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RIESZ'S FUNCTIONS IN WEIGHTED 
HARDY AND BERGMAN SPACES 

Dedicated to Professor Fumi-Yuki Maeda on his sixtieth birthday 

TAKAHIKO NAKAZI AND MASAHIRO YAMADA 

ABSTRACT. Let fi be a finite positive Borel measure on the closed unit disc D. For 
each a in D, put 

S(a) = mfJD\f]Pd^ 

where/ ranges over all analytic polynomials with f{a) = 1. This upper semicontin-
uous function S(a) is called a Riesz's function and studied in detail. Moreover several 
applications are given to weighted Bergman and Hardy spaces. 

1. Introduction. Let D be the open unit disc in the complex plane C. P denotes a 
set of all analytic polynomials and H denotes a set of all analytic functions on D. Suppose 
0 < p < oo. When // is a finite positive Borel measure on D and a G D, put 

S(/z, a) = S<ji,p, a) = inf {^ | / f rf/x;/ G P and/(*) = 1} 

and 

*(//, a) - *(/!,/>, a) = sup j |/-(a)P ; / G P and jC | / f rf/i < 1}. 

When /i is a finite positive Borel measure on D and a G D, put 

s(/i,a) = j(/x,p,a) = inf ^ | / f d\i\f eHand/(a) = 1 

and 
rOx,a) = rOx^.fl) - sup{\f(a)f ;f G //and ^ \fl> d» < 1}. 

The four functions S, R, s and r are called /J/e^z s functions. In this paper we study these 
four Riesz's functions. M. Riesz used such functions to solve the moment problem on the 
real line (cf. [6, Chapter 5]). T. Kriete and T. Trent [7] also investigated the relationship 
between \i and R(fi, 2, a). In the investigations of Riesz's functions, the most fundamental 
and important result is the following theorem by G. Szego (cf. [5, Chapter 3]). He proved 
it only when/? — 2 but it can be proved for arbitrary/?. In the statement of the theorem, 
we note that the integral kernel (1 — |tf|2)/| 1 — del6\2 is called the Poisson kernel. 
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SZEGO'S THEOREM. Suppose 0 < p < oo, \i is a finite positive Borel measure on D 
with supp/x C 3D and d{ij(dQ/2TT) — w{eie). Then, 

SQi9p9a) = (1 - M2)exp(log w)Aa) (a G D) 

where (log w)\a) = ft* log w ^ ) ^ ^ d0/2<ir. 

It is most desirable to describe S(/i,/?, a) using /x as in Szego's Theorem, when \i is an 
arbitrary finite Borel measure on D. However such a problem is very difficult except for 
some special measures /x. In Section 2, we study the behaviour of S(fi9p9a) as \a\ —> 1 
for an arbitrary measure on D. Moreover we note that 

S(p,,p9 a)R(fi9p9 a) = 1 (ae D). 

Thus, we need to know only S or R. In this paper, the results and the proofs about s 
and r are very similar to those about S and R. Hence we concentrate on only S or R in 
Sections 2,3 and 4. Let m be the normalized area measure on D9 that is, dm = rdrdO/n. 
In Section 3, we give several lower estimates of S using dfi/dm. It is more difficult to 
give the upper estimates of S. We do it only in very special cases. In Section 4, we show 
that R(ji9p9 a) is not in Ll (/J) if supp // is not a finite set. 

Suppose 0 < p < oo. /^(/x) denotes the closure of P in LP{ii) when /i is a fi­
nite positive Borel measure on D. / /^(/J) is called a weighted Hardy space. If d/x = 
d#/27r,/F(/x) = IF is the classical Hardy space. When /x is a finite positive Borel mea­
sure on D, then one defines Lp

a(pL) = / / D ^(/x). Z£(/x) is called a weighted Bergman 
space. If /x = m,Zfl(/x) = L£ is the usual Bergman space, / /P can be embedded in H. 
La = /^(w), and hence Lp

a is closed. We are interested in the following questions: 
(1) When can IP{p) be embedded in HI 

(2) When is Lp
a(p) closed? 

(3) When can IF(p) be embedded in l£(p)? 
Of course it is very interesting to know when Lp

a{p) = /^(/i), where /i is a measure on Z). 
This problem is classical and important (cf. [2]). However, in this paper we are not going 
to consider this problem. Question (2) was studied by M. Yamada [13]. If /i is a measure 
on D9 question (1) is equivalent to (3). Note that the measure /x for (2) satisfies (3). In 
Section 5, we study the three questions given above. For example, for some compact set 
K in Z), if SD\K 1°S Wdm > — oo then PP{\i) can be embedded in H where W = d^t/dm. 
This result follows from the lower estimate of S(fi9p, a) in Section 3. 

In this paper, we will use the following notation. For each a G D9 let <f>a be the Mobius 
function on D9 that is, 

« z ) = - ^ — ^ (zeD)9 

1 — az 

and put 
^ z ) = I l o g i ^ (a^eD). 

2 1 - \<t>a(z)\ 
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For 0 < r < oo and a G Z), let 

Dr(a) = {z£D;fi(a,z)<r} 

be the Bergman disc with 'center' a and 'radius' r. For u G L](m), 

u(a) = / u o cf)a(z)dm(z) (a G £>). 

Then w may be bounded on D even if w is not bounded on D. 

