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Summary

Under the traditional mutation load model based on multiplicative fitness effects, the load in a population is
1−e−U, where U is the genomic deleterious mutation rate. Because this load becomes high under large U, syn-
ergistic epistasis has been proposed as one possible means of reducing the load. However, experiments on
model organisms attempting to detect synergistic epistasis have often focused on a quadratic fitness model,
with the resulting general conclusion being that epistasis is neither common nor strong. Here, I present a
model of additive fitness effects and show that, unlike multiplicative effects, the equilibrium frequency of an
allele under additivity is dependent on the average absolute fitness of the population. The additive model then
results in a load of U/(U+1), which is much lower than 1−e−U for large U. Numerical iterations demonstrate
that this analytic derivation holds as a good approximation under biologically relevant values of selection
coefficients and U. Additionally, regressions onto Drosophila mutation accumulation data suggest that the
common method of inferring epistasis by detecting large quadratic terms from regressions is not always
necessary, as the additive model fits the data well and results in synergistic epistasis. Furthermore, the additive
model gives a much larger reduction in load than the quadratic model when predicted from the same data,
indicating that it is important to consider this additive model in addition to the quadratic model when infer-
ring epistasis from mutation accumulation data.

Introduction

The concept of the mutation load first resulted from
the insight that in a diploid organism, a locus
decreases the average population fitness by an amount
double its deleterious mutation rate (Haldane, 1937;
Muller, 1950). Under the traditional model of mu-
tation load, which assumes independence among
loci, fitness effects combine multiplicatively and result
in an average population fitness of e−U, where U is the
mutation rate per diploid genome per generation
(Crow, 1970). Under high values of U, this results in
an extremely low average fitness. For example, a re-
cent estimate of U in humans is 2·2 (Keightley,
2012), which results in an average fitness of e−2.2, or
∼0·11, under this multiplicative model. This average
fitness has traditionally been put in terms of offspring

viability (Muller, 1950; Nachman & Crowell, 2000).
Therefore, the mutation load, L, is then 1−e−2.2, or
∼0·89, meaning that with selection on offspring vi-
ability, 89% of offspring produced die without con-
tributing to the next generation. Consequently, each
adult must produce ∼9 offspring in order for one to
be viable. This reproductive load would actually be
∼18 offspring per female, because females must pro-
duce both the female and male offspring for each gen-
eration. Since populations with low reproductive
output, such as humans, do not produce this number
of offspring on average, it is apparent that additional
factors must be important for explaining how popula-
tions deal with such high genomic deleterious mu-
tation rates.

Numerous factors have been brought up as poten-
tial explanations for how mutation load may be
reduced (reviewed in Reed & Aquadro, 2006;
Agrawal & Whitlock, 2012). Notably, selection on fer-
tility, selection on gametes, relative selection, andE-mail: acbergen@wustl.edu
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synergistic epistasis have all been suggested as poten-
tial explanations to greatly reduce the load in organ-
isms with low reproductive ability. Under selection
on fertility, deleterious mutations act to decrease the
total number of offspring an individual can produce,
rather than acting to decrease offspring viability.
Fertility selection results in a lower reproductive
load, but it is dependent on a theoretical, mutation
free individual being able to produce a high number
of offspring (Lesecque et al., 2012). It has been sug-
gested that individuals along the human lineage
would have been limited to 11 viable offspring due
to physiological constraints, regardless of mutation
number, therefore limiting the effectiveness of fertility
selection (Lesecque et al., 2012). A second explanation
is that selection occurs during gametogenesis or on
gametes. Selection of this type could purge numerous
deleterious mutations with no excess in offspring num-
ber, yet it is unknown and questionable how much
selection across the genome could occur at these stages
(Reed & Aquadro, 2006). Thirdly, in the case of rela-
tive selection (which is also referred to as soft selec-
tion) an individual’s fitness is determined relative to
the other individuals in the population (Sved et al.,
1967; Ewens, 1970; Lesecque et al., 2012;
Charlesworth, 2013). With relative selection, if the
highest fitness is given to the individual in the popu-
lation with the least deleterious mutations, as opposed
to this fitness being given to a theoretical mutation
free individual, the load can be greatly reduced.
Although some genes may operate under relative
selection, others likely reduce fitness regardless of
the population average. For example, many mutations
may inhibit proper development regardless of other
individuals in the population. Overall, the influence
of relative selection on the mutation load remains un-
known. Although these above factors all have poten-
tial in reducing the mutation load to some extent,
the focus of this article will be on synergistic epistasis
as a means of reducing load, as the additive model
presented here falls under this category.

