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KMS states on uniform Roe algebras

Bruno M. Braga and Ruy Exel

Abstract. We initiate the treatment of KMS states on uniform Roe algebras C∗u (X) for a class of
naturally occurring flows on these algebras. We show that KMS states on C∗u (X) always factor through
the diagonal operators �∞(X). We show the study of those states splits into understanding their
strongly continuous KMS states and the KMS states which vanish on the ideal of compact operators.
We show strongly continuous states are always unique when they exist and we give explicit formulas
for them. We link the study of KMS states which vanish on the compacts to the Higson corona of X
and provide lower bounds for the cardinality of the set of extreme KMS states. Lastly, we apply our
theory to the n-branching tree: in this example, β = log(n) is a phase transition admitting 22ℵ0 KMS
states, no KMS states for smaller inverse temperatures, and a unique one for larger ones (the Gibbs
state). Moreover, we show that the behavior of the KMS states around β = log(n) is chaotic.

1 Introduction

In noncommutative geometry, given a metric space X, one defines certain C∗-algebras
of operators on a Hilbert space with the goal of coding certain aspects of the
geometry of X in C∗-algebraic terms. When interested in the large scale geometric
properties of X, that is, in its coarse geometry, a well-known C∗-algebra is to be
considered: the uniform Roe algebra of X. This C∗-algebra was introduced by Roe
to study the index theory of elliptic operators on noncompact manifolds [Roe88,
Roe93]. The interest in these algebras was then boosted due to their connection with
the coarse Baum-Connes conjecture [Yu00]. More recently, these C∗-algebras entered
the realm of mathematical physics and researchers interested in topological insulators
have been using them as observable algebras in order to describe topological phases.
We refer the reader to [Kub17, EM19, Jon21, LT21, Bou22] for the rapidly growing
literature about uniform Roe algebras in mathematical physics.

The goal of this article is to look at uniform Roe algebras under yet another point
of view motivated by mathematical physics: We study KMS states on uniform Roe
algebras. Named after mathematical physicists Kubo, Martin, and Schwinger, KMS
states are states defined on any C∗-algebra A admitting a flow, that is, a strongly
continuous one-parameter group {σt}t∈R of automorphisms, thought of as the time
development of observables of an idealized infinite system of particles. Among the
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2 B. M. Braga and R. Exel

many equivalent definitions of such states, we adopt the one that requires our state φ
to satisfy the relation

φ(ba) = φ(aσi β(b)),

for every a in A and every analytic element b in A. This condition has been noted
by Kubo, Martin, and Schwinger in the late 1950’s, as being satisfied by the grand
canonical ensembles in the Gibbs equilibrium formalism for finite systems. Observing
that this condition in fact characterizes the Gibbs states, Haag, Hugenholtz, and
Winnink later proposed this as a criterion for equilibrium.

The parameter β appearing above is the same parameter weighing the average
energy and the entropy in the expression for the free energy in the variational deduc-
tion of Gibbs states, and it is often thought of as the reciprocal of the temperature.
While our abstract treatment of KMS states will not really involve the physical
meaning of β, it is crucial to realize that the existence and uniqueness of KMS
states depend in a very fundamental way on β, so much so that we shall refer to
states satisfying the above condition as (σ , β)-KMS states, following the the modern
literature standards.

Crucially, among the most interesting features of KMS states is the abrupt change
in behavior as β crosses certain thresholds. In classical infinite particle systems, a
sudden change with temperature is often referred to as a phase transition, which
is what one observes when a gas liquefies when cooled down or when a magnet
spontaneously loses its magnetization when heated beyond a critical temperature.
Thus, if for example there is a unique (σ , β)-KMS state for every β greater than some
fixed β0, while there are many (σ , β0)-KMS states, one says that a phase transition
has happened at the critical value β0.

It is well known that uniform Roe C∗-algebras may be described as the reduced
groupoid C∗-algebra of a principal, ample, étale groupoid [STY02]. Moreover, in
his 1980 thesis [Ren80, Proposition II.5.4], Renault described a method to study
KMS states on groupoid C∗-algebras in terms of quasi-invariant measures satisfying a
certain Radon-Nikodym condition. Even though we do not directly employ Renault’s
result here, much of what we do here may be interpreted as studying such quasi-
invariant measures.

Before giving a detailed description of this article and our main findings, we start
with some basic definitions.

1.1 Coarse geometry and uniform Roe algebras

A map h∶ (X , d) → (Y , ∂) between metric spaces is called coarse if for all r > 0, there
is s > 0 such that

d(x , y) < r implies ∂(h(x), h(y)) < s.

With coarse maps being the morphisms of interest, local properties of the metric
spaces are irrelevant in coarse geometry and one usually restricts themselves to
discrete spaces. In fact, for our goals, we will assume the metric spaces to be uniformly
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KMS states on uniform Roe algebras 3

locally finite (abbreviated as u.l.f.), that is, they have the property that for each r > 0
their balls of radius r are uniformly bounded in size by a finite quantity.1

Given a set X, �2(X) denotes the Hilbert space of square-summable maps X → C

and (δx)x∈X denotes its canonical orthonormal basis. The space of bounded operators
on �2(X) is denoted by B(�2(X)) and K(�2(X)) denotes its ideal of compact
operators.

Definition 1.1 Let (X , d) be a u.l.f. metric space. The propagation of an operator
a ∈ B(�2(X)) is defined by

prop(a) = sup{d(x , y) ∣ ax , y ∶= ⟨aδy , δx⟩ ≠ 0}.

The ∗-algebra of all operators with finite propagation, denoted by C∗u[X], is the
algebraic uniform Roe algebra of (X , d). The norm closure of C∗u[X], denoted by
C∗u(X), is the uniform Roe algebra of (X , d).

Uniform Roe algebras code coarse geometric properties of X in terms of C∗-
algebraic properties. For instance, it is known that X has Yu’s property A if and only
if C∗u(X) is nuclear [BO08, Theorem 5.5.7]. Also, it has been recently shown that
this construction is rigid in the sense that if the C∗-algebras C∗u(X) and C∗u(Y) are
isomorphic, then X and Y must be coarsely equivalent [BBF+22b, Theorem 1.2].

1.2 Flows and KMS states on uniform Roe algebras

Given a C∗-algebra A, an action σ ∶R↷ A is a flow if it is strongly continuous2 and
σt ∶A→ A is an isomorphism for all t ∈ R.

Quantum mechanical systems in thermal equilibrium can be described by their so
called KMS states. The number β in the definition below should be interpreted as the
inverse of the temperature of the system.

Definition 1.2 Let A be a C∗-algebra and σ be a flow on A. For β ∈ R, we say that a
state φ on A is a (σ , β)-KMS state if

φ(aσi β(b)) = φ(ba)
for all a ∈ A and all analytic b ∈ A.3

In order to study KMS states on uniform Roe algebras, one must first identify
natural flows in them. We now introduce such flows. Given a set X and a map
h∶X → R, we denote by h̄ the X-by-X diagonal matrix of reals such that its (x , x)-
entry is h(x) for all x ∈ X and all other entries are zero. Notice that h̄ canonically
induces a bounded operator on �2(X) if and only if h is bounded.

1A metric space with this property is also often called a metric space with bounded geometry in the
literature. Other authors call a space with bounded geometry one that is coarsely equivalent to a u.l.f.
space.

2The action σ is strongly continuous if t ∈ R↦ σt(a) ∈ A is continuous for all a ∈ A.
3An element b ∈ A is analytic for σ if the map t ∈ R↦ σt(b) ∈ A extends to an entire analytic map

C→ A.
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4 B. M. Braga and R. Exel

Definition 1.3 Let X be a u.l.f. metric space and h∶X → R be a coarse map. We
denote by σh the flow on C∗u(X) given by,

σh ,t(a) = e i t h̄ ae−i t h̄

for all t ∈ R and all a ∈ C∗u(X).

Notice that the hypothesis on h∶X → R being coarse is important so that σh is
indeed a flow. Indeed, the action σh is strongly continuous if and only if h is coarse
(see Proposition 2.1). All flows on uniform Roe algebras considered in this article will
be of the form above for some appropriate h∶X → R. In order to have any hope of
understanding the KMS states for those flows, we must first understand the analytic
elements of C∗u(X) or, more precisely, a ∗-subalgebra of analytic operators of C∗u(X)
which is dense in it. We have:

Proposition 1.4 Let X be a u.l.f. metric space and h∶X → R be a map.
1. If h is bounded, then every element of C∗u(X) is analytic for σh
2. If h is coarse, then every element of C∗u[X] is analytic for σh .

The reader may wonder how strong is the restriction of only working with flows of
the form above. As we show in Proposition 2.2, if σ ∶R↷ C∗u(X) is an arbitrary flow
which leaves the Cartan masa �∞(X) invariant, that is, σt(�∞(X)) ⊆ �∞(X) for all
t ∈ R, then there is a coarse map h∶X → R such that σ = σh .4 This corroborates to our
claim that such flows form a very natural and general class of flows on those algebras.

1.3 Main results

It is often common in the study of KMS states on a given C∗-algebra A that there
is some “natural” C∗-subalgebra B ⊆ A and a conditional expectation E∶A → B such
that the KMS states φ∶A→ C factor through E. We show that this is also the case in
our setting with the “natural” C∗-subalgebra through which the KMS states factor
being the C∗-algebra of all bounded maps X → C, denoted by �∞(X). Precisely,
throughout these notes, we identify �∞(X)with the C∗-algebra of diagonal operators
on �2(X) in the usual way: Given a = (ax)x∈X ∈ �∞(X) and ξ = (ξx)x∈X ∈ �2(X), we
let

aξ = (ax ξx)x∈X ∈ �2(X).

Given A ⊆ X, χA ∈ �∞(X) denotes the canonical orthogonal projection �2(X) →
�2(A).

We show the following:

Theorem 1.5 Let X be a u.l.f. metric space, h∶X → R be a coarse map, and β ∈ R. If
φ is a (σh , β)-KMS state on C∗u(X), then φ = φ ○ E, where E∶C∗u(X) → �∞(X) is the
canonical conditional expectation (see Figure 1).

4We thank Stuart White for raising the possibility that this could be true.
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Figure 1: KMS states on C∗u(X) factor through �∞(X), see Section 2.2 for the precise definition
of E.