2. Riesz's function. If \i = m, then for 0 < p < oo S(m,p, a) = (1 — |<z|2)2. Hence 
/i = m or supp/i C dD, by Szego's Theorem limr_4i_ S(fi,p,rel6) = 0 a. e. 0. In this 
section, we show that this is true in general. In particular, R is not bounded on D. In fact, 
for arbitrary //, we show that limr_i_ S([i,p, rel°) = 0 except for a countable set of 0. 

PROPOSITION 1. Suppose 0 < p < oo and fi is a finite positive Borel measure. Then 
the following are valid for R(a) — R(\i,p, a) and S(a) = S(p,p, a). 

(1) R(p,p,a) S(fi,p,a) = I for a G D, assuming oo x 0 = 1. 
(2) R{ji) is lower semicontinuous on (0, oo) x D, and S(fi) is upper semicontinuous 

on the same set. Moreover R(fi,p, a) > 1///(D) and S(n,p,a) < fi(D). 
(3) If log R or R is in L](m), then for a G D 

R{a) < exp(log R)~(a) < R(a). 

(4) Ifr < oo, then for a G D 

\ogR(a) < I",1 , 1 -y^ r / logRdm 
yi-s\a\J m(Dr(aj) - W) t(Dr(a)) 

where s = tanh r. Hence for a G D 

( l + \a\\ r 
logR(a) < 7-7 / logRdm. 

V 1 — \a\J JD 
These inequalities are also valid for R instead of log R. 

(5) For aeD, 
S(id,p,a) > S(S(n)dm,p,ay 

(6) R is not bounded on D and D. 

PROOF. (1) It is easy to see that 1 < R(a)S(a) for 1 G D. If 1 < R(a)S(a), then there 
exists a positive constant 7 such that 1 < lS(a) and 7 < R{a). Hence 1 < 7 J \g\pdp, for 
any g G P with g(a) — 1 and so 

\f(a)\p < 7 \b\f\
pdp for any/ G P. 

This implies 7 > R(a). This contradiction shows that 1 = R(a) S(a). (2) is clear by (1). 
(3) If/ G P, then log \f\ is subharmonic on D and hence for any a G D, 

log|/-(a)r < / l o g l / X z ) ! ^ . 1 " 1 ! ^ 2 Jw(Z). 
./D 1 — azr 
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Assuming J \f\p d\i < 1, by definition ofR 

logR(a) < [D\ogR(z) (1 
1 

W2>2 A ( ^ -^dmiz). 

This implies R(a) < exp(log R)~(a) < R(a). (4) If 0 < r < oo, for any a € Z),(0) and 
any/ G P, 

1 /• . .„. .,„(! - | a | 2 ) 2 

log |/(a)|" < —. r f log \f(z)f \ , | g | J a&»(z) 
V ~ mDJO)) JDAa) 6 | y w i 1 - a z 4 w 

and hence 

iogi/-(<or< 
1+sla 41 / log |/| pdm 

i(Dr(a)) V 1 

where s = tanhr. This proof is the same as that of [14, Proposition 4.3.8.]. Assuming 
J | /f rf/i < 1, we get (4) as in (3). (5) By (1), 

{\fYdn>S<ji,z)\f(z)r (z£D), 

and hence J\f\p d\i > J\f\pS(fi)dm. Assuming f(a) = 1 and a E D, we get S(n,a) > 
S(S(n)dm,a). (6) If R(fi,p9 a) is bounded on D, then //?(//) C L°°(/i). By [11, Theo­
rem 5.2], /^(/i) is finitely dimensional. It is easy to see that supp/x is a finite set. Then 
trivially R(^,p, a) = oo except for a E supp /i. The proof of the statement for D is same 
to that for D, assuming \L — \i\D. 

Even if v is not bounded, v may be bounded. However (3) and (6) of Proposition 1 
show that R is also not bounded. The following theorem gives a stronger result. 

THEOREM 2. Suppose 0 < p < oo and /i is a finite positive Borel measure on D. If 
a E dD, then the following are valid. 

(1) ii{{a\) = 0 if and only ifS(n,p,a) = 0. 
(2) linv^i_ iS(/i,p, ra) = 0 except for a countable set of a in dD. 
(3) Iffi({a}) = 0 and {an} is a sequence in D with lim an = a, 

then lim„_̂ oo £(//,/?,#„) = 0. 
(4) If n({a}) > 0, then for each n, the set {z E D;\z — a\ < l/n} D {z E 

D; S(/j,,p,z) < 1 jn\ is a nonempty open set. 
(5) Ifb <c andE = {z E D;z = r ^ , 0 < r < I and b < 0 < c}, then R is not 

bounded on E. 

PROOF. We may assume a = 1. (1) If //({l}) > 0, then |/"(l)p < J | / f rf/x//x({l}) 
and so R{yi,p, 1) < l//i({l}). (1) of Proposition 1 implies S(ii,p, 1) > 0. Conversely 
suppose //({!}) = 0. If z E D andz ^ 1, then lim,_»i+ |(1 - t)/(z - t)\ = 0 and 

1 - / 
< 1 ( />1) . 