Under synergistic epistasis, as mutation number
increases, fitness decreases more than would be pre-
dicted under the case of independent, multiplicative
effects. Synergistic epistasis results in more deleterious
mutations being removed per selective death and
consequently the mutation load is reduced (King,
1966; Kondrashov & Crow, 1988). Prominent models
of synergistic epistasis include truncation or quasi-
truncation selection (Crow & Kimura, 1979; Crow,
1997) as well as a quadratic fitness function
(Kimura & Maruyama, 1966; Charlesworth, 1990).
Synergistic epistasis can be viewed graphically as a
log fitness function that is concave down (e.g. the
quadratic fitness function in Fig. 1), whereas the
multiplicative fitness model creates a log fitness func-
tion that is linear (Fig. 1).

Experiments on model organisms designed to detect
epistasis in fitness have detected both synergistic, as
well as antagonistic (the opposite of synergistic) epis-
tasis, with the epistasis often being weak and statisti-
cally insignificant (reviewed in Kouyos et al., 2007;
Halligan & Keightley, 2009; Agrawal & Whitlock,
2012). Specifically, a number of studies have focused
on the quadratic fitness model (Kimura &
Maruyama, 1966; Charlesworth, 1990) by attempting
to detect a significant quadratic term in regressions of
log fitness onto mutation number (Mukai, 1969; de
Visser et al., 1997; Elena & Lenski, 1997; Elena,
1999; Whitlock & Bourguet, 2000). Mukai (1969)
detected a significant quadratic term in a regression
using Drosophila mutation accumulation data, but
this result has been questioned due to possible changes
in the balancer chromosome, transposable element
number, or scoring inconsistencies (Keightley, 1996;
Fry et al., 1999). Whitlock and Bourguet (2000) also
detected a significant quadratic term, but only with
a combination of specific genetic marker mutations.
Other regression experiments detected no or very
weak and statistically insignificant quadratic terms
(de Visser et al., 1997; Elena & Lenski, 1997; Elena,
1999). Additionally, most mutation accumulation
experiments fit nicely to a linear regression with no
significant quadratic term (reviewed in Crow &
Simmons, 1977; Halligan & Keightley, 2009).
Therefore, the general conclusion from these

Fig. 1. Comparison of the multiplicative, quadratic, and
additive fitness functions on a natural-log scale. In these
functions, w represents fitness and x represents mutation
number. For the example functions depicted in the graph,
s and α equal 0·01 and β equals 0·001. Under the additive
model, all individuals where fitness 1−sx4 0 are
undefined on a log scale. Because individuals cannot have
negative fitness values, individuals where 1−sx< 0 are all
assigned a fitness of zero in the additive model (see
numerical iterations below).
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experiments is that if there is synergistic epistasis, it is
weak in general and it is doubtful how much it
influences mutation load (Kouyos et al., 2007;
Halligan & Keightley, 2009; Agrawal & Whitlock,
2012; Keightley, 2012; Lesecque et al., 2012).

However, there is another simple model that is lar-
gely absent in current discussions of the mutation
load. Namely, mutations decrease fitness additively.
In this case, fitness is given by 1−sx, where s is the
selection coefficient of a deleterious mutation and x
is the number of deleterious mutations an individual
possesses. Additivity also gives a log fitness function
that is concave down (Fig. 1) and can therefore be
considered a model of synergistic epistasis.