Theorem 1.5 is an extremely powerful tool in our study of KMS states on uniform
Roe algebras and most of our results deeply depend on it. For instance, it allows
us to understand the case of a flow given by a bounded map h∶X → R in terms
of amenability: for h bounded, C∗u(X) has a (σh , β)-KMS states if and only if X is
amenable (see Theorem 2.7). Moreover, Theorem 1.5 allows us to reduce the study of
KMS states on uniform Roe algebras to two cases (see Proposition 4.1):
(I) strongly continuous KMS states, and
(II) KMS states which vanish on the the ideal of compact operators.
The strongly continuous case is the simplest one and the next result summarizes what
happens:

Theorem 1.6 Let X be a u.l.f. metric space, h∶X → R be a coarse map, and β ≥ 0.
There are strongly continuous (σh , β)-KMS states on C∗u(X) if and only if

Z(β) ∶= tr(e−βh̄) = ∑
x∈X

e−βh(x) < ∞.

Moreover, a function φ∶C∗u(X) → C is a strongly continuous (σh , β)-KMS state on
C∗u(X) if and only if

φ(a) = tr(e−βh̄ a)
tr(e−βh̄)

= 1
Z(β) ∑x∈X

ax ,x e−βh(x)(1.1)

for all a = [ax , y] ∈ C∗u(X). In particular, whenever they exist, strongly continuous
(σh , β)-KMS states are unique.

In other words, the strongly continuous KMS states are exactly the Gibbs states
provided e−βh̄ is trace class (see [BR97, Section 6.2.2]). This is of course no big
surprise since the strongly continuous states on any operator algebra containing the
compacts correspond precisely with the strongly continuous states defined on the
whole B(�2(X)).

With the strongly continuous case being well understood, we then proceed to
study the much more interesting case of KMS states which vanish on the compact
operators. This property allows us to factor those states through the uniform Roe
corona of X.
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6 B. M. Braga and R. Exel

Definition 1.7 [BFV21, Definition 1.2] Let X be a u.l.f. metric space. The uniform
Roe corona of X is the C∗-algebra given by

Q∗u(X) = C∗u(X)/K(�2(X)).

We denote by π = πX ∶C∗u(X) → Q∗u(X) the canonical quotient map.

A state φ on C∗u(X)which vanishes on K(�2(X)) gives rise to a well-defined state
ψ on Q∗u(X) determined by

ψ(π(a)) = φ(a), for all a ∈ C∗u(X).

Moreover, given a coarse map h∶X → R, the flow σh canonically induces a flow on
the corona Q∗u(X). Precisely, as σh leaves K(�2(X)) invariant, that is,

σh ,t(K(�2(X))) ⊆K(�2(X)) for all t ∈ R,

we obtain a flow σ∞h on Q∗u(X) by letting

σ∞h ,t(π(a)) = π(σh ,t(a)) for all a ∈ C∗u(X) and all t ∈ R.

In other words, σ∞h is a flow on Q∗u(X)which makes the following diagram commute.

C∗u(X)

π
��

σh ,t
�� C∗u(X)

π
��

Q∗u(X)
σ∞h ,t

�� Q∗u(X).

We show that the study of (σh , β)-KMS states on C∗u(X) which vanish on the
ideal of compact operators completely reduces to the study of (σ∞h , β)-KMS states
on Q∗u(X) in a canonical way. Precisely:

Proposition 1.8 Let X be a u.l.f. metric space, h∶X → R be a coarse map, and β ∈ R.
A state ψ on Q∗u(X) is a (σ∞h , β)-KMS state if and only if φ = ψ ○ π is a (σh , β)-KMS
state on C∗u(X). Moreover, the assignment

ψ ↦ φ = ψ ○ π

is an affine isomorphism from the set of all (σ∞h , β)-KMS states on Q∗u(X) to the set of
all (σh , β)-KMS states on C∗u(X) which vanish on K(�2(X)).

Guided by Proposition 1.8, we then focus on KMS states on the corona algebra
Q∗u(X). For that, we show some general results about KMS states on arbitrary C∗-
algebras with respect to arbitrary flows (see Section 3 for details). In a nutshell, we
show that the extreme KMS states on an arbitrary C∗-algebra A are influenced by
the center of A, denoted by Z(A), and its C∗-subalgebras. Returning to our coarse
setting, this brings up a seemingly unexpected link between KMS states on uniform
Roe algebras and the Higson corona of metric spaces. More precisely, given a u.l.f.
metric space X, we denote its Higson compactification by hX and its Higson corona
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KMS states on uniform Roe algebras 7

by νX = hX/X.5 The space of continuous functions on the Higson compactification,
C(hX), is canonically seen as a C∗-subalgebra of �∞(X), which in turn allow us
to canonically identify the continuous functions on its corona, C(νX), with a C∗-
subalgebra of Q∗u(X). Under this identifications, it has been recently shown that

Z(Q∗u(X)) = C(νX)
(see [BBF+22a, Proposition 3.6]).

This link between KMS states and the Higson corona is essential in the analysis of
KMS states which vanish on the compacts. Precisely, the next result summarizes our
findings on the topic.

Theorem 1.9 Let X be a u.l.f. metric space, h∶X → R be a coarse map, and β ∈ R.
1. For any extreme (σ∞h , β)-KMS state ψ on Q∗u(X), there is x ∈ νX such that

ψ(a) = a(x) for all a ∈ C(νX).

2. Suppose there is a (σ∞h , β)-KMS state on Q∗u(X) whose restriction to C(νX) is
faithful. Then, for any x ∈ νX, there is an extreme (σ∞h , β)-KMS state ψ on Q∗u(X)
such that

ψ(a) = a(x) for all a ∈ C(νX).

Our methods give us a strong control on the support of KMS states on C∗u(X). In
order to state this control, a definition is in place.

Definition 1.10 Let X be a u.l.f. metric space, x ∈ νX, and φ be a state on C∗u(X). We
say that φ is supported on x if for all neighborhoods U ⊆ hX of x, we have φ(χU∩X) = 1.

Theorem 1.11 Let X be a u.l.f. metric space, h∶X → R be a coarse map, and β ∈ R. The
following holds:
1. Any extreme (σh , β)-KMS state on C∗u(X) which vanishes on the compacts is

supported at some element of νX.
2. If there is a (σh , β)-KMS state on C∗u(X) which vanishes on the compacts and such

that its induced state on Q∗u(X) is faithful on C(νX), then for every x ∈ νX there
is a (σh , β)-KMS state on C∗u(X) supported on x.

In fact, both Theorems 1.9 and 1.11 have versions that hold with C(νX) being
substituted by arbitrary unital C∗-subalgebras of C(νX) (see Theorems 4.4 and 4.6).

In Section 4.1, we show that the Higson corona of any infinite u.l.f. metric space
contains 22ℵ0 elements (see Theorem 4.14). This result has been first obtained in
[Kee94, Theorem 3], but we chose to present an alternative and self-contained proof
here for the readers convenience. As a consequence of this result, Theorem 1.9 and
Proposition 1.8 above imply that if there is a (σ∞h , β)-KMS state on Q∗u(X) whose

5For brevity, we refer the reader to Definition 4.2 for the precise definition of the Higson compactifi-
cation/corona.
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8 B. M. Braga and R. Exel

restriction to C(νX) is faithful, then there are 22ℵ0 extreme KMS states in both Q∗u(X)
and C∗u(X) (see Corollary 4.16).

1.4 Applications

Our methods can be applied to specific metric spaces. Notice that Theorem 1.6 implies
that if the balls of X have polynomial growth, then C∗u(X) will have (σh , β)-KMS
states for any β > 0 and any “reasonable” h∶X → R. Indeed, suppose h is such that
there is L > 0 and x0 ∈ X for which

h(x) ≥ d(x , x0)
L

− L for all x ∈ X .

Suppose now p is a polynomial controling the growth of the balls of X, that is, every
ball in X centered at x0 of radius r has at most p(r) elements. Then, the series
∑x∈X e−βh(x) converges to a finite number for any β > 0. Therefore, in order to find
examples with interesting phase transition, it is advisable to look for metric spaces
with large growth. This makes the n-branching trees natural spaces to apply our
theory to.

We point out that, due to the technical aspects of Theorems 1.9 and 1.11, the result
below is not a mere corollary of the results above and a deeper analysis of Higson
coronas as well as of the weak∗-limit of their strongly continuous KMS states is
needed. The study of invariant means on semigroups developed by Chou in [Cho69]
is also essential for the precise computation of the cardinality of extreme KMS states
presented below.

Given n ∈ N, let Tn denote the n-branching tree, that is, Tn = {∅} ∪⋃∞k=1{1, . . . , n}k

and we endow Tn with its canonical graph distance (see Section 5 for details). The
branches of Tn are denoted by [Tn], that is, [Tn] = {1, . . . , n}N. Given x̄ = (x i)∞i=1 ∈
[Tn], we let x̄∣k = (x1 , . . . , xk) ∈ Tn and x̄∣k⌢Tn denotes the words in Tn which start
with x̄∣k.

Theorem 1.12 Given n ∈ N, let Tn denote the n-branching tree endowed with its graph
distance d and let ∅ denote its root. Let h∶Tn → R be given by h(x) = d(x ,∅) for
all x ∈ Tn . Then, there is a (σh , β)-KMS state on C∗u(Tn) if and only if β ≥ log(n).
Moreover,
1. For β > log(n), there is a unique (σh , β)-KMS state on C∗u(Tn) and this state is

strongly continuous.
2. For β = log(n), the (σh , β)-KMS states on C∗u(Tn) all vanish on K(�2(Tn)).

Moreover, for all x̄ ∈ [Tn], there are 22ℵ0 extreme (σh , β)-KMS states φ on C∗u(Tn)
such that

φ(χx̄ ∣k⌢Tn) = 1 for all k ∈ N.

Conversely, any extreme (σh , β)-KMS state on C∗u(Tn) satisfies the above for an
appropriate x̄ ∈ [Tn].

For inverse temperature β > log(n), we actually have a precise formula for its
unique KMS state (see Theorem 5.4).
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KMS states on uniform Roe algebras 9

Finally, in Section 5.4, we discuss a somewhat unusual phenomenon known as
chaotic convergence of KMS states. In order to explain what this means, consider a
flow σ on a C∗-algebra A admitting a unique KMS state at inverse temperature β, say
φβ , for every β in an interval of the form (β0 , β0 + ε), so that it makes sense to ask
whether or not the limit

lim
β→β+0

φβ

exists (here the limit should be taken with respect to the weak∗ topology). The most
commonly observed behavior (see [vER07, CH10, CRL15, BGT18]) is when this limit
exists, even when β0 is critical, that is, even when there are multiple (σ , β0)-KMS
states.