For any / > 1, 

S(M,/>,1)</J *>(z) = J_ \ \ - t \ 

D\{1) 
dji(z). 
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As t —> 1, by the Lebesgue's dominated convergence theorem, S(p,p, 1) = 0. (2) Sup­
pose /i({l}) = 0. If there exist a sequence {rn} and a positive constant e such that 
0 < rn < 1 with rn —> 1 and S(fi,p9 r„) > e > 0, then 

l / W < 1 /.. l/T rf/x and so 1̂ (1)1" < j / f l |/V ^ -

This implies S(^t,p,l) > 0 and contradicts (1). Hence if /i({l}) = 0, then 
lim^i-S(ii,p,r) — 0. This implies (2) because {a G dD\ji{{a}) > 0} is a countable 
set. (3) is clear by the proof of (2). (4) Suppose /i({l}) > 0 and for each n9 put 

G„ = 
1) 

z G Z ) ; | z - 1 < - H jzGD;%, /? ,z )< -

Since {z G 5D;/i({z}) > 0} is a countable set, for each n there exists bn G {z G 
d£>; |z - 1| < £} with /*({&„}) = 0. Then S(p,p,bn) = 0 by (1) and hence G„ is not 
empty. Gn is a relatively open set in D by (2) of Proposition 1 and so GnnD is a nonempty 
open set. (5) follows from (2). 

If R(p,2,a) < oo, then the point a G D is a bounded point evaluation for H2(^i). 
Therefore, there exists ka in //2(/i) such that f(a) = Sf(z)ka(z)dfi(z) for any/ in //2(/i) 
and hence R(p,, 2,a) = J \ka(z)\2 dp(z). Thus the results in this section give some infor­
mation about the reproducing kernel ka. 

3. Estimate of Riesz's function. In this section we give upper and lower estimates 
of S. The lower ones will be used later. The following proposition is a generalization 
of Szego's theorem in the Introduction. In fact, if fi\D is a zero measure, then it gives 
Szego's Theorem. 

PROPOSITION 3. Suppose 0 < p < oo and [i is a finite positive Borel measure 
such that (dn\dD)/(d0/2ir) = w(e>0), fi\D = T,aj8Zj and £(1 - \zj\) < oo. Let b be 
a Blaschke product of{zi} and bj a Blaschke product of{z^}^j. Then for all a G D, 
(1 - H2)exp(logw)A(a) < S(p9p9a). IfaeD\ { z j , then 

If a = Zj, then 

S<ji9p,a) < \b(a)\-P(l - | a | 2 )exp( logw)». 

S(ji9p9a) < \bj(a)\-P(l - \a\2)exV(\ogw)A(a) + aj. 

In particular, S(p,p,a) > 0 if and only if log w G Ll(dO). 

PROOF. Since S(n,p,a) > S (wd0/27r9p9a) for all a G D9 by Szego's Theorem 
(1 — \a\2) exp(log w)A(a) < 5(/i,/?, a) for all a G D. Let Bn be a finite Blaschke product 
of {zi,Z2,.. . ,z„}. If a G D \ {z^}, then 

S(fi,p9a) < inf Bn 

1 

Bn(a) 

inf 

8 
\P oo 

dn\dD + Y,<*j 
BniZj) 

Bn{a) &j) ;g eP andg(a)= 1 

\Bn(a)\P 

g G P and g(<z) = 1 

/
oo 

|5„g|"j/i|az)+ £ fl/lB^ngW; 
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As n —y oo, 

S(^p,a) < j^inf^\g\Pdfi\dD;g e Pandg(a) = l^ 

Now by Szego's Theorem, for each a G D, S(fi,p, a) < \b(a)\~p (1 — \a\2) exp(log w)A(a). 
Let Bj^n be a finite Blaschke product of {z\,Z2,... ,z„} \ {zy}. If a = zj and n >j, then 

S(n ,p,a)< inf IJ <fyj;g G.P andg(a) = 1 
\BjAa) 

+ Y, ae\Bj,„(ze)\p\gize)\
p;gePandg(a)=l\. 

E>n+\ ) 

As n —> oo, by Szego's Theorem, for a = zy, 

SUi,p,a) < \bj(a)\-P(l - |a|2)exp(logw)A(a) + ay. 

The following proposition is related to Theorem 2 in this paper and the Theorem in [7]. 
In fact, if W is bounded on Z), then (1 — \a\2)~2S(Wdm,p, a) is bounded on D. Moreover 
if W is continuous on D, then for all el°, 

lim(l - \a\2)2R(Wdm,p,a) = l/W(ew\ 
a—^eie 

since for a function u continuous on D we have lima_^^u{a) = w(e^). 

PROPOSITION 4. Suppose 0 <p < oo and \L is a finite positive Borel measure on D. 
(1) fl(a) > (SQi))~(a) (a G D). 
(2) lfd[i— W dm and a G D, then 

(1 - |a|2)2 exp(log tfy» < SQjL9p,a) < (1 - | « | 2 ) 2 ^ ) . 

(3; S(Wdm,a) = (1 - \a\2fS(Wo(l>adm,0)fora£D. 

PROOF. (1) For all Z G £ > 

/ b ? <*M > l / W ( z ) and so / | /f rfjz > / 1/fSdw. 

Assuming/(z) = {(1 - |tf|2)/(l -«z)2}2 /^ for a € f l , £(«) > 5(a). (2) If log W G L^w), 
then 

S(Wdm,p9a) 

= inf | / \f\p Wdm;feP and/(a) = 1J 

= inff f l g ^ o ^ ( 1 " l f l J i dm ;g G tF(Wo<f>adm) andg(0) - 1 
(•' |1 — azy 

= (1 - |a|2)2 i n f ( | | £ | ^ o </>adm;k£ lP(Wo<\>adm) and*(0) = 1 

(1 - |a|2)2 exp |(log W)o<l>adm = (l- \a\2)2 exp(log W)~(a). > 
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The inequality above is proved by the fact that log \k(0)\ < JQ* log \k(rel9)\d9 / 2TT for 
0 < r < 1 if k G //, and by two Jensen's inequalities. The other inequality in (2) follows 
by setting k = 1 in the infimum above. (3) is clear by the proof of (2). 