With respect to the mutation load, additive effects
were first mentioned by Haldane (1937) and Muller
(1950), where individual mutation rates per locus, u,
were simply summed to give a load of L = 2

∑
u,

that is, L =U. However, as stated by Haldane (1937)
and Muller (1950), this summation only holds as an
approximation when U is very small, and no model
that maintains accuracy under large U was given.
Kimura & Maruyama (1966) and Crow (1970) pre-
sented a quadratic model of epistasis which, if the
quadratic coefficient is set to zero, becomes an addi-
tive model. However, Kimura & Maruyama (1966)
and Crow (1970) only mention this case briefly and
a later analysis continued to use the assumption of
L =U for additive fitness (Crow & Kimura, 1979;
see their Discussion specifically). Currently, predic-
tions of U in humans are now much larger than one
(Eöry et al., 2010; Keightley, 2012), making L =U
an inadequate approximation. Consequently, it re-
mains necessary to provide a derivation of load
under additive effects that remains accurate under
large U.

To accomplish this, I derive the mutation-selection
balance equation under additive fitness effects for a
single diploid locus and extrapolate this to the entire
genome to give the predicted average number of del-
eterious alleles per individual. These derivations high-
light that under additive effects, the average frequency
of a deleterious allele is dependent on �w, the average
absolute fitness in the population, demonstrating
why the summation L = 2

∑
u loses accuracy under

large U. I also perform numerical iterations to deter-
mine under what values of s my analytic results are
approximate.

Additionally, I argue that the common method of
inferring epistasis from mutation accumulation data
by detecting large quadratic terms from regressions
is not necessary, as this additive model is consistent
with the data. Specifically, by fitting the multiplicat-
ive, quadratic, and additive models to Drosophila mu-
tation accumulation data, I demonstrate that though
these regressions do not predict large quadratic
terms, they fit the additive and multiplicative models

equally. Consequently, these data are consistent with
the additive model and therefore support a model of
synergistic epistasis. I also demonstrate that the addi-
tive model can give a larger reduction in load than the
quadratic model when predicted from regressions onto
the same mutation accumulation data, indicating that
it is important to consider this additive model along
with the quadratic model when inferring epistasis
from mutation accumulation data.

Theory and models

Mutation load under multiplicative fitness effects

In this section, I briefly review the standard multipli-
cative fitness model where independence among sites
is assumed. Following Crow and Kimura (1970), con-
sider a locus with two alleles, A and a, with the follow-
ing properties

Genotype AA Aa aa

Fitness wAA wAa =wAA(1−s) waa =wAA(1−2s)

Frequency p2 2pq q2

where s is the selection coefficient and fitness is in
terms of offspring viability. The frequency of A is p
and the frequency of a is q, where q = (1−p). The fre-
quency of the wild-type allele A in the next generation,
p′, is equal to

p′ = ( p2wAA + pqwAa)(1− u)
�w

(1)

where u is the mutation rate from A to a and
�w = p2wAA + 2pqwAa + q2waa (Crow and Kimura,
1970). At equilibrium, p= p′ and solving eqn (1) for
q gives

q = u
s(1+ u) (2)

For point mutations, u is on the order of 10−8 and
consequently the term (1+ u) in eqn (2) can be ignored
to give

q ≈ u
s

(3)

Summing eqn (3) over all M loci in a diploid genome
where a deleterious mutation can occur gives

�x ≈ U
s

(4)

where �x = 2
∑M q is the average number of deleteri-

ous mutations per individual in the population and
U = 2

∑M u is the deleterious mutation rate per dip-
loid genome per generation. Note that eqn (4) remains
very accurate for varying strengths of s as long as s is
much larger than u. However, for the purposes of this
discussion it will suffice to assume that all s are equal.
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The average absolute fitness (�w) in the population
under the multiplicative case is

�w = 1− s( )�x (5)
Eqn (5) can be approximated by �w ≈ e−s�x and because
of the relationship in eqn (4), can be written as
�w ≈ e−U . The load, L, is equal to 1− �w and therefore

L ≈ 1− e−U (6)
as in Crow (1970). Eqn (6) can be rewritten as
L ≈ 1− e−2uM ≈ 1− (1− 2u)M , which indicates
that the load created by a single locus, l, will be l = 2u
(Crow, 1970). Based on this assumption of l= 2u, pre-
vious approximations for load under additive effects
were obtained by summing all individual loads across
the genome,

∑
2u, giving the additive approximation

of L =U (Haldane, 1937; Muller, 1950; Crow &
Kimura, 1979). However, this approximation is
based on the equilibrium frequency given in eqn (3),
which assumes multiplicative fitness effects.
Therefore, it remains necessary to derive an additive
model starting with additive fitness effects.