By chaotic convergence of KMS states it is meant a situation where the above fails
in the sense that there are different sequences βn converging to β0 from above for
which the corresponding limit states differ. This chaotic behavior has been observed
for ground states [BGT18], that is, regarding the limit as β →∞, but we are not aware
of too many situations where this phenomenon happens at finite temperatures.

As detailed in Theorem 5.15 below, we analyze this question for C∗u(Tn) as β
approaches log(n) from above, showing that such chaotic behavior is indeed present.

2 Basics on KMS states on uniform Roe algebras

In this section, we start our study of KMS states of uniform Roe algebras and prove
several general properties which will be essential throughout these notes. We also
present some simple examples by studying the KMS states of the simplest coarse
space: {n2 ∣ n ∈ N}. We start this section introducing some notation which was left
out from Section 1.

Given a set X and x , y ∈ X, we let ex , y ∈ B(�2(X)) be the rank 1 partial isometry
sending δy to δx . If A ⊆ X, we let

χA = SOT- ∑
x∈A

ex ,x ;

where the letters SOT above mean that the sum converges with respect to the
strong operator topology. In other words, χA is the canonical orthogonal projection
�2(X) → �2(A). Under the identification of �∞(X)with the C∗-subalgebra of C∗u(X)
consisting of the diagonal operators, we have that χA ∈ �∞(X) for all A ⊆ X. The C∗-
algebra of functions X → C which vanish at infinity is identified with the compact
operators in �∞(X), that is,

c0(X) = �∞(X) ∩K(�2(X)).

The following description of operators in C∗u[X] will be very useful for our goals:
Firstly, recall that a partial bijection of X is a bijection f ∶A→ B between subsets A and
B of X. If moreover

sup
x∈A

d(x , f (x)) < ∞,
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10 B. M. Braga and R. Exel

then we say that f is a partial translation. Given any partial translation f ∶A ⊆ X →
B ⊆ X, we define an operator v f on �2(X) by letting

v f δx = {
δ f (x), x ∈ A,
0, x ∉ A.(2.1)

So, each v f is a partial isometry and the algebraic uniform Roe algebra is linearly
spanned by products of elements in �∞(X) by those partial isometries. Precisely, we
have

C∗u[X] = span{av f ∣ a ∈ �∞(X) and f is a partial translation on X}

(see [ŠW17, Lemma 2.4] for details).

2.1 Flows and analytic elements

Our very first result shows that the actions σh ∶R↷ C∗u(X) are indeed flows if and
only if h is coarse.

Proposition 2.1 Let X be a u.l.f. metric space and h∶X → R be a map. Then h is coarse
if and only if the action σh given by Definition 1.3 is strongly continuous, that is,

t ∈ R↦ σh ,t(a) ∈ C∗u(X)(2.2)

is continuous for all a ∈ C∗u(X).

Proof Suppose first that h is coarse. Since C∗u[X] is dense in C∗u(X), it is enough to
show that the map in (2.2) is continuous for each a ∈ C∗u[X]. Moreover, since C∗u[X]
is spanned by the subset of all av f , for a ∈ �∞(X) and f ∶A ⊆ X → B ⊆ X a partial
translation, it is enough to notice that (2.2) holds for all such elements av f . Fix such
a and f. Then, as f is a partial bijection, we have that

∥σh ,t(av f ) − σh ,s(av f )∥ = ∥e i t h̄ av f e−i t h̄ − e i s h̄ av f e−i s h̄∥(2.3)

= sup
x∈A

∣e i t(h( f (x))−h(x)) − e i s(h( f (x))−h(x))∣a f (x), f (x).

Since f is a partial translation and h is coarse, we have

sup
x∈A

∣h( f (x)) − h(x)∣ < ∞.

Therefore, it follows from (2.3) and the intermediate value theorem that

t ∈ R↦ σt(av f ) ∈ C∗u(X)

is continuous.
Suppose now that the action σh is strongly continuous. Suppose towards a con-

tradiction that h is not coarse. Then there is r > 0, and sequences (x i)i and (y i)i
in X such that limi ∣h(x i) − h(y i)∣ = ∞ and d(x i , y i) ≤ r for all i ∈ N. As X is u.l.f.,
those sequences cannot be bounded, so, by going to a subsequence if necessary, we
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assume that (x i)i and (y i)i are sequences of distinct points of X. We can then define
a map

f ∶ {x i ∣ i ∈ N} → {y i ∣ i ∈ N}
x i ↦ y i

and this map is a partial translation. So, v f ∈ C∗u[X] and, since σh is strongly contin-
uous, we have that

lim
t→0

∥σt(v f ) − v f ∥ = 0.

Fix δ > 0 such that

∣t∣ < δ implies ∥σt(v f ) − v f ∥ < 2.

Notice now that

∥σt(v f ) − v f ∥ = ∥e i t h̄v f e−i t h̄ − v f ∥

= sup
x∈X

∣e i t(h( f (x))−h(x)) − 1∣

≥ sup
i∈N

∣e i t(h(y i)−h(x i)) − 1∣.

Hence, picking i ∈ N large enough so that

t = π
∣h(y i) − h(x i)∣

< δ,

we obtain that ∥σt(v f ) − v f ∥ ≥ 2; contradiction. ∎

We now show that our choice of only dealing with flows of the form σh for some
coarse map h∶X → R does not represent a big restriction in a sense.

Proposition 2.2 Let X be a u.l.f. metric space and let σ ∶R↷ C∗u(X) be a flow leaving
�∞(X) invariant, that is, σ(�∞(X)) ⊆ �∞(X) for all t ∈ R. Then, there is a coarse map
h∶X → R such that σ = σh .

Proof We first notice that the condition of σ ∶R↷ C∗u(X) leaving �∞(X) invariant
implies that σt is the identity on �∞(X) for all t ∈ R. Indeed, as σ0 is by hypothesis the
identity on C∗u(X), we have that σ0(ex ,x) = ex ,x for all x ∈ X. As σt is an isomorphism
for all t ∈ R, σt(ex ,x)must be a projection for all t ∈ R and all x ∈ X. Therefore, since
t ∈ R↦ σt(ex ,x) ∈ �∞(X) is continuous, this shows that σt(ex ,x) = ex ,x for all t ∈ R
and all x ∈ X. Hence, σt must be the identity on c0(X) for all t ∈ R. As isomorphisms
of uniform Roe algebras are strongly continuous [ŠW13, Lemma 3.1], this shows that
each σt is the identity on �∞(X) are desired.

Fix x ∈ X. For each ξ ∈ �2(X), let rξ be the rank one operator given by

rξζ = ⟨ζ , δx⟩ξ for all ζ ∈ �2(X).

For each t ∈ R, define an operator ut on �2(X) by letting

ut ξ = σt(rξ)δx for all ξ ∈ �2(X).
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Claim 2.3 We have

σt(a) = ut au−t for all a ∈ C∗u(X) and all t ∈ R.

In particular, ut ∈ �∞(X) for all t ∈ R.

Proof First notice that

aex ,x = raδx for all a ∈ C∗u(X).(2.4)

Hence, by the arbitrariness of a above, this implies that

ut au−t ξ = ut aσ−t(rξ)δx = σt(aσ−t(rξ))δx = σt(a)rξδx = σt(a)ξ

for all ξ ∈ �2(X), all t ∈ R, and all a ∈ C∗u(X).
For the last claim, notice that, as each σt is the identity on �∞(X), the previous

paragraph implies that each ut commutes with the elements of �∞(X). As �∞(X) is
a maximal abelian subalgebra of C∗u(X), this gives that ut ∈ �∞(X) for all t ∈ R. ∎

Claim 2.4 The family (ut)t is a one-parameter unitary group, that is, t ∈ R↦ ut ξ ∈
�2(X) is continuous for all ξ ∈ �2(X), ut+s = utus for all t, s ∈ R, and each ut is a
unitary,

Proof First notice that, as t ∈ R↦ σt(rξ) ∈ C∗u(X) is continuous, t ∈ R↦ ut ξ ∈
�2(X) is also continuous for all ξ ∈ �2(X). Also, using (2.4), we have

ut(us ξ) = ut(σs(rξ)δx) = σt(σs(rξ))δx = σt+s(rξ)δx = ut+s ξ

for all ξ ∈ �2(X) and all t, s ∈ R. Finally, as each ut is an element of �∞(X)with norm
at most one satisfying utu−t = 1, this also shows that ut is a unitary. ∎

By Claims 2.3 and 2.4, there is map h∶X → R such that

ut = e i t h̄ for all t ∈ R.

Therefore, by Claim 2.3, we have that σ = σh . By Proposition 2.1, it follows that h must
be coarse. ∎

In order to study the KMS states on uniform Roe algebras which are given by the
flows defined above, it is essential to understand the analytic elements of this flow.
This is precisely the content of Proposition 1.4.

Proof of Proposition 1.4 (1) If h is bounded, h̄ is a bounded operator on �2(X).
Therefore, the analyticity of ez gives that

z ∈ C→ e−iz h̄ ae iz h̄ ∈ C∗u(X)

is analytic for all a ∈ C∗u(X).
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(2) Since C∗u[X] is spanned by the subset of all av f , for a ∈ �∞(X) and f ∶A ⊆ X →
B ⊆ X a partial translation, it is enough to show that each such av f is analytic. Fix
such a and f ∶A ⊆ X → B ⊆ X, and let g∶X → R be given by

g(x) = {h( f (x)) − h(x), x ∈ A,
0, x /∈ A.

A simple computation gives that

σh ,t(av f ) = e i t ḡ av f

for all t ∈ R. As d( f (x), x) ≤ r for all x ∈ A, g is bounded. Then, the analyticity of ez

implies the that

z ∈ C→ e iz ḡ av f ∈ C∗u(X)

is analytic; so, av f is analytic. ∎

2.2 Factoring KMS-states through �∞(X)

It is often common in the study of KMS states on a given C∗-algebra A that there
is some “natural” C∗-subalgebra B ⊆ A and a conditional expectation E∶A → B such
that the KMS states φ∶A→ C factor through E; precisely, φ = φ ○ E, so the diagram
below commutes.

A

E
��
��

��
��

��
φ

�� C

B
φ↾B

����������

We now show that this also happens with KMS state on uniform Roe algebras.
Recall, �∞(X) is a Cartan masa of C∗u(X) and the conditional expectation

E∶C∗u(X) → �∞(X) is simply deleting the matrix entries of the operators on C∗u(X)
which are not in the main diagonal. Precisely, the canonical conditional expectation
E∶C∗u(X) → �∞(X) is defined as follows:

⟨E(a)δx , δy⟩ = {
ax ,x , x = y,
0, x ≠ y,

for all a = [ax , y] ∈ C∗u(X) and all x , y ∈ X.