In (2) of Proposition 4, we can get estimates of S(p,p, a) as in Proposition 3 when 
dp = Wdm + Y°Z\ ajfizr{

zj} c D an(* £ 0 - \ZJ\) < oo. The following theorem is 
important in this paper and the following lemma is used to prove it. 

LEMMA 1. Let As(a) be the set {z G D; \{a - z)/(l - az)\ < s} where a G D and 

s G (0,1). Ift G (0,1) and \ - s2 = (\ - \a\2)(\ - t2)/5, then A^O) C As(a). 

PROOF. Without loss of generality a ^ 0. the Euclidean center and radius of As(a) 
are 

r_ i - * 2 „ i - H 2 

l-MaP*9 \-s2\a\2S 

respectively. Hence to prove A,(0) C As(a), it is sufficient to show that 

1 -s2 . . l-\a\2 

t+ T1-P7\a\ < 
\-s2\a\2' ' \-s2\a\2 ' 

If l - s2 = (1 - \a\2)(\ - /2) /5, then 

(l-\a\2)(\-t2) 
1 ~ ^ 5—Ti2 

5 — \a\2 

and hence s2 > {4 + (1 — |a|2)/2}/(5 — \a\2). The last inequality is equivalent to 

1 ^( l - lapX* 2 -* 2 ) 

Then 
t _ ^ < ( l - | a l 2 ) ( 5 - Q s j H < (1 - |a|2)(s - 0 

2 2 |a|(/|a| + 1) 

because s +t < 2 and |a|(/|a| + 1) < 2. This is equivalent to the inequality 

l-s2 . . 1 — |aj2 

t+-. 5TT7« < l-s2\a\2' ' \-s2\a\2 ' 

THEOREM 5. Suppose 0 < p < oo and p, is a finite positive Borel measure on D. Set 
dn/dm — Wdm, suppose K is an arbitrary compact set in D and let t = max{\z\;z 6 
AT}. Then, for a GD 

O-J^o-f2) 
S(fi,p,a) > exp 

If 1 < P < °o a «<i a £ D, then 

2 4 - 5 

(1 - |a|2)3(l 
- r - f l0g(^A l)rf/W 
t2) JKC 
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Sfap, a) > 
(l-\a\2f2-i\l-fi)2-t 

24(1">i) • 52-i 
J W"k dm) 

±-i 

PROOF. By two Jensen's inequalities, for a G D 

£(//,/?,#) > S(Wdm,p,a) 

= inf{ [\g\>>Wo cf>a
{-jf^- dm;g(0) = 1} 

= 0 -

> ( 1 -

> ( 1 -

= 0 -

= 0 -

a r r i n f / |jfc|p»ro^<,</i»;*(0)= 1 

a|2)2 jf' 2r d V e x p [ ^ log Wo^dd/lit 

ri 2r 
a | 2 ) 2 ( l - s 2 ) ^ — ^ a r e x p h f *logWo<l>ad9/2ir 

a\2)2(l - s 2 ) e x p [ — ^ [* 2rdr ?* logWo<j>ad9/2Tr 

1 /• 
r / log W o 0a Jm 

1 - S2 ./D\A1-(0) 5 

7 . o g ^ 1 - 1 ^ 
JD\As(a) B 1 - OZ 4 

a\2)\\-s2)exp 

a\2)2(\-s2)exp 
l - r 

a | 2 ) 2 ( l -s 2 )exp (1 - \a\zY 1 
„ . M , y /" log(^Al)dm 
(1 - | a | ) 4 1 - ^ 2 JD\As(a) 5V ' J 

where s G (0,1) and A5(a) = {z G D; \(a — z)/(l — az)| < s}. For each compact set 
K C A if' = max{|z| ;z G £}and 1-s2 = (l-\a\2)(\-t2)/5, then by Lemma 1 A^O) C 
As(a). Hence K C A5(a) and so Kc D D \ As(a). Thus, if 1 - s2 = (1 - |a |2)(1 - f2)/5, 
then 

( l - l ^ l 2 ) 2 1 _ (1 + M)4 24 • 5 
(1 - \a\f \ - s 2 ~ (\- \a\2)2{\ - s2) ~ (1 - |A|2)3(1 - t2) 

and hence for all a G D 

24-5 ^ ( i - H 2 ) 3 ( i - / 2 ) 
S(^,p,a) > exp (\-\a\2)\\-t2) 

-r- [ \og(WA\)dm 
t2) JKC 

Now we will prove the second inequality. Instead of Jensen's two inequalities, we will 
use the Kolmogoroff's inequality (cf. [12, Theorem 4.3.1]). For a G D, if 1 < p < oo 
and ! / / ? + ! / # = 1, 
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S(ii,p,a)>(l 

> ( 1 

> ( 1 

= (1 

= (1 

> ( 1 

a\2)2 f 2rdr{^\Wo4>ay^ J6>/2TT1 

_ J 

a|2)2(l - s2) [ - ^ drifjiWo^y^ d6/2ir) ' 