Mutation load under additive fitness effects

To derive an additive fitness model, I start with the
following values

Genotype AA Aa aa

Fitness wAA wAa =wAA−s waa =wAA−2s

Frequency p2 2pq q2

Note that the fitnesses wAa and waa are found by
subtracting an amount from wAA, whereas in the
multiplicative case wAa and waa are found by multiply-
ing wAA by a percentage. As above, wAA is the viability
of an offspring and s is the amount of decrease in vi-
ability of an offspring that contains the deleterious
mutation. Solving eqn (1) using these additive fitness
values gives

q = wAAu
s(1+ u) (7)

Notice that eqn (7) is the same as eqn (2) except that
wAA remains in the equation. The average absolute
fitness in the population, �w, is

�w = p2wAA + 2pq wAA − s( ) + q2 wAA − 2s( ) (8)
And simplifying eqn (8) gives

wAA = �w+ 2sq (9)
Now, placing the right side of eqn (9) into eqn (7) for
wAA and solving eqn (7) for q gives

q = u
s
�w

( )
(1− u)

(10)

Assuming free recombination between all loci and
that the distribution of mutation number is close to
Poisson, summing eqn (10) over all M loci in a diploid
genome where a deleterious mutation can occur, and
ignoring the term (1−u) because u ≪ 1 gives

�x ≈ U
s
�w

( ) (11)

where, as above, �x = 2
∑M q and U = 2

∑M u.
Notice that eqn (11) is the same as eqn (4) for the
multiplicative case except that in eqn (11) s is weighted
by �w. This can be thought of intuitively in that in the
multiplicative case, s reduces wAA by a percent equal

to (1−s). Therefore the ratio
wAa

wAA
in the multiplicative

case is the same for any value of wAA. In contrast, in
the additive case s reduces wAA by an amount (not a
percent) equal to s. In this additive case the ratio
wAa

wAA
is different for different values of wAA. Other del-

eterious mutations in the genome lower the average
value of wAA in the population and consequently im-
pact the dynamics at this locus. Again assuming that
the distribution of mutation number per individual is
close to Poisson, the approximation �w ≈ (1− s�x) can
be used for average fitness. Substituting 1− s�x for �w
in eqn (11) and rearranging gives

�x ≈ U
s(U + 1) (12)

Similarly, since the right sides of eqn (11) and
eqn (12) both equal �x, these can be equated and solved
for �w to give

�w ≈ 1
U + 1

(13)
Load in the additive case will be L = 1− �w, or

L ≈ U
U + 1

(14)
Eqn (14) demonstrates that the load under additiv-

ity is greatly reduced under large U compared to the
assumption of L =U. These derivations show that it
is necessary to take into account the impact that �w
has on the allele frequency, as highlighted in eqn
(10), in order to predict the load under additive
fitness effects.

Numerical iterations of the additive model

Numerical iterations were necessary to determine the
range of U and s where eqn (13) above holds as a
close approximation for two reason. First, the additive
model generates gametic phase disequilibrium
(Felsenstein, 1965; Wade et al., 2001), which impacts
the skewness of the distribution of mutation number.
Increased skewness will make the assumption of
�w ≈ (1− s�x) used in the derivations above lose
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accuracy. Secondly, when deleterious mutations com-

bine additively, all individuals with more than
1
s
muta-

tions will have a fitness of zero. This truncation point
is not accounted for in the analytic derivations above.
As either the value of s or U increases, the probability
of an individual being at this truncation point also
increases and consequently the average fitness
decreases compared to eqn (13). At the extreme, if s
is equal to 1 (that is, it is lethal), then the average
fitness simply becomes e−U, that is, the probability
of having zero mutations under Poisson probabilities.
Consequently, it is necessary to determine over what
range of U and s the additive model holds.

Details of the iterations are given in the Appendix,
but the following gives a brief summary. The iterations
assume an infinite population size, with all individuals
initially being mutation free. New mutations occur ac-
cording to Poisson probabilities with an average of U.
Gametes with x mutations are generated based on
binomial probabilities assuming free recombination
between all loci. Following random mating, offspring
survive based upon their viability given additive

fitness effects. These generations are iterated until the
population reaches a stable fitness value.