Proof of Theorem 1.5 As C∗u[X] is dense in C∗u(X), it is enough to show that
φ(a) = φ(E(a)) for all a ∈ C∗u[X]. Moreover, as C∗u[X] is the span of all av f , where
a ∈ �∞(X) and f is a partial translation on X, it is enough to show that φ(av f ) = 0 for
all a ∈ �∞(X) and all partial translations f ∶A ⊆ X → B ⊆ X such that f (x) ≠ x for all
x ∈ A; fix a and f as such.

Let r = supx∈A d(x , f (x)); as f is a partial translation, r is finite. As X is u.l.f., there
is a partition

A = A1 ⊔ . . . ⊔ An ,
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such that each A i is 2r-separated, that is, d(x , y) > 2r for all i ∈ {1, . . . , n} and all
distinct x , y ∈ A i . Therefore,

d(x , f (y)) ≥ d(x , y) − d(y, f (y)) > r

for all i ∈ {1, . . . , n} and all distinct x , y ∈ A i ; in particular, x ≠ f (y). Moreover, as
f (x) ≠ x for all x ∈ A, this shows that

A i ∩ f (A i) = ∅(2.5)

for all i ∈ {1, . . . , n}.
For each i ∈ {1, . . . , n}, let f i = f ↾ A i . So, (2.5) implies that χA i v f i = 0 for all i ∈

{1, . . . , n}. Therefore, since

χA i σh , i β(av f i ) = χA i e
−βh̄ av f i e

βh̄ = e−βh̄ aχA i v f i e
βh̄ = 0,

we conclude that

φ(av f i ) = φ(av f i χA i ) = φ(χA i σh , i β(av f i )) = 0.

Since v f = v f1 + . . . + v fn , this finishes the proof. ∎

As KMS states on uniform Roe algebras factor through the canonical conditional
expectation E∶C∗u(X) → �∞(X), it will be very useful to have a condition on when a
state φ on C∗u(X) satisfies the KMS condition which depends only on operators on
�∞(X). We first introduce some notation which will be used in the next proof. Given
a = (ay)y ∈ �∞(X) and a partial bijection f ∶A ⊆ X → B ⊆ X, we let a○ f ∈ �∞(X) be
the operator given by

a○ f δx = {
a f (x)δx , x ∈ A,
0, x /∈ A,

for all x ∈ X.6 The relevance of this notation is due to the fact that

v∗f av f = a○ f .

Theorem 2.5 Let X be a u.l.f. metric space, h∶X → R be coarse, and β ∈ R. Suppose
φ is a state on �∞(X). Then φ satisfies

φ(χ f (A)) = φ(χAeβ(h−h○ f ))(2.6)

for all partial translations f ∶A→ f (A) on X if and only if φ ○ E is a (σh , β)-KMS state
on C∗u(X); where E∶C∗u(X) → �∞(X) is the canonical conditional expectation.

Proof Suppose first that φ is a (σh , β)-KMS on C∗u(X). Let f ∶A→ f (A) be a
partial translation on X. Then, χ f (A) = χ f (A)v f v∗f . As

v∗f σh , i β(χ f (A)v f ) = v∗f e−βh̄ χ f (A)v f eβh̄ = χAeβ(h−h○ f ),

6Here is a justification for this cumbersome notation: if a ∈ �∞(X), then one can see a as a bounded
sequence, say a = (ax)x∈X . Then a○ f is the extension of (a f (x))x∈A to the whole X by letting the
coordinates not in A be zero.
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the KMS condition gives that

φ(χ f (A)) = φ(v∗f σh , i β(χ f (A)v f )) = φ(χAeβ(h−h○ f )).

Suppose now that φ satisfies (2.6). First, notice that as �∞(X) is linearly generated
by the characteristic functions on X, this implies that

φ(c) = φ(c○ f eβ(h−h○ f ))(2.7)

for all partial translations f on X and all c ∈ �∞(Im( f )). By abuse of notation, we
extend φ to the whole C∗u(X) and still denote it by φ, that is, φ = φ ○ E. In order
to show that φ ○ E is a (σh , β)-KMS state on C∗u(X), it is enough to show the KMS
condition for elements of the form av f , where a ∈ �∞(X) and f is a partial translation
of X.

Fix a, b ∈ �∞(X) and partial translations f and g on X. Let

A = {x ∈ Dom( f ) ∣ f (x) ∈ Dom(g) and g( f (x)) = x}.

and notice that g ↾ f (A) = ( f ↾ A)−1. We can then write

vg av f = vg↾ f (A)av f ↾A + vg↾Dom(g)∖ f (A)av f ↾A

+ vg↾ f (A)av f ↾Dom( f )∖A + vg↾Dom(g)∖ f (A)av f ↾Dom( f )∖A

= v( f ↾A)−1 av f ↾A + vg↾ f (A)av f ↾Dom( f )∖A + vg↾Dom(g)∖ f (A)av f ↾Dom( f )∖A.

Notice that the last two terms in the right handside of the equality above are in the
kernel of the conditional expectation E. Therefore,

E(bvg av f ) = E(bv( f ↾A)−1 av f ↾A).

For this reason, it is enough to check the KMS condition for partial translations of X
which are inverse of each other. For now on, assume that g = f −1.

Let us now show the KMS condition holds. Firstly, notice that

bv f av∗f = ba○ f −1 and av∗f e−βh̄bv f eβh̄ = ab○ f eβ(h−h○ f ).(2.8)

Then, letting c = ba○ f −1 , we have that c ∈ �∞(Im( f )) and

c○ f = v∗f cv f = v∗f bv f av∗f v f = v∗f bv f a = ab○ f .

Therefore, (2.7) gives that

φ(bv f av∗f ) = φ(ba○ f −1)
= φ(c)

= φ(c○ f eβ(h−h○ f ))

= φ(ab○ f eβ(h−h○ f ))

= φ(av∗f e−βh̄bv f eβh̄)

= φ(av∗f σh , i β(bv f )).

This shows that φ is a (σh , β)-KMS state on C∗u(X). ∎
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2.3 Amenable spaces

A priori, our flows of interest σh are given by any coarse map h∶X → R (see Propo-
sition 1.4). Therefore, being automatically coarse, bounded maps form a natural class
of maps to produce flows in uniform Roe algebras. However, as we show in this
subsection, the existence of KMS states for such flows reduces to the amenability of
the metric space, equivalently, to the uniform Roe algebra having a positive unital
trace (see [Roe03, Theorem 4.6]). Recall:

Definition 2.6 A u.l.f. metric space X is amenable if there is a nonzero finitely
additive measure μ∶P(X) → [0,∞) which is invariant, that is, μ(A) = μ(B) for all
A, B ⊆ X such that there is a partial translation f ∶A→ B. We call such measure an
invariant mean.

Theorem 2.7 Let X be a u.l.f. metric space, h∶X → R be a bounded map, and β ∈ R.
Then, C∗u(X) has a (σh , β)-KMS state if and only if X is amenable.

Before proving Theorem 2.7, we isolate a straightforward lemma which highlights
the relation between the trace and the KMS condition when the KMS state is given
by elements in the C∗-algebra.

Lemma 2.8 Let A be a C∗-algebra and u ∈ A be invertible. Consider the following
assignments:
1. For each functional τ on A, let φτ ,u be the functional given by φτ ,u(a) = τ(au) for

all a ∈ A.
2. For each functional φ on A, let τφ ,u be the functional given by τφ ,u(a) = φ(au−1)

for all a ∈ A.
The assignment τ ↦ φτ defines a bijection between the functionals τ on A such that
τ(ab) = τ(ba) and the functionals φ on A such that φ(ab) = φ(buau−1) for all a, b ∈
A; the inverse of this assignment is φ ↦ τφ ,u with the appropriate domain/codomain.

Proof of Theorem 2.7 We start recalling a well-known fact about uniform Roe
algebras: a u.l.f. metric space has a positive unital trace if and only if it is amenable
[Roe03, Theorem 4.6]. In fact, if μ is a nontrivial invariant mean on X, say μ(X) = 1,
and E∶C∗u(X) → �∞(X) is the canonical conditional expectation, then

τ(a) = ∫
X

E(a)dμ, for all a ∈ C∗u(X),

defines a positive unital trace on C∗u(X). On the other hand, if τ is a positive unital
trace on C∗u(X), then

μ(A) = τ(χA) for all A ⊆ X

defines an invariant mean on X.
Suppose then that X is amenable and that τ is the trace on C∗u(X) given by a

nontrivial invariant mean μ on X as above. By Lemma 2.8, φτ ,e βh̄ satisfies the (σh , β)-
KMS condition. Moreover, using the formula of τ, we have that
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φτ ,e βh̄(a) = ∫
X

E(a)eβh̄dμ for all a ∈ C∗u(X).

Therefore, φ is positive and, as t = supx∈X ∣h(x)∣ < ∞, we have that

φτ ,e βh̄(χX) = ∫
X

eβh̄dμ ≥ e−∣β∣t μ(X) > 0.

Therefore, normalizing φ, we obtain a (σh , β)-KMS state on C∗u(X).
Suppose now that φ is a (σh , β)-KMS state on C∗u(X). By Lemma 2.8, τφ ,e βh̄

satisfies the trace condition, that is, τφ ,e βh̄(ab) = τφ ,e βh̄(ba) for all a, b ∈ C∗u(X). As
φ is positive and factors through the canonical conditional expectation C∗u(X) →
�∞(X) (Theorem 1.5), τφ ,e βh̄ is also positive. Finally, it follows form our definition
of t that

τφ ,e βh̄(χX) = φ(e−βh̄) ≥ φ(e−∣β∣t χX) > 0.

So, normalizing τ, we obtain a positive unital trace on X. ∎

As Theorem 2.7 completely takes care of bounded maps, we can now restrict our
analyses to unbounded coarse maps h∶X → R.

2.4 Strongly continuous KMS states

This section deals with strongly continuous KMS states. As we shall see below, those
states are the easiest to get and, whenever they exist, they are unique (Theorem 1.6).
We also show that the set of β’s for which a strongly continuous KMS state exists must
be either of the form (t,∞) or [t,∞), for some t ≥ 0 (Corollary 2.10 for a precise
statement).

