write f~pm{f).

In this example we will take m = 6. Define functions {fij}ije[\,2) e H by the
formulae

1 1 — s2 s
fu(s) = , , 7 , /12CS) = arctans, /2i(.s) = „ . , x , , and f12(s) =
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The corresponding projections {Avkyeiui € ^ are given by

Pn = ^T0- (3^2 - 4)72 + (1772 - 24)74

^ (.7071)7,, - (.2426)72 + (.0416)74,

P\2 = (W2 ~ 2)7, T3 H

« (.8284)7, - (.0474)7, + (.0049)75,

J2 ( 8 5 ^ 2 ) ^ , (112-79^2)^
P2l = "2~ y 0 Z ^2 H ^ U

« (.3536)70 - (.4645)r2 + (.1386)r4, and

P22 = (2 - V2)7i - (10 - 7V2)r3 + (58 - 41 V2)r5

« (.5858)7, - (.1005)73 + (.0172)T5.

The theoretical system is therefore replaced by a more practical system described
by a map Z* : K2 —> K2 given by <5 = Z*(y) where 5, = /?,,(y,) + ^,2(72) and
<$2 = PuiYi) + PviiYi)- In actual fact the calculations will be based on one further
approximation. In practice we choose a large value of T and calculate 8T = &r(y)
using

ST,I= xyA(t)dt and 8T,2= xY,
Jo Jo

{t)dt.

Associated with each ST there is a uniquely defined (virtual) measurement y defined
by

y = <%-i(8T). (4)

Therefore we have a (virtual) measurement scheme defined by an operator VT : U2 —>
K2 given by VT = 3?rx@,T and written in the form y = VT(y)- The practical
measurement system is now described by an operator S = Z*VT = Z*M~l&T with
output given by

8 = S(y) = Z*VT(y) = Z*(y).

The operator 5 is the best possible approximation in the sense of Theorem 4.
To estimate the parameter y we take the (observed) value 8T = &T(y) of <5 and

compute yest = Z*~l(8T) = Z*~lMT(y). For example this could be done by using a
Newton iteration to solve the equation Z*(ys.it) = 8T.
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7. Summary

We have shown that realistic models can be constructed for non-linear dynamical
systems in such a way that the model provides an accurate representation of the input-
output behaviour of the given system and is stable to small disturbances. We have
used several examples to illustrate the proposed construction procedure. By assum-
ing a stronger topological structure for the spaces involved it should be possible to
strengthen the conclusions. In particular it may be useful to extend the approximation
procedure to systems defined on non-compact sets. For systems that incorporate more
algebraic structure alternative approximation procedures may be possible.
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