The results of the numerical iterations show that
eqn (13) holds for small values of s (Fig. 2).
However, as s increases towards 1, it is evident that
in all cases absolute fitness approaches e−U.
Moreover, Fig. 2 indicates that as U increases, eqn
(13) holds for fewer and only smaller values of s.
Similar patterns are evident for values of �x in the itera-
tions compared to eqn (12) above (Fig. S1). These
iterations demonstrate that for biologically relevant
values of U and s, the additive analytic predictions
fit closely. For example, for U equal to 2·2, and an s
of 0·01, the iteration gives an average fitness of
∼0·298, which is very close to 0·3125 predicted from
eqn (13).

As stated above, additive effects change the skew-
ness of the distribution of mutation number. In
order to visualize this change, the skewness of mu-
tation number per genome (x) in the iterations was
compared to the skewness predicted under a Poisson
distribution (see File S1). These comparisons demon-
strate that the additive model distribution of x

Fig. 2. Numerical iterations of absolute fitness for varying degrees of s and U under additive fitness effects. A. U= 1, B.
U = 2·2, C. U= 3, D. U = 10. The x-axis represents varying values of the selection coefficient (s) on a natural-log scale.
The lower straight blue line represents the predicted average fitness (�w) under multiplicative effects (�w = e−U ) and the

upper straight red line represents the predicted average fitness under additive effects �w = 1
U + 1

( )
. Each dot represents

the equilibrium average fitness from numerical iterations under a given s.
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approaches a Poisson distribution as s approaches 1
as well as when s approaches increasingly small values
of s (Fig. S2). However, under all values of U ana-
lyzed, the additive model deviates from a Poisson dis-
tribution of x for intermediate values of s (Fig. S2).

The additive model fits mutation accumulation data well

The above additive model argues that fitness should
decline linearly as mutation number increases. This
prediction is consistent with mutation accumulation
theory and experiments, which often find good fits
for linear regressions, with no log transformation of
fitness (Bateman, 1959; Crow & Simmons, 1977;
Lynch et al., 1999; Halligan & Keightley, 2009 and
references therein). In comparison, experiments
attempting to identify epistasis by detecting a quad-
ratic term from log-transformed fitness data have
also tended to support linear regressions, with no sign-
ificant quadratic term (de Visser et al., 1997; Elena &
Lenski, 1997; Elena, 1999; Halligan & Keightley,
2009). Linear regressions likely provide good fits, re-
gardless of whether or not fitness is on a log scale, be-
cause these experiments generally do not create
individuals with extremely low fitness. As is apparent
in Fig. 1, the additive function has a relatively straight
line above log(w) >−1, that is w> 0.37, leaving the
additive and multiplicative models indistinguishable
if fitness remains high.

As an example of this concept where the additive
and multiplicative models can fit data equally, I take
three of the earliest Drosophilamutation accumulation
experiments where no significant quadratic term was
detected (Mukai et al., 1972). Using the viability
data from Mukai et al. (1972), regressions of fitness
(w) onto mutation number (x) were performed to
predict the multiplicative, additive, and quadratic
fitness functions (see File S1 for more details). The
functions resulting from these regressions are shown
in Table 1 (graphs of these regressions are shown in

Fig. S3). As is evident in Table 1, the quadratic regres-
sions give very small quadratic coefficients for all three
experiments. F-tests demonstrate that there is no stat-
istical significance between the three fits (see File S1
and Table S1). These experiments provide an example
where there is equal support for the additive and
multiplicative models. Detecting a strong quadratic
term is therefore not always necessary for fitting
data to a model of synergistic epistasis, as the additive
model often provides a good fit.