Proposition 2.9 Let X be a u.l.f. metric space, h∶X → [0,∞) be an unbounded coarse
map, and β < 0. If φ is a (σh , β)-KMS state, then φ(ex ,x) = 0 for all x ∈ X. In particular,
there are no strongly continuous (σh , β)-KMS states on C∗u(X).

Proof Fix x ∈ X. As h is unbounded, there is a sequence (xn)n in X such that
limn h(xn) = ∞. Then, if φ is a (σh , β)-KMS state on C∗u(X), we have

φ(ex ,x) = φ(ex ,xn exn ,x) = φ(exn ,x σh , i β(ex ,xn)) = eβ(h(xn)−h(x))φ(exn ,xn).

As (φ(exn ,xn))n is bounded and β < 0, we conclude that φ(ex ,x) = 0 by letting n go
to infinity. ∎

Proof of Theorem 1.6 Suppose φ is a strongly continuous (σh , β)-KMS state on
C∗u(X). Fix x0 ∈ X (this can be thought of as the “center” of X). Since all maps
( fx ∶ {x0} → {x})x∈X are partial translations, the KMS condition gives us that

φ(ex ,x) = e−β(h(x)−h(x0))φ(ex0 ,x0)
for all x ∈ X (see Theorem 2.5). As φ is strongly continuous,

1 = φ(χX) = ∑
x∈X

φ(ex ,x) = eβh(x0)φ(ex0 ,x0) ∑
x∈X

e−βh(x).

https://doi.org/10.4153/S2976859425100003 Published online by Cambridge University Press

https://doi.org/10.4153/S2976859425100003


18 B. M. Braga and R. Exel

So, φ(ex0 ,x0) ≠ 0 and

Z(β) = ∑
x∈X

e−βh(x) = 1
eβh(x0)φ(ex0 ,x0)

must be finite (as well as independent on x0). The formula for φ in the statement of
the theorem then follows immediately from the strong continuity of φ.

Suppose now Z(β) is finite and φ is given as in the statement of the theorem.
Clearly, φ is a strongly continuous state on C∗u(X). Moreover, if f ∶A→ B is a partial
translation of X, then, by the formula of φ, we have

φ(χ f (A)) =
1

Z(β) ∑
x∈ f (A)

e−βh(x)

= 1
Z(β) ∑x∈A

e−βh( f (x))

= φ(χAeβ(h−h○ f )).

So, by Theorem 2.5, φ is a (σh , β)-KMS state on C∗u(X). ∎

The following is a straightforward consequence of Proposition 2.9 and Theo-
rem 1.6.

Corollary 2.10 Let X be a u.l.f. metric space and h∶X → [0,∞) be an unbounded
coarse map. The subset of all β ∈ R for which there are strongly continuous (σh , β)-KMS
states on C∗u(X) is either of the form (t,∞) or [t,∞) for some t ≥ 0.

Remark 2.11 Throughout these notes, we will see many examples for which the
set of β’s admitting are strongly continuous (σh , β)-KMS states on C∗u(X) are of
the form (β0 ,∞) for some β0 > 0. This could give the impression this must always
be the case, however, this is not so. For instance, let X = {n ∈ N ∣ n ≥ 3} and let
h(x) = log(x log2(x)) for all x ∈ X (the restriction of x ≥ 3 is simply so that h is well
defined). In this case,

∞

∑
n=3

e−βh(x) =
∞

∑
n=3

1
xβ log2β(x)

and this series converges if and only if β ≥ 1.

2.5 The simplest coarse space

Under the optics of coarse geometry, the simplest infinite metric space is the coarse
disjoint union of singletons; that is, any metric space which is bijectively coarsely
equivalent to

X0 = {n2 ∈ N ∣ n ∈ N},

where X0 is endowed with the usual metric d on the natural numbers. In this
subsection, we study KMS states on X0. The simplicity of the geometry of X0 makes
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any map h∶X0 → Y , where Y is another metric space, be automatically coarse. Also,
given any r > 0, there is a finite F ⊆ X0 × X0 such that

{(x , y) ∈ X0 × X0 ∣ d(x , y) < r} = {(x , x) ∈ X0 × X0 ∣ x ∈ X0} ∪ F .

Therefore, it follows that

C∗u(X) = �∞(X) +K(�2(X)).

Proposition 2.12 Let (X0 , d) be the coarse disjoint union of singletons described
above. If φ is a state on �∞(X0) such that φ ↾ c0(X0) = 0, then φ ○ E is a (σh , β)-KMS
state on C∗u(X0) for all h∶X0 → R and all β ∈ R; where E∶C∗u(X0) → �∞(X0) denotes
the canonical conditional expectation.

Proof Let f ∶A ⊆ X0 → B ⊆ X0 be a partial translation. Then, there must be a par-
tition A = A1 ⊔ A2 such that f (x) = x for all x ∈ A1 and ∣A2∣ < ∞. As φ ↾ c0(X0) = 0,
we have that

φ(χ f (A)) = φ(χ f (A1) + χ f (A2)) = φ(χ f (A1)) = φ(χA1).

Similarly, we have

φ(χAeβ(h−h○ f )) = φ(χA1 eβ(h−h○ f )) = φ(χA1).

The result then follows from Theorem 2.5. ∎

Remark 2.13 Here is a more conceptual way of obtaining Proposition 2.12: notice
that since C∗u(X0) = �∞(X0) +K(�2(X0)), we must have Q∗u(X0) ≅ �∞/c0; so,
Q∗u(X0) is abelian. Moreover, as σh is the identity on �∞(X0), the flow σ∞h induced
by σh on Q∗u(X0) is trivial (see Section 1 for the definition of σ∞h ). In particular, any
state on Q∗u(X0) is KMS for any β. The result is then a corollary of Proposition 1.8.

We now restrict our study of KMS states on X0 to a specific map h. This will
allow us to find all KMS states on C∗u(X0) for the corresponding flow. For the sake
of generality, we first isolate a result which does not depend on X being the coarse
disjoint union of singletons per se.

Corollary 2.14 Let d be any u.l.f. metric on N for which the map h(x) = log(x) is
coarse and let β ∈ R. If φ is a strongly continuous (σh , β)-KMS state on C∗u(N, d), then
β > 1 and

φ([ax , y]) =
1

∑∞n=1
1

nβ

∞

∑
n=1

ax ,x

nβ ,(2.9)

for all [ax , y] ∈ C∗u(N, d).

Proof This is a straightforward consequence of Theorem 1.6. ∎
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We can now describe the KMS states on X0 completely with h = log. Precisely:

Corollary 2.15 Let X0 = {n2 ∣ n ∈ N} be the coarse disjoint union of singletons
described above, β ∈ R, and h∶X → R be given by h(x) = log(

√
x) for all x ∈ X0.

The (σh , β)-KMS states of C∗u(X0) are precisely the following:
1. Any state on C∗u(X0) which vanishes on c0(X0),
2. If β > 1, then C∗u(X0) has a unique strongly continuous (σh , β)-KMS state and this

state is given by

φ([ax , y]) =
1

∑∞n=1
1

nβ

∞

∑
n=1

an2 ,n2

nβ ,

for all [ax , y] ∈ C∗u(X0), and
3. for β > 1, any convex combination of the states above.

Proof This follows immediately from Propositions 2.12 and Corollary 2.14. ∎

3 Intermission

As seen in Theorem 1.6, strongly continuous KMS states on uniform Roe algebras are
completely understood; so we are left to understand the strongly discontinuous case.
In this section, before explicitly perusing this goal, we take a short break from uniform
Roe algebras per se, and present some results about KMS states on arbitrary C∗-
algebras with respect to arbitrary flows. The technical results herein will be essential
in the analysis to follow of KMS states on uniform Roe algebras which are strongly
discontinuous.

We start by properly stating the settings of this section. But firstly, we recall some
standard notation: if A is a C∗-algebra, then Z(A) denotes the center of A, that is,

Z(A) = {b ∈ A ∣ ab = ba, ∀a ∈ A}.

Moreover, if K is a compact Hausdorff space, then C(K) denotes the C∗-algebra of
all continuous functions K → C.

Assumption 3.1 Throughout this section, we fix a unital C∗-algebra A, a flow σ on
A, and β ∈ R. Moreover, we fix a unital C∗-subalgebra C ⊆ A contained in Z(A), and
identify C with C(Ω(C)) via the Gelfand transform; here Ω(C)denotes the spectrum
of C.

Proposition 3.2 In the setting of Assumption 3.1: If φ is a (σ , β)-KMS state on A
and c ∈ A is a positive element in the center of A with φ(c) ≠ 0, then the state φc on A
defined by

φc(a) = φ(ac)
φ(c) , for all a ∈ A,

is a (σ , β)-KMS state on A.
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Proof First notice that, as c ∈ Z(A), then ac is positive for all positive a ∈ A.
Therefore, φc is indeed a state. Given a, b ∈ A, with b analytic, we have

φc(aσi β(b)) =
φ(aσi β(b)c)

φ(c) =
φ(acσi β(b))

φ(c) = φ(bac)
φ(c) = φc(ba).

So, φc is a (σ , β)-KMS state on A. ∎

Proposition 3.3 In the setting of Assumption 3.1: If φ is an extreme (σ , β)-KMS state
on A, then there is x ∈ Ω(C) such that

φ(a) = a(x) for all a ∈ C = C(Ω(C)).

In particular, letting

Jx = {a ∈ C(Ω(C)) ∣ a(x) = 0},

we have that φ ↾ Jx = 0.

Proof By Riesz representation theorem, there is a probability measure μ on Ω(C)
such that

φ(a) = ∫
Ω(C)

adμ for all a ∈ C .

Let K ⊆ Ω(C) be the support of μ. Let us show that K is a singleton. In order to prove
this, suppose by contradiction that there are two distinct points x , y ∈ K. By Urysohn’s
lemma, we can pick a positive k ∈ C(Ω(C)) with ∥k∥ ≤ 1 and such that k(x) = 1 and
k(y) = 0. Setting � = 1 − k, we have that both k and � are not identically zero on K,
so both φ(k) and φ(�) are nonzero. By Proposition 3.2, φk and φ� are (σ , β)-KMS
states on A, and it is clear that

φ = λφk + (1 − λ)φ� ,

where λ = φ(k). Since φk ≠ φ�, this contradicts the assumption that φ is an extreme
(σ , β)-KMS state. So, K contains only one point, say K = {x}. Therefore, μ must be
the dirac measure on {x}, which gives that

φ(a) = a(x), for all a ∈ C(Ω(C)).