1 f 2rdr j2*(Wo<j>ay^ de/lA 
1 

--L- Vq 

(Wo(f)a) P-\ dm\ 

a\2fd-s2) 
l-s2 

2\1 + J 

a | z ) z ( l - r ) 

a\2)2(l-s2)]+l 

a\2)2(l-s2)l+i« 

D\As(0)v 

JD\As{a) 11 - az\4 ) 

( i -H 2 ) 2 

>4 JD\As(a) (1 - \a\)4 JD\As(a) 
W~p-] dm 

> 
(\-\a\2fl+i«\\-s2)Hi« 

4 

2* D\As(a) 
W~p-^ dm 

where s E (0,1). As in the proof of the first inequality, for each compact set K C D, if 
t = max{|z| ;z E A:} and 1 - s2 = (1 - |a|2) (1 - /2) /5, then Kc D D\ As(a). Thus, if 
1 - s2 = (1 - |a |2) (1 - f2)/5, then for all a E D 

SQji,p9a)> 
( i -H 2 ) 3 ( 1 + ^(i -^ 2 ) 

The second inequality of Theorem 5 implies 

S( / i , l ,a )> ( 1 - | « | 2 ) 3 x ( l -^ ) ( l /5 )ess inf{^(x) ;xEA: c } . 

Let a be a finite positive Borel measure on [0,1]. Then, p(rel°) = a(r) x W{rel6) dO/'2ir 
is more general than W dm = 2rdr x W(rel6) dQ/ In. If <j(r) is singular to the Lebesgue 
measure on [0,1], then p is singular to m. However we can give an interesting lower 
estimate. It is different from that of Theorem 5 in case of p = Wdm. 

THEOREM 6. Suppose 0 < p < oo and dp = a(f) x W{r^e)dO/2'K where a(r) is a 
finite positive Borel measure on [0,1]. IfW(ew) = supr W(rew) and Wr(e

w) = W(rew), 
then for a E D 

(\-\a\2) [\exp(\og Wr)
A(a)da(r) 

J\a\ 

<S(n,p9a) 

<r([0, l])inf{sup [^ \f(rew)\pW(reie)d6/27r;f(a) = l] < 

< <x([0, l])inf {sup fj \f(reie)fW(eie)d9/2ir;f(a) = 
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PROOF. For a G A 

SQi,p9a) = infj { da(r)J*n \f(rei9f>W(rew) d0/'2TT ;/(a) = 1 

> jf1 do(r)M{[* \f(rew)\rW(rew)dO/27r;f(a) = 1 

= ^ da(r) mf^ \f(rei9)\*>W(rei9)d6/27nf(a) = 1 

= (\{\-\a\2)^{\ogWrt{a)da{r). 
J\a\ 

We used Szego's Theorem in the last equality. The upper estimates are trivial. 

COROLLARY 1. Let d\i = a(r) x Wire19) d8/2ir as in Theorem 6 and 0 < p < oo. 
(1) IfW{reie) = 1, then for a G £> 

(1 - \a\2)a([\al 1]) < *%,/>, a) < (1 - |a|2a([0,1]). 

In particular, S([i,p,0) = cr([0, ip. 
(2) IfW(rel9) = \h(rel9)\ for some outer function h in Hl(dO), then for a G D 

(1 - |a|2) [\ W(rd)do(r) < S(ii,p,a) < (1 - \a\2)W(a)o([0,1]). 

(3) If \ <p < oo and W ( ^ ) = sup W(rel9) satisfies the Ap condition, then there 
exists a positive constant 7 such that for a G D 

S^,p,a) < 7(1 - |a |2)exp(logW)»a([0, l]). 

PROOF. (1) is a special case of (2). (2) Since h is an outer function in H], for a £ D 

exp(log Wr)
A(a) = exp(log |Ar|)

A(a) = \h(ra)\ = W{ra) 

and 

inflsup J* \f(reie)\PW(reie)de/2ir\ 

= inf j£* l/-(e'e)r 1^(^)1^/2^ - (1 - |a|2)|A(a)| = (1 - |a|2)fF(a). 

Now Theorem 6 implies (2). (3) By a theorem of M. Rosenblum(c/[10] and [9, Theorem 
2.2]), there exists a positive constant 7 such that for any/ G P 

sup J * \f(rei9)\pW(eie)d6/27r <lj* \f(ei9)\pW(ei9)dO/2<K 
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because W E ^ . By Theorem 6 and Szego's Theorem, for a G D 

inf jsup j 2 * \f(rei9)\pW(eid)dO/27r\ < 7inf f^ \f(ew)\pW(ei9)d6/27r 

= 7(l-M|2)exp(logW)A(a) 

This implies (3). 
In (2) of Corollary 1, the referee pointed out that the identity S(p,p, a) = W(a)S(v,p, a) 

is valid where dv — o(f) x dO/2ir. Applying Theorem 6 for v, we have the estimates 
(1 - | t f | > ( [ | 4 \])W(a) < S(ji9p9a) < (1 - M X [ 0 , l])W(a). 