The additive and quadratic models predict different
loads

It is also important to consider an additive model on
regression data, and not simply a quadratic model,
as a potential epistatic explanation, because these
two models will create different reductions in load
when predicted from the same data. To demonstrate
this difference in load reduction, numerical iterations
were run using the predicted multiplicative, quadratic,
and additive fitness functions shown in Table 1. These
iterations used U= 2.2 to be representative of the mu-
tation load for humans if the human fitness model is
similar to those predicted by these fly data (see File
S1 for details of these iterations). Table 1 demon-
strates that the predicted �w using the additive fitness
model are much larger than those predicted using
the quadratic model. For example, for experiments
CH and RT in Table 1, the predicted fitness using
the additive model is twice as large as that predicted
from the quadratic model. Consequently, the additive
model not only provides a good fit to mutation ac-
cumulation data, but also often gives a larger re-
duction in load compared to the quadratic model.

Discussion

Additive fitness effects result in a smaller average mu-
tation load compared to multiplicative fitness effects.

Table 1. Regression equations and numerical iteration values of fitness predicted from the three experiments from
Mukai et al. (1972)

Experiment (Mukai et al., 1972) Fitness model Function from regression R2 Predicted �w if U= 2.2

CH Multiplicative ln(w) = 0.0022−0.0280x 0·995 0·111
Quadratic ln(w) = 0.0014−0.0271x−0.0001x2 0·995 0·153
Additive w = 1−0.0255x 0·995 0·305

PQ Multiplicative ln(w) = 0.0022−0.0279x 0·993 0·111
Quadratic ln(w) = 0.0007−0.0245x−0.0005x2 0·995 0·210
Additive w = 0.9999−0.0254x 0·995 0·305

RT Multiplicative ln(w) = 0.0046−0.0420x 0·981 0·111
Quadratic ln(w) = 0.0037−0.0409x−0.0002x2 0·981 0·149
Additive w = 1−0.0366x 0·980 0·302

The three experiments are labeled CH, PQ and RT in Mukai et al. (1972) to represent the three initial fly stocks used to run the
three separate mutation accumulation experiments. All values of R2 and �w are approximated to three decimal places.
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As stated above, for a predicted U of 2·2 in humans,
each female would need to produce ∼18 offspring
for two to survive under the multiplicative model
with selection on offspring viability. However, under
the additive model presented here, only ∼6·4 offspring
per female would allow two to survive on average.
Data from hunter-gatherer human populations indi-
cate that women who live to the age of 50 have 5·9
live births on average (Eaton et al., 1994), making
the predicted reproductive load under additive effects
very reasonable for populations along the human
lineage.

Studies on the distribution of fitness effects
predict that the average decrease in fitness due to a
deleterious allele, though unknown, is at maximum
a few percent, though likely lower (Eyre-Walker &
Keightley, 2007). Iterations in Fig. 2 demonstrate
that within this range of s, around 0·01 or lower,
eqn (13) holds as a good approximation for biologi-
cally relevant values of U.

Mutation accumulation experiments and theory
have assumed a linear decline for fitness values that
have not been log transformed (Bateman, 1959;
Crow & Simmons, 1977; Lynch et al., 1999;
Halligan & Keightley, 2009), indicating that the addi-
tive model provides a good fit to the data in many
cases. Interestingly, the quadratic regressions in
Mukai (1969) were of viability fitness values that
were not log transformed, meaning that even if a
quadratic term had not been detected, the regressions
would have still supported the additive model, and
consequently, synergistic epistasis. Here I demonstrate
that the additive, multiplicative, and quadratic models
all give regressions for data from Mukai et al. (1972)
that are not significantly different, indicating that
the additive model often has as much support as the
multiplicative model. Consequently, detecting a large
quadratic term is not always necessary to have support
for synergistic epistasis, as the additive model results
in epistatic fitness effects. Future experiments focusing
on organisms with very low fitness values may help
distinguish between these different models, as these
low fitness values are where these fitness functions be-
have most differently.

It should also be noted that there are models of
epistasis where declines in fitness do not occur until
a certain number of deleterious mutations have accu-
mulated (Crow & Kimura, 1979; Rice, 1998). The
existence of such mutations is supported by gene
knockout experiments in yeast where gene deletions
do not show fitness effects individually, but do show
effects in combination (Tong et al., 2004). Mutations
which create epistasis in this manner may not necess-
arily be captured by mutation accumulation experi-
ments. Consequently, there is still the possibility for
stronger synergistic epitasis than has been shown in
these mutation accumulation studies.