The last claim follows straightforwardly from the above. ∎

Definition 3.4 In the setting of Assumption 3.1:
1. We denote the set of all (σ , β)-KMS states on A by Kβ .
2. For each x ∈ Ω(C), let

Jx = {a ∈ C = C(Ω(C)) ∣ a(x) = 0} and Kx
β = {φ ∈ Kβ ∣ φ ↾ Jx = 0}.

It is plainly clear that each Kx
β is a weak∗-closed convex subset of Kβ .

Recall that if C is a convex subset in a vector space, and E ⊆ C is convex, then E
is said to be an extreme subset of C if, for any pair of points x and y in C, such that
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λx + (1 − λ)y ∈ E, with 0 < λ < 1, one has that both x and y lie in E. For example, if x
is an extreme point of C, then {x} is an extreme subset of C.

Proposition 3.5 In the setting of Assumption 3.1: For all x ∈ Ω(C), one has that Kx
β

is an extreme subset of Kβ .

Proof Pick φ ∈ Kx
β and assume that

φ = λφ1 + (1 − λ)φ2 ,

where φ1 , φ2 ∈ Kβ and λ ∈ (0, 1). Denoting by ψ, ψ1, and ψ2 the restrictions of φ, φ1,
and φ2 to C, respectively, it is apparent that

ψ = λψ1 + (1 − λ)ψ2 .

By Proposition 3.3, ψ is a character of C = C(Ω(C)). Hence, ψ is an extreme point of
the unit ball of the dual of C. This shows that ψ = ψ1 = ψ2, which in turn implies that
both φ1 and φ2 vanish on Jx . Therefore, φ1 , φ2 ∈ Kx

β as desired. ∎

We can now present the main result of this section. In it, Ext(Kβ) (resp. Ext(Kx
β))

denotes the subset of all extreme elements of Kβ (resp. Ext(Kx
β)).

Theorem 3.6 In the setting of Assumption 3.1: We have

Ext(Kβ) = ⊔
x∈Ω(C)

Ext(Kx
β).

Moreover, if there is a (σ , β)-KMS state on A whose restriction to C is faithful, then
Kx

β ≠ ∅ for all x ∈ Ω(C). In particular, if such KMS state exists, we have that

∣Ext(Kβ)∣ ≥ ∣Ω(C)∣.

Proof By Proposition 3.3, every extreme point φ of Kβ lies in some Kx
β and, in this

case, φ is evidently an extreme point of Kx
β . Conversely, as each Kx

β is an extreme
subset of Kβ (Proposition 3.5), every extreme point of any Kx

β is an extreme point
of Kβ .

Suppose now that there is a (σ , β)-KMS state φ on A whose restriction to C is
faithful. Fix x ∈ Ω(C) and let us show Kx

β ≠ ∅. Let V be the family of all open subsets
of Ω(C) which contain x and, for each V ∈ V, let hV ∶Ω(C) → [0, 1] be a continuous
function such that hV(x) = 1 and hV(y) = 0 for all y /∈ V . By the faithfulness of φ,
φ(hV) ≠ 0 for all V ∈ V. Therefore, by Proposition 3.2, each φV = φhV is a (σ , β)-
KMS state on A.

Consider V as a directed set with the usual reverse containment order. By Banach-
Alaoglu theorem, Kβ is weak∗-compact. Hence, by passing to a subset if necessary,
we can assume that (φV)V∈V converges to some ψ ∈ Kβ in the weak∗-topology. As ψ
is a limit of (φV)V∈V and as limV ,V ∥ahV∥ = 0, for all a ∈ Jx , the state ψ must vanish
on Jx . This shows that φ ∈ Kx

β and Kx
β cannot be empty as desired.

The last claim is a straightforward consequence of the above. ∎
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4 Factoring KMS states through the uniform Roe corona

In this section, we return to the setting of uniform Roe algebras and study strongly
discontinuous KMS states (the strongly continuous case was already completely
treated in Theorem 1.6). We start noticing that, in order to study such states, it is
enough to study the KMS states which vanish on the ideal of compact operators.
Precisely:

Proposition 4.1 Let X be a u.l.f. metric space, h∶X → R be coarse, and β ∈ R. Suppose
φ is a (σh , β)-KMS state on C∗u(X) and define a positive functional ψ on C∗u(X) by
letting

ψ(a) = lim
F ,F

∑
x∈F

ax ,x φ(ex ,x) for all a = [ax , y] ∈ C∗u(X),

where F is the net of all finite subsets of X ordered by reverse inclusion. Then, ψ is well
defined and
1. ψ is strongly continuous and satisfies the (σh , β)-KMS condition, and
2. φ − ψ is a positive functional which satisfies the (σh , β)-KMS condition and

vanishes on K(�2(X)).

Proof The fact that ψ is well defined follows straightforwardly from the fact that φ
is positive and factors through �∞(X) (Theorem 1.5). Positivity and strong continuity
of ψ are then completely immediate. It is also immediate that ψ ≤ φ, so φ − ψ is also
positive. Since ψ ↾K(�2(X)) = φ ↾K(�2(X)), φ − ψ vanishes on the compacts. We
are only left to show that both ψ and φ − ψ satisfy the (σ , β)-KMS condition. But this
is an immediate consequence of Theorem 2.5 and the formula of ψ. ∎

Theorem 1.6 and Proposition 4.1 show that, in order to understand the KMS states
on uniform Roe algebras, we only need to focus of the states which vanish on the ideal
of compact operators. For the remainder of this section, this will be our focus. Since
the compacts form an ideal, we can factor those states through the quotient algebra.
For that, recall that the uniform Roe corona of X is

Q∗u(X) = C∗u(X)/K(�2(X))

(see Definition 1.7). If φ is a state on C∗u(X) which vanishes on K(�2(X)), then φ
gives rise to a well-defined state ψ on Q∗u(X) determined by

ψ(π(a)) = φ(a), for all a ∈ C∗u(X).

Moreover, given a coarse map h∶X → R, the flow σh induces a flow σ∞h on Q∗u(X) by
letting

σ∞h ,t(π(a)) = π(σh ,t(a)) for all a ∈ C∗u(X) and all t ∈ R

(see Section 1.3 for more details).
Proposition 1.8 highlights the relations between φ and ψ, and σh and σ∞h defined

above.

https://doi.org/10.4153/S2976859425100003 Published online by Cambridge University Press

https://doi.org/10.4153/S2976859425100003


24 B. M. Braga and R. Exel

Proof of Proposition 1.8. Notice that if b is an analytic element in C∗u(X) for σh ,
then π(b) is analytic for σ∞h and, moreover,

π(σh ,z(b)) = σ∞h ,z(π(b)) for all z ∈ C.

Therefore, the image of the set of all analytic elements in C∗u(X) under π forms a
dense set of analytic elements in Q∗u(X). Consequently, in order to check that a state
ψ on Q∗u(X) is a (σ∞h , β)-KMS state, it suffices to prove that

ψ(π(a)σ∞h , i β(π(b))) = ψ(π(b)π(a)),

for all a, b ∈ A with b analytic. Observing that the left-hand-side above coincides
with (ψ ○ π)(aσh , i β(b)) and that the right-hand-side equals (ψ ○ π)(ba), the first
statement of the proposition follows. The second statement in turn follows from the
first one immediately. ∎

Proposition 1.8 then reduces our problem to the one of understanding the KMS
states on the uniform Roe corona Q∗u(X). In view of Section 3, it will be useful to
study the center Q∗u(X) as well as its C∗-subalgebras. This brings up a seemingly
unexpected link between KMS states and the Higson corona. Recall:

Definition 4.2 Let X be a u.l.f. metric space.
1. A bounded function f ∶X → C is a Higson function if for all ε > 0 and all R > 0

there is a finite F ⊆ X such that

∀x , y ∈ X ∖ F , d(x , y) < R implies ∣ f (x) − f (y)∣ < ε.

The set of all Higson functions on X forms a C∗-subalgebra of �∞(X) which we
denote by Ch(X).

2. The spectrum of Ch(X), denoted by hX, is called the Higson compactification of
X. So, the Gelfand transform gives us the identification C(hX) = Ch(X).

3. The boundary νX = hX ∖ X is called the Higson corona and we have the identifi-
cation C(νX) = Ch(X)/c0(X).

Notice that, as Ch(X) ⊆ �∞(X), we may canonically view Ch(X)/c0(X) as a C∗-
subalgebra of Q∗u(X); so, by the identification C(νX) = Ch(X)/c0(X), we have

C(νX) ⊆ Q∗u(X).

It has been recently observed that the center of Q∗u(X) is precisely the Higson corona
of X. Indeed, the following was proven in [BBF+22a, Proposition 3.6] as a consequence
of [ŠZ20, Theorem 3.3].

Proposition 4.3 Given a u.l.f. metric space X, we have that

C(νX) = Z(Q∗u(X)).

We now apply our results of Section 3 to our coarse setting. In what follows, if C is a
unital C∗-algebra, Ω(C) denotes the spectrum of C. So, Ω(C) is a compact Hausdoff
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topological space and we use the identification C = C(Ω(C)) given by the Gelfand
transform.

Theorem 4.4 Let X be a u.l.f. metric space, h∶X → R be a coarse map, and β ∈ R. Let
C be a unital C∗-subalgebra of C(νX).
1. For any extreme (σ∞h , β)-KMS state ψ on Q∗u(X), there is x ∈ Ω(C) such that

ψ(a) = a(x) for all a ∈ C = C(Ω(C)).

2. Suppose there is a (σ∞h , β)-KMS state on Q∗u(X) whose restriction to C is faithful.
Then, for any x ∈ Ω(C), there is an extreme (σ∞h , β)-KMS state ψ on Q∗u(X) such
that

ψ(a) = a(x) for all a ∈ C = C(Ω(C)).

Proof This is a mere corollary of Theorem 3.6. ∎

Proof of Theorem 1.9. This is a particular case of Theorem 4.4 with
C = C(νX). ∎

We now obtain Theorem 1.11 by proving a more general version of it. For that, we
first generalize Definition 1.10.

Definition 4.5 Let X be a u.l.f. metric space and X̄ be a compactification of X.
1. We call X̄ Higson compatible if

f ↾ X ∈ Ch(X) for all f ∈ C(X̄).

2. If X̄ is Higson compatible and x ∈ X̄, we say that a state φ on C∗u(X) is X̄-
supported on x if for all neighborhoods U ⊆ X̄ of x, we have φ(χU∩X) = 1.