4. The Carleson inequality and Riesz's function. Let v and p be finite positive 
Borel measures on D and 1 < p < oo. We say that v and p satisfy the (v, /x,/?)-Carleson 
inequality, if there exists a constant 7 > 0 such that 

f_\f\Pdv<l J^dn 

for a l l / £ P (see [8]). v and p satisfy the (V, /x,/?)-Carleson inequality if and only if 
PP(p) C IF(v) and the inclusion mapping ip-.tF^i) —• HP(v) is bounded. We say that 
for/? > l,i/ and p satisfy the (i/,/x,/?)-vanishing Carleson inequality if IF(p) C /^(V) 
and ip:H

p(p) —> /F(z/) is compact. We say that for /? = 1, i/ and p satisfy the (v, >LX,/7)-

vanishing Carleson inequality if z), is star-compact. We could not prove Theorem 7 for 
p = 1 because we do not know anything about the predual of//1 (p). Using Riesz's func­
tions, we will show vanishing Carleson inequalities. As a result, we show that R(p,p) $ 
Lx(p) if supp p is not a finite set. Moreover, from a given measure p, we will show how 
to construct a measure v such that the (i/, jLx,p)-vanishing Carleson inequality is valid. 

THEOREM 7. Suppose 1 < p < oo, a«d z/ a«d // are finite positive Borel measures 
on D. 

(1) If J R{p,p)dv < oo, then v and /i satisfy the (v', p,p)-vanishing Carleson in­
equality and 

R(p,p,a) < (jR(p,p)dis]R(is,p,a) (a e D). 

(2) If V is a Borel function such that 0 < V < S on D, then V\g\p is bounded on D 
for each g in HPip), and Vdm and p satisfy the {Vdm, p,p)-vanishing Carleson 
inequality. 

PROOF. (1) By definition of R(p,p, a), for a e D, 

\f(a)\p<R(p,p9a)J\f\pdp (feP). 

Hence if 7 = J R(p,p) dv < oo, then J \f\p dv < 7 J \f\p dp(feP) and so ip: IF{p) -* 
IF(v) is bounded. We will show that ip is compact. lffn —>/weakly in /^(/i), then there 
exists a finite positive constant 7 ; such that 

J \fn-f\
p dp <l'for 2\\n. 
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By the hypothesis, R(p,p, a) < oo z/-a.e. on D and s o / —>f z/-a.e. on D because/, —>/ 
weakly. Moreover by definition of R(p,p,a\ \fn(a) —f(a)\p < l'R(p,p,a) and by the 
hypothesis, R(p,p, a) G Ll(v). Thus 

/ \fn ~f\p dv —•> 0 as n —> oo 

by Lebesgue's dominated convergence theorem. This implies ip is compact. Since 
S\f\pdv < 7 J | /f rf/x and 7 = J R(p9p)di/, assuming / ( A ) = 1, we get S(i/,p, a) < 
lS(p9p9 a). Now by (1) of Proposition 1, we get the inequality of (1). (2) If 0 < V < S, 
then VR < 1 and hence V(a)\f(a)\p is bounded on D by J | / f dp, for each/ G /F(/i). 
Moreover if z/ = FJm and 0 < V < S, then JR(p,p)di/ < J dm = 1 and hence by (1) 
v and /i satisfy the (z/, jLi,/?)-vanishing Carleson inequality. 

COROLLARY 2. 7f 0 < p < oo a/id supp // w «o/ a finite set, then R(p,p) $ Lx (p). 

PROOF. Suppose 1 < p < oo. If R(p,p) G Lx(p\ then the inclusion map ip: HP{p) —» 
HP(p) is compact. It is easy to see that ip is an identity operator. Hence the unit ball 
of HP{p) is compact with respect to the norm. Therefore HP(p) is finitely dimensional. 
This contradicts that supp/i is not a finite set. This implies that R(p,p) $ Ll(p). For 
0 < p < 1, the proof is due to the referee. Choose n sufficiently large that np > 1. If 
g(a) — 1 then g"(a) = 1 as well, and g" is a polynomial if g is a polynomial. Thus, 

S(p,p, a) = inf {\b \ff dp ; / G />,/(<,) = 1) 

<inf{j(_ |gT<//x;gGP,g(fl)= l j = S(p,np,a). 

This implies that #(//,/?) £ L\p) for 0 < /? < 1. 
By Proposition 4 and Theorem 5 we obtain the following result. 

COROLLARY 3. Suppose 1 <p < oo and dp/dm = W. 
(1) If'log fT G I^m) anddv — (1 — |z|2)2 exp(log JT)~ dm, //zefl z/ a«J/x satisfy the 

(z/, p,p)-vanishing Carleson inequality. 
(2) IfxKc log(W A 1) G Lx(m) for some compact set K in D, then there exists a 

nonnegative constant b such thatdv = exp{—b{\ — |z|2)-3} dm andp satisfy the 
(z/, p,p)-vanishing Carleson inequality. 

(3) Suppose \KCW~ ^ £ L] (m) for some compact set Kin D. Ifdv = c(l —1 |̂2)3(2—^^ 
dm, then v and p satisfy the (y, p,p)-vanishing Carleson inequality. 

Suppose 1 < p < oo and dp/dm = W. If \KC log W G Ll(m) for some compact set 
K in D, then there exists a positive constant a and a nonnegative constant b such that 

«(i-iz|2)3exP{-ft(i-|z|2r3}^)r 
is bounded on D for each/ G ^(p). Here a and b do not depend on/ , but only on W 
and the choice of K. This is a corollary of (2) in Theorem 7. 

https://doi.org/10.4153/CJM-1996-048-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-048-5


942 TAKAHIKO NAKAZI AND MASAHIRO YAMADA 

5. HP^i) and Lp
a(p). The following is a result of Theorem 5. If' d\ij dm — W and 

log W is integrable on the complement^ of a compact set in Z), then /^(/i) C Lp
a(ji). In 

this section, we show that if log Wis locally integrable on Kc, then the same result is true. 
We give a necessary and sufficient condition for /^(/x) C Lp

a{^x) using Riesz's function, 
providing (supp /i) n D is a uniqueness set for H. A subset E of D is a uniqueness set if 
E satisfies the following: If/ in H is zero on E, then/ = 0 on D. Theorem 8 is a joint 
work with K. Takahashi. 

LEMMA 2. Suppose 0 < p < oo and /x w a finite positive Borel measure on D. Then 
the following (1)—(S) are equivalent. 

(1) supflG/: R(^,p, a) < oo for all compact sets K in D. 
(2) JK R(n,p) dm < oo for all compact sets K in D. 
(3) JK log R(fi,p) dm < oo for all compact sets K in D. 

PROOF. Both (1) => (2) and (2) => (3) are trivial. We will show (3) =» (1). We may 
assume that fi(D) = 1. For any/ E P, 

i°8wo)r£^))/».,,i<,s^'""-
If a G Dr(0), then for a l l / e P 

m[Dr(0)) jDr(a) \\ —az\* 

Assuming J \f\p dfi < 1, we get 

Since Dr{a) C £>2r(0) and R(fj,,p,a) > 1, there exists a finite positive constant 7 r such 
that for each a G Dr(0) we have 

log R(^p, a) < 7 r /" log R(n,p) dm. 
JD2r(V) 

This implies (1). 

LEMMA 3. Le/ X be a Banach space which consists of analytic functions on D 
and contains 1. Suppose there exists a dense subspace Y of X such that iff in Y, then 
(f —f(afj /{z — a) belongs to Y for some a £D.If(z — a)X is not dense in X, then the 

functional f i—>f(a) is bounded on Y. 

PROOF. By the hypothesis, if/ e Y, then/ = f(a) + (z — a)g for some g G Y. Since 
(z — a)X is not dense in X, there exists a nonzero <j> £ X* such that ((z — #)/*, </>) = 0. 
Then, for / G F we have {/*,</>) = /(a)(l,(/>). Since (/> is not identically zero we have 
(!,</>) ^ 0 . Thus |/"(£i)| <7 | [ / | | forall /G FwhereT = |(1,0)!-11|^||*. 
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THEOREM 8. Suppose 1 < p < oo and /i is a finite positive Borel measure on D 
such that (supp fi)nD is a uniqueness set for H. 

(1) L%(n) is closed if and only if for all compact sets K in D 

/ log r(/i,/?) dm < oo or / log s(fi,p) dm > —oo. 

(2) IF^i) C Lp
a{p) if and only if for all compact sets K in D 

I log R(n,p) dm < oo or / log S(^t,p) dm > —oo. 

PROOF. (1) First suppose that Lp
a{p) is closed. If/ G Z£(/i), then (f-f(0J) jz belongs 

to H. Since (f —/(0))/z is bounded on |z| < t < 1 and 1/z is bounded on \z\ > 
', if - / ( 0 ) ) /z belongs to Z£(/z). This implies that {f G Z£0i) ;/(0) = 0} = zLp

a(y) and 
hence Lp

a(ii) = C ® zlfa{\i). If Af = zf for/ G Z£(/i), then A is a bounded operator 
on L%(fi) and the range of A is algebraically complemented in Lp

a(ii) by what was just 
proved. By [4, Part III, Corollary 2.3], the range of A is closed and hence zLp

a{p) is not 
dense inLp

a(fi). Applying Lemma 3 withX—Y — Z£(/x), it follows that r(fi,p,a) < oo 
for a = 0. The same argument is true for all a G D \ {0} and hence r(fi,p, a) < oo for all 
a G /). By the boundedness of holomorphic functions on compact sets and the uniform 
boundedness principle, supa(EA: r(/i,p, a) < oo for all compact sets K in D. As Lemma 2 
also holds for r(/i,p, a), 

/ log r(fi,p) dm < oo or / log s(fi,p) dm > — oo. 

Conversely, suppose J^ log r{ji,p) dm < oo for every compact sets Â . Then by the 
above lemma, sup^ r(n,p) < oo for every compact sets K. Iff is in the If(/j,)-norm 
closure of Z,£(/i), then there exists a sequence {/} in /£(//) such that /[/* — fn\

pdfi —> 
0. Then for any fixed r < oo if we let A:r = supflGD (0) r(/i,/?, a), then we will have 
sup{|g(z)| ;z G A*(0)} < £r||g||z^. Applying this with g = f„ - fm we see that t h e / 
are uniformly Cauchy on Dr(0) and hence converge uniformly to an analytic function 
on Dr(0). Since r was arbitrary, the/, converge uniformly on compacta to an analytic 
function g on D, and we must have g = / , /i-a.e. on D. 

(2) The 'if part is same as (1) and hence we will show the 'only if part. If we put 
M — {f G If {ii); zf G IF(II)}, then M is a closed subspace of Lp(fi) such that 

where IF(ji)o = {f G //?(//) ;/(0) = 0}. / F ( / J ) 0 is well defined because IF(y) C lfa{p). 
Suppose //?(//) ^ zM. Then /^(/x) = C + /^(//)o = C + zM and C n zM = {0}. 
As in the proof of (1), by [4, Part III, Corollary 2.3], zM is closed in IF^i) and hence 
z/F(/x) is not dense in /^(/i). Applying Lemma 3 withX = //^(/x) and Y = P9 it follows 
that R(fji,p,a) < oo for a = 0. Suppose /^(/x) = zM. Then z_1 G i/(/i) and hence 
/i({0}) = 0. If Af = zf for/ G M, then ^ is a one-one bounded operator from M onto 
/^(/x). Therefore ^ is invertible and hence A{zM) = z¥P{\i) is closed. Since IW{\i) C 
Ifa{[i),zW{\x) ^ /^(AO and hence by Lemma 3, R(fi,p,0) < oo follows. The same 
argument implies that R(n,p, a) < oo for all a € D. Now, as in the proof of (1), Lemma 2 
implies the 'only if part of (2). 
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COROLLARY 4. Suppose 1 < p < oo anddfi/dm — W. If log Wis locally integrable 
on K^for some compact set Ko in D, then Lp

a([i) is closed and IF(n) C Lp
a([i). 

PROOF. By (1) of Theorem 8, it is sufficient to prove that for any compact set K in 
D, miK log s([i,p) > —oo. If log W is integrable on KQ, then by the proof of Theorem 5 
inf^ log s{\i,p) > —oo. For a more general W in this corollary, we have to proceed as 
follows. Suppose a £ D and 0 < e < 5 < 1. As in the proof of Theorem 5, 

s(fi,p, a) 

> (1 - \a\2)2 f6 exp(|27r logWofa d0/2ir\2rdr 

> (i - w w - ̂ >«p(^b L\*»logWo +•dm) 
> (1 - |a|W - ̂ {(l_la^(62_£2) i(aMAa) WW A !)<,„). 

Suppose K is an arbitrary compact set in D. Put t = max{|z| ;z £ K0} and k = max{|z|; 

z £ K}. The Euclidean center and radius of A7(&) (0 < 7 < 1) are 

respectively. Put £ = R(8) + C(<5) and s = R(e) — C(&). There exist 8 and £ such that 
0 < s < <5 < 1 and 

A,(0)\A,(0)CD\A,(0). 

Then for all a £ K 

A*(a)\Ae(a)CA,(0)\As(0). 

Hence for all a £ K 

A8(a)\A£(a)CKc
0 

and so for all a £ K 

sfa,p,a) > (1 - | a | W - £2)expf J U-—\og(WA I)dm), 
V(l — \a\zY(oz — el) ^(a)\Af(a) J 

since A^(a) \ A£(a) is a compact subset ofD\Ko and log FF is locally integrable on D\KQ. 
This shows the corollary. 

We are very grateful to the referee who improved the exposition and pointed out the 
errors in the first draft of this paper. In particular, Corollary 2 for 0 < p < 1 is due to the 
referee. 

https://doi.org/10.4153/CJM-1996-048-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-048-5


RIESZ'S FUNCTIONS 945 

REFERENCES 

1. P. S. Bourdon and J. H. Shapiro, Spectral synthesis and common cyclic vectors, Michigan Math. J. 37( 1990), 
71-90. 

2. J. E. Brennan, Weighted polynomial approximation, quasianalyticity and analytic continuation, J. fur Math-
ematik. 357(1984), 23-50. 

3. J. B. Conway, Subnormal operators, Research Notes in Mathematics 51, Pitman Advanced Publishing 
Program, 1981. 

4.1. Gohberg, S. Goldberg and M. A. Kasshoek, Classes of linear operators I, Operator Theory: Advances 
and Applications, 49, Birkhauser Verlag, Basel, 1990. 

5. U. Grenanderand G. Szego, Toeplitz forms and their applications, Chelsea Publishing Company, 1984. 
6. P. Koosis, The logarithmic integral I, Cambridge Studies in Advanced Mathematics 12, Cambridge Uni­

versity Press, Cambridge-New York, 1988. 
7. T. Kriete and T. Trent, Growth near the boundary in H2{p) spaces, Proc. Amer. Math. Soc. 62(1977), 

83-88. 
8. T. Nakazi and M. Yamada, {Aj)-conditions and Carleson inequalities in Bergman spaces, Pacific J. Math. 

173(1996), 151-171. 
9. R. Rochberg, Toeplitz operators on weighted hP spaces, Indiana Univ. Math. J. 26(1977), 291—298. 

10. M. Rosenblum, Summability of Fourier series in LP{dy), Trans. Amer. Math. Soc. 105(1962), 32-42. 
11. W. Rudin, Functional analysis, McGraw-Hill Book Company, 1973. 
12. T. P. Srinivasan and J. K. Wang, Weak*-Dirichlet algebras. In: Function Algebras (Proc. Internat. Sympos. 

on Function Algebras, Tulane Univ., 1965), Scott-Foresman, Chicago, 111., 1966, 216-249. 
13. M. Yamada, Weighted Bergman space and Szego s infimum, preprint. 
14. K. Zhu, Operator theory in function spaces, Pure and Applied Mathematics, Marcel Dekker, Inc., New 

York and Basel, 1990. 

Department of Mathematics Department of Mathematics 

Hokkaido University Hiroshima University 

Sapporo 060, Japan Higashi-Hiroshima 724, Japan 

https://doi.org/10.4153/CJM-1996-048-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-048-5