A question that arises is why the additive model has
not previously received more consideration as an ex-
planation for mutation load. One factor may be that
the original additive summation giving L =U
(Haldane, 1937; Muller, 1950) in a sense gave a sol-
ution to load under additive effects. Muller (1950) pre-
dicted U was much less than 1, making this
approximation sufficient. This assumption of L =U
was used in later discussions of fitness under additive
effects (Crow & Kimura, 1979; see their Discussion
section) and further derivations do not appear to
have been pursued. Another factor is that load models
came out of population genetics theory, which works
most conveniently on a multiplicative scale, as this
scale maintains independence among loci. For in-
stance, the quadratic fitness model of Charlesworth
(1990) was presented on a log scale so that assump-
tions about the normality of the mutation distribution
could be used. Conversely, load under additive effects
is more complex, and requires numerical iterations for
exact solutions, making models based on multiplicat-
ive effects more mathematically tractable to pursue.

An additional derivation of additive effects was
provided to me by Brian Charlesworth (personal com-
munication) which takes into account the departure of
the variance of mutation number from Poisson that
occurs in one generation of selection (File S2). This

derivation gives �w ≈ 1− sU
U + 1

, which modifies eqn (13)

and helps capture the decrease in average fitness as s
gets larger (File S2). However, this derivation loses
accuracy under large values of s as well (Fig. S4),
again making the numerical iterations necessary for
exact solutions.

Kimura & Murayama (1966) and Crow (1970) pre-
sented a quadratic fitness function which is not on a
log scale. Consequently, if their quadratic coefficient
is zero, the load is U/(U+1), which is the same as
eqn (14) above. However, these authors only mention
this case briefly and it was not connected to a model of
additive effects, as is done here. Moreover, the average
number of mutations per individual in the additive
case (eqn (12) above) was not derived in Kimura &
Murayama (1966) or Crow (1970). It can however
be derived from eqn (1·10) in Kimura & Murayama
(1966) by setting their epistatic term (h2) to zero and
solving for the average number of mutations per indi-
vidual (defined as λ). Although these connections to
the additive model are present, the discussion put for-
ward here clearly outlines the additive model, how it
compares to the multiplicative and quadratic models,
and how the average absolute fitness of the population
impacts the dynamics of alleles in the case of
additivity.

Is there reason to think that fitness effects could be
additive? It is important to recognize that although
population genetics defines independence among loci
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as a lack of linkage disequilibrium, quantitative gen-
etics theory defines independence among loci as the
absence of interactions among each locus’s contri-
bution to a phenotype (Wade et al., 2001).
Consequently, if each locus contributes to a pheno-
type independently, then the cumulative phenotype
becomes the sum of the contributions from each
locus, resulting in additive effects (Fisher, 1918).
There is support that in many cases additivity pro-
vides an adequate explanation for much of the genetic
variance in phenotypes (Lynch & Walsh, 1998; Hill
et al., 2008). Furthermore, additive fitness effects are
assumed in quantitative genetics studies aiming to de-
tect the additive genetic variance of fitness compo-
nents in natural populations (Mousseau & Roff,
1987; Kruuk et al., 2000; Merilä & Sheldon, 2000;
Pettay et al., 2005; Teplitsky et al., 2009). The as-
sumption of a model of additive fitness effects is not
unreasonable. Consider a hypothetical case where
multiple loci each independently contribute an
amount to an organism’s weight. The individual’s
total weight will naturally be the sum of the contribu-
tions from each locus. If the organism’s total weight is
related linearly to a fitness component, say compe-
tition for mating opportunities, then the additive
model of fitness would apply. Although such concep-
tual examples can be given, whether fitness truly
behaves on an additive or multiplicative scale remains
to be determined.

In summary, additive fitness effects present a simple
model that can greatly reduce mutation load without
invoking additional factors. Furthermore, additive ef-
fects are consistent with analyses of fitness phenotypes
based on linear regression. Therefore, although the
actual way in which deleterious mutations interact re-
mains unknown, additive fitness provides a model of
mutation load that can aid in future theoretical and
empirical studies.

Appendix

Numerical iterations

Numerical iterations were performed in order to de-
termine exact values of �w under specific U and s. An
infinite population size was used where probabilities
of mutation, selection, recombination and random
mating between genotypes determined the frequency
of a genome with x deleterious mutations in the fol-
lowing generation. In each generation these occur in
the following order: recombination and gamete cre-
ation – random mating – selection –mutation – recom-
bination and gamete creation. Then, x is counted each
generation after mutation in the adult germline gen-
ome. The iterations started with an initially mutation
free population (that is, the frequency of x= 0 is
equal to 1).

The following determines the frequency of indivi-
duals with x mutations in the next generation. Let i
be the number of new mutations that occur in the
adult germline genome, where

Pr i( ) = Uie−U

i!

is the Poisson probability of an offspring having i new
deleterious mutations when the genomic deleterious
mutation rate is U. An infinite sites model is assumed
so that Pr(i) remains the same regardless of the num-
ber of mutations that are already present in the gen-
ome. This assumption holds when the number of
loci in the genome is much greater than average num-
ber of mutations per genome. Also, the Poisson prob-
abilities were truncated at 95 new mutations, because
even a under U= 10, Pr(i = 95)≈ 10−58. Additionally,
at a given locus, with u ≪ s, the frequency of a given
deleterious allele will be small so that homozygous
mutations will be negligible and are consequently
ignored in this iteration.

An adult that has x mutations will have i mutations
from new mutations and x−i mutations received from
its parents. Parent 1 will give a gamete with j muta-
tions to this individual (where j4 x−i). Parent 2
will give a gamete with x−i−j mutations. Summing
over all gamete combinations, the probability of hav-
ing a genome with x mutations in generation T + 1 is

Pr(x)T+1 =
∑x
i=0

∑x−i

j=0

Pr i( )Pr j
( )

Pr x− i − j
( )

×(wx−i) (15)

where

Pr( j) =
∑xmax

k=j

Pr(k)T k
j

( )
0.5j0.5k−j

is the probability of Parent 1 giving a gamete with j
mutations. Here, Pr(k)T represents the frequency of
individuals in the population with k mutations in gen-

eration T and
k
j

( )
0.5j 0.5k−j is the binomial prob-

ability of individuals with k mutations creating a
gamete containing j mutations. Binomial probabilities
are used to represent free recombination between each
mutation. Also, xmax is the maximum number of
mutations that an adult germline genome can possess

and here is equal to (1
s
+ 95) because offspring with

more than
1
s
mutations will die and each adult can
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receive a maximum of 95 new mutations. Similarly,

Pr x− i − j
( ) = ∑xmax

l=x−i−j

Pr(l)T

× l
x− i − j

( )
0.5x−i−j0.5l−x−i−j

is the probability of Parent 2 giving a gamete
with x−i−j mutations. Here, Pr(l)T represents the fre-
quency of individuals in the population with l

mutations in generation T and
l

x− i − j

( )
0.5x−i−j0.5l−x−i−j is the binomial probability of indivi-
duals with l mutations creating an gamete with x−i−j
mutations. Additionally, in eqn (15), the relative
fitness of an individual with x−i mutations (wx−i) is
equal to

wx−i =
(1− s x− i( ))

�w
if 1− s x− i( ) . 0

0 if 1− s x− i( ) ≤ 0

{

where

�w =
∑xmax

m=0

∑xmax

n=0

Pr m( )Pr n( )(wm+n)

Similar to above,

Pr n( ) =
∑xmax

k=n

Pr(k)T k
n

( )
0.5n0.5k−n

and

Pr m( ) =
∑xmax

l=m

Pr(l)T l
m

( )
0.5m0.5l−m

are the probabilities of parents contributing gametes
that contain n and m mutations, respectively and

wm+n = 1− s(m+ n) if 1− s(m+ n) . 0
0 if 1− s(m+ n) ≤ 0.

{
The frequencies in generation T+ 1 for all x are

generated and these new frequencies are then used to
calculate the frequencies of genomes with x mutations
in generation T+ 2. These generations are iterated
until the average absolute fitness remains constant
(to 13 decimals) for 100 generations. The above sum-
mations were iterated in Perl.
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