Notice that if X̄ is a Higson compatible compactification of X, then C(X̄) can be
canonically identified with a C∗-subalgebra of Ch(X), which in turn allows us to
identify C(X̄)/c0(X) with a C∗-subalgebra of C(νX) ⊆ Q∗u(X).7

Theorem 4.6 Let X be a u.l.f. metric space, h∶X → R be a coarse map, and β ∈ R. Let
X̄ be a Higson compatible compactification of X. The following holds:
1. Any extreme (σh , β)-KMS state on C∗u(X) which vanishes on the compacts is X̄-

supported at some element of X̄.
2. If there is a (σh , β)-KMS state on C∗u(X) which vanishes on the compacts and such

that its induced state on Q∗u(X) is faithful on C(X̄)/c0(X), then for every x ∈ X̄
there is a (σh , β)-KMS state on C∗u(X) which is X̄-supported on x.

Proof This is a mere corollary of Proposition 1.8 and Theorem 4.4. ∎

Proof of Theorem 1.11. This is a particular case of Theorem 4.6 with X̄ = hX. ∎

7This should be compared with the coarse compactification of a coarse space; see [Roe03, Definition
2.38 and Proposition 2.39].
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4.1 The size of the Higson corona

We show that the Higson corona of an infinite u.l.f. metric space must always have
22ℵ0 many elements (Theorem 4.14). Together with the previous results in this section,
this will give us a very strong control of the cardinality of KMS states on C∗u(X).

In this subsection, we work a lot with partial bijections f of X and it will be useful
to be able to write “ f (A)” regardless of whether A ⊆ Dom( f ). We then define: given
any set X, a partial bijection f ∶Dom( f ) → Im( f ) of X, and A ⊆ X, we let

f [A] = f (A∩Dom( f )).

Also, given partial bijections f and g of X, we let g ○ f be the partial bijection from
f −1[Dom(g)] to g[Im( f )] defined by g ○ f (x) = g( f (x)) for all x ∈ f −1[Dom(g)].

The following lemma is an easy exercise and we leave the details to the reader.

Lemma 4.7 Let f and g be partial bijections of X. Then

f [A] ∩ g[B] = g((g−1 ○ f )[A] ∩ B)
for all A, B ⊆ X.

Definition 4.8 Let X be a u.l.f. metric space. A subset A ⊆ X is thin if f [A] ∩ A
is finite for all partial translations f of X which do not fix points, that is, such that
f (x) ≠ x for all x ∈ Dom( f ).

Lemma 4.9 Every infinite u.l.f. metric space contains an infinite thin subset.

Proof If (X , d) is infinite and u.l.f., then X is unbounded. Hence, we can induc-
tively pick a sequence (x i)i∈N in X such that

d(xk , x�) ≥ max
i , j<�

d(x i , x j) + �

for all � > k in N. The set A = {x i ∣ i ∈ N} is clearly thin.8 ∎

Proposition 4.10 Let X be a u.l.f. metric space, C ⊆ X be thin, and let C = A⊔ B be a
partition of C. If f and g are partial translations of X, then f [A] ∩ g[B] is finite.

Proof By Lemma 4.7, it is enough to show that (g−1 ○ f )[A] ∩ B is finite. As the
composition of partial translations is still a partial translation, it is enough to show
that f [A] ∩ B is finite for any partial translation f of X. Fix such f and, replacing A
with A∩Dom( f ), we also assume that A ⊆ Dom( f ). Let us show that f (A) ∩ B is
finite. Set

A0 = {x ∈ A ∣ f (x) = x} and A1 = A∖ A0 .

Then, as A∩ B = ∅, we have

f (A) ∩ B = f (A0 ∪ A1) ∩ B = f (A1) ∩ B.

8Equivalently, if A ⊆ X is the image of a coarse embedding of {n2 ∣ n ∈ N} in X, then A is thin.
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Let f1 = f ↾ A1. Then f1 has no fixed points and

f1(A) ∩ B ⊆ f1[C] ∩ C .

Since C is thin, f1[C] ∩ C must be finite. So, f (A) ∩ B is finite. ∎

Given a u.l.f. metric space X, let βX denote the Stone–Čech compactification of X.9
Since X is discrete, βX can be identified with the space of ultrafilters on X endowed
with the Stone topology, that is, the topology generated by open sets of the form

UA = {ω ∈ βX ∣ A ∈ ω}

for all A ⊆ X. Given A ⊆ X, we let Ā denote the closure of A in βX and let Â = Ā∖ A.
By the defining property of βX, any element in �∞(X) extends to one in C(βX). This
defines a canonical isomorphism between �∞(X) and C(βX), and we identify those
algebras under this isomorphism. We identify C(X̂) with C(βX)/c0(X) via Gelfand
transform. Hence, under these identifications, we have

C(X̂) = �∞(X)/c0(X) ⊆ Q∗u(X).

We now define invariant subsets of the Stone–Čech compactification. For that,
recall that, by the defining property of βX, any partially defined map f ∶Dom( f ) ⊆
X → Im( f ) ⊆ X can be continuously extended to a (necessarily surjective) map
Dom( f ) → Im( f ). By abuse of notation, we still denote this map by f.

Definition 4.11 Let X be a u.l.f. metric space and A ⊆ βX. We say that A is invariant
if f [A] ⊆ A for all partial translations f of X.

For the next lemma, notice that if L ⊆ X̂ is a clopen subset, then χL ∈ C(X̂). Hence,
it makes sense to wonder whether χL can also be in C(νX) ⊆ C(X̂).

Lemma 4.12 Let X be a u.l.f. metric space and L ⊆ X̂ be an invariant clopen subset.
Then χL ∈ C(νX).

Proof By Proposition 4.3, it is enough to notice that χL is in the center of Q∗u(X).
Hence, since C∗u[X] is dense in C∗u(X) and spanned by av f , where a ∈ �∞(X) and f
is a partial translation of X, we only need to show that χL commutes with w f = π(v f )
for all partial translations f of X. Fix such partial translation f and let A = Dom( f )
and B = Im( f ). Then, w f = χB̂w f χÂ and

w f χL = w f χÂ∩L = χB̂∩ f [L]w f = χ f [L]w f(4.1)

notice that f [L] = B̂ ∩ L. Indeed, since L is invariant and f is a partial translation,
f [L] ⊂ B̂ ∩ L. On the other hand, as f −1 is also a partial translation, we have f −1[L] ⊆
L. Hence, as B̂ ∩ L ⊆ f [ f −1[L]], we also have B̂ ∩ L ⊆ f [L]. We can then conclude
from (4.1) that w f χL = χLw f . As the partial translation f was arbitrary, we conclude
that χL ∈ C(νX) as desired. ∎

9Please be careful not to mistake this β for the inverse temperature!
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Lemma 4.13 Let X be a u.l.f. metric space and C ⊆ X be thin. If ω, ω′ ∈ Ĉ are distinct,
then there are disjoint invariant open subsets U , V ⊆ X̂ such that ω ∈ U and ω′ ∈ V.

Proof Since ω, ω′ ∈ C̄, it follows that C ∈ ω and C ∈ ω′. As ω ≠ ω′, there is D ⊆ X
such that D ∈ ω and D /∈ ω′. Hence,

A = C ∩ D ∈ ω and B = C ∖ D ∈ ω′ .

Therefore, ω ∈ Â and ω′ ∈ B̂. Let PT denote the set of all partial translations of X and
define

U = ⋃
f ∈PT

f̂ [A] and V = ⋃
f ∈PT

f̂ [B].

Clearly, U and V are open, invariant and contain ω and ω′, respectively. We only
need to notice they are also disjoint. For that, notice that Proposition 4.10 implies
that f [A] ∩ g[B] is finite for all f , g ∈ PT. But then f̂ [A] ∩ ĝ[B] = ∅ for all f , g ∈ PT,
which in turn implies that U ∩ V = ∅. ∎

Theorem 4.14 Let X be an infinite u.l.f. metric space. Then, νX has at least 22ℵ0

elements.

Proof Let p∶ X̂ → νX be the continuous surjection such that the canonical identi-
fication of C(νX) with a C∗-subalgebra of C(X̂) is given by the map

a ∈ C(νX) ↦ a ○ p ∈ C(X̂).

Let C ⊆ X be an infinite thin subset given by Lemma 4.9. As Ĉ is the set of all
nonprincipal ultrafilters on C and C is countable, we have that ∣Ĉ∣ = 22ℵ0 . Therefore,
in order to obtain that νX has 22ℵ0 elements, it is enough to show that p is injective
on Ĉ.

Let ω, ω′ ∈ Ĉ be distinct. By Lemma 4.13, there are disjoint invariant open subsets
U , V ⊆ X̂ containing ω and ω′, respectively. As βX is extremely disconnected, Ū is
clopen in X̂ which implies that the characteristic function of Ū , χŪ , is a continuous
function in C(X̂). As Ū is invariant, Lemma 4.12 shows that χŪ ∈ C(νX). Therefore,
since we clearly have χŪ(ω) = 1 and χŪ(ω′) = 0, this shows that p(ω) ≠ p(ω′). ∎

Remark 4.15 We would like to observe that Theorem 4.14 is only valid for metric
u.l.f. spaces. Precisely, Higson coronas can be defined more generally for coarse spaces
— for brevity, we do not define coarse spaces here, the reader can find the precise
definition in [Roe03] or [BBF+22b, Section 5]. It is known that every perfectly normal
compact Hausdorff space is homeomorphic to the Higson corona of some u.l.f. coarse
space (see [BP20, p. 2]). It is however not surprising that the Higson corona of
nonmetrizable u.l.f. coarse spaces can be much smaller since there will be fewer
Higson functions in this case. The proof of Theorem 4.14 cannot hold outside the
metrizable world since thin sets may not exist. For instance, if Emax is the maximal
u.l.f. coarse structure on an infinite set X (see [BBF+22b, Subsection 1.3] for the precise
definition), then it is clear that (X ,Emax) has no infinite thin subsets.
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Corollary 4.16 Let X be an infinite u.l.f. metric space, h∶X → R be a coarse map, and
β ∈ R. If there is a (σ∞h , β)-KMS state on Q∗u(X)whose restriction to C(νX) is faithful,
then there are 22ℵ0 extreme (σ∞h , β)-KMS states on Q∗u(X). In particular, there are 22ℵ0

extreme (σh , β)-KMS states on C∗u(X) which vanish on K(�2(X)).

Proof The statement for the uniform Roe corona follows from Theorems 4.4
and 4.14. The statement for the uniform Roe algebra is then a consequence of
Proposition 1.8. ∎

5 Applications: Branching trees

In this section, we apply the theory of KMS states on uniform Roe algebras developed
above to n-branching trees. Recall that, as mentioned in the introduction, the choice
for those spaces are, in a sense, very natural. Precisely, as explained in Section 1.4, as
long as h∶X → R is such that h(x) is bounded below by an affine map in terms of
d(x , x0) for a given x0 ∈ X, there will always be (σh , β)-KMS states on C∗u(X) for all
β > 0 as long as X has polynomial growth. Therefore, in order to find more interesting
phase transitions, it is natural to look at metric spaces with exponential growth.

5.1 n-branching trees

Given a set Γ, we let Γ<∞ be the set of all finite words on Γ, including the empty word;
which we denote by∅. In other words, if γ ∈ Γ<∞, then either γ = ∅or γ = (γ1 , . . . , γn)
for some n ∈ N and some γ1 , . . . , γn ∈ Γ. Given γ ∈ Γ<∞, if γ = ∅, we say that the length
of γ is 0, if γ = (γ1 , . . . , γn), we say that the length of γ is n; either way, we denote the
length of γ by ∣γ∣ and we write γ = (γ1 , . . . , γ∣γ∣) (here it is understood that if ∣γ∣ = 0,
then γ = ∅). Given γ, γ′ ∈ Γ<∞ we denote the concatenation of γ and γ′ by γ⌢γ′, that is,

γ⌢γ′ = (γ1 , . . . , γ∣γ∣ , γ′1 , . . . , γ′∣γ′∣).

Definition 5.1 Let n ∈ N and consider Γ = {1, . . . , n}. We make Γ<∞ into a graph
by saying that any two distinct elements γ, γ′ ∈ Γ<∞ are adjacent if there is k ∈ Γ such
that either γ1 = γ⌢2 k or γ2 = γ⌢1 k. This defines a graph structure on Γ<∞ making it into
a connected (undirected) graph. We can then see Γ<∞ as a metric space endowed with
the shortest path distance. We call this metric space the n-branching tree and denote
it by Tn .

For simplicity, we now isolate the setting of this subsection.

Assumption 5.2 Let n ∈ N and let Tn be the n-branching tree endowed with the
shortest path metric, denoted by d. Let h∶Tn → R be the function given by h(x) =
d(x ,∅) for all x ∈ Tn

5.2 Strongly continuous KMS states on C∗u(Tn)

We start with a simple lemma about states on �∞. In the next lemma, �∞ = �∞(N)
and c0 = c0(N).
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Lemma 5.3 Let φ be a state on �∞. If φ ↾ c0 has norm 1, then φ is strongly continuous.

Proof For each j, denote by b j = φ(χ{ j}). Then, as φ ↾ c0 has norm 1,

∞

∑
j=1

b j = lim
k

k
∑
j=1

b j = lim
k

φ(χ{1, . . . ,k}) = 1.

Let a be a positive element in �∞ with norm at most 1. Then, as φ is positive, we have
that

k
∑
j=1

a jb j = φ(aχ{1, . . . ,k}) ≤ φ(a) for all k ∈ N.

So, upon taking the limit as k →∞, we get
∞

∑
j=1

a jb j ≤ φ(a).

Applying the same reasoning to 1 − a we deduce that

φ(a) = 1 − φ(1 − a) ≤ 1 −
∞

∑
j=1
(1 − a j)b j =

∞

∑
j=1

a jb j .

Hence,

φ(a) =
∞

∑
j=1

a jb j .

Now, for an arbitrary a ∈ �∞, splitting a into its real and imaginary parts, and
splitting each such parts into their positive and negative parts, the previous paragraph
imply that φ(a) = ∑∞j=1 a jb j , so the lemma follows. ∎

The next result is a partial version of Theorem 1.12.

Theorem 5.4 In the setting of Assumption 5.2: Given β ∈ R, there is a (σh , β)-KMS
state on C∗u(Tn) if and only if β ≥ log(n). Moreover,
1. For β > log(n), there is a unique (σh , β)-KMS state φβ on C∗u(Tn) and φβ is

given by

φβ([ax , y]) = ∑
y∈Tn

ay , y(e−β∣y∣ − ne−β(∣y∣+1))

for all [ax , y] ∈ C∗u(Tn).
2. For β = log(n), the (σh , β)-KMS states on C∗u(Tn) all vanish on K(�2(Tn)).

Proof Suppose φ is a (σh , β)-KMS state on C∗u(Tn). Notice that, for each y ∈ Tn ,
the map f ∶Tn → Tn given by f (x) = x⌢y, for all x ∈ Tn , is a partial translation; indeed,
d(x , f (x)) = ∣y∣ for all x ∈ Tn . So, each v f belongs to C∗u[Tn]. Then, for each y ∈ Tn ,
we have
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σh , i β(v∗f ) = e−βh̄v∗f eβh̄

= e−βh̄(SOT- ∑
x∈X

ex ,x⌢ y)eβh̄

= eβ∣y∣v∗f .

For each y ∈ Tn , set

T⌢n y = {x ∈ Tn ∣ x = z⌢y for some z ∈ Tn}.

Hence, as χTn = v∗f v f and χT⌢n y = v f v∗f , we must have

1 = φ(χTn) = φ(v∗f v f ) = φ(v f σh , i β(v∗f )) = eβ∣y∣φ(χT⌢n y)

for all y ∈ Tn ; which implies

φ(χT⌢n y) = e−β∣y∣ for all y ∈ Tn .(5.1)

Since for each y ∈ Tn , we have

{y} = T⌢n y ∖
n
⊔
k=1

T⌢n k⌢y,

where “⊔” denotes disjoint union, (5.1) implies that

φ(ey , y) = φ(χT⌢n y −
n
∑
k=1

χT⌢n k⌢ y) = e−β∣y∣ − ne−β(∣y∣+1)(5.2)

for all y ∈ Tn .
As φ is positive, each φ(ey , y) must be positive. So, (5.2) gives that

e−β∣y∣ ≥ ne−β(∣y∣+1) for all y ∈ Tn .

Solving for β, this implies β ≥ log(n). Moreover, as (5.2) must hold regardless of β,
this also shows that the (σh , log(n))-KMS states on C∗u(Tn) all vanish on c0(Tn).
Since such states factors through �∞(Tn) (Theorem 1.5), (2) follows.

We must now show that if β ≥ log(n), then (σh , β)-KMS states exist. This will
however be an immediate consequence of (1). Indeed, the set of all β’s for with (σh , β)-
KMS states exist is always a closed set (see [BR97, Proposition 5.3.25]).

We now show (1) holds. For this, suppose β > log(n) and let us show that any given
(σh , β)-KMS state φ must have the required form. Notice that φ ↾ �∞(Tn) is a state
on �∞(Tn). Moreover, the computations above show that

φ(a) = ∑
y∈Tn

ay(e−β∣y∣ − ne−β(∣y∣+1))(5.3)

for all a = (ay)y ∈ c0(Tn). Hence, an easy computation gives

lim
F ,F

φ(χF) = 1,

where F is the net of all finite subsets of Tn ordered by reverse inclusion. Therefore,
it follows that ∥φ ↾ c0(Tn)∥ = 1 and, by Lemma 5.3, φ ↾ �∞ is strongly continuous.
This implies that (5.3) holds for all a = (ay)y ∈ �∞(Tn). In order to notice that this
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holds for arbitrary elements of C∗u(Tn), let E∶C∗u(X) → �∞(X) be the canonical
conditional expectation and recall that, by Theorem 1.5, we have φ = φ ○ E. This
proves the uniqueness part of (1).

We are left to notice that a φ given by the formula above is indeed a (σh , β)-KMS
state on C∗u(Tn). This will be done by using Theorem 2.5.10 So, let f ∶A→ f (A) be a
partial translation on X. On one hand, we have that

φ(χ f (A)) = ∑
y∈ f (A)

(e−β∣y∣ − ne−β(∣y∣+1)).

On the other hand,

φ(χAeβ(h−h○ f )) = ∑
x∈A

eβ(∣x ∣−∣ f (x)∣)(e−β∣x ∣ − ne−β(∣x ∣+1))

= ∑
x∈A

(e−β∣ f (x)∣ − ne−β(∣ f (x)∣+1)).

The change of variable y = f (x) give us

φ(χ f (A)) = φ(χAeβ(h−h○ f )).

As φ = φ ○ E, Theorem 2.5 gives us that φ is a (σh , β)-KMS state on C∗u(X). ∎

5.3 KMS states on C∗u(Tn) vanishing on compacts

In order to complete the proof of Theorem 1.12, we must further analyze the case
β = log(n). According to Theorem 5.4, the KMS states for this inverse temperature
will all vanish on the ideal of compact operators and we can then make use of the
material of Section 4. Moreover, ideas in [Cho69, Lemma 3] will also be extremely
useful in order to compute to the precise cardinality of the set of extreme (σh , β)-
KMS states on C∗u(Tn).

5.3.1 Precise cardinality of the set of KMS states on C∗u(Tn) for β = log(n)

We start by setting up some notation. Given y ∈ Tn , consider the map

ỹ∶Tn → βTn

x ↦ x⌢y.

Then, by the defining property of βTn , ỹ can be extended to a continuous map
βTn → βTn which, by abuse of notation, we still denote by ỹ. Notice that

ỹ(A) = ỹ(Ā) for all A ⊆ Tn ,

where the closures above are taken in βTn (see Lemma [Cho69, Lemma 2.1]). We call
a subset A ⊆ βTn right-invariant11 if

10Equivalently, this could also be done using Theorem 1.6, but the computations would not be shorter.
11The reader is invited to compare this notion with Definition 4.11 above. Notice that this notion is

weaker since we only consider partial translations of Tn given by adding a letter to the right, but not by
deleting one.
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ỹ(A) ⊆ A for all y ∈ Tn .

The following is a particular case of [Cho69, Lemma 2 and Proposition 4.1], except
that Chou prefers to work with left translations.12

Lemma 5.5 Given n ∈ N, βTn contains at least 22ℵ0 nonempty, mutually disjoint,
closed, invariant subsets.13

Theorem 5.6 In the setting of Assumption 5.2: If β = log(n), then there are 22ℵ0

extreme (σh , β)-KMS states on C∗u(Tn).

Before proving Theorem 5.6, let us isolate an easy lemma for further reference.
Precisely, the next result is simply a more specialized version of Theorem 2.5.

Lemma 5.7 In the setting of Assumption 5.2: Suppose φ is a state on �∞(Tn) such
that

φ(χ ỹ(A)) = φ(χAeβ(h−h○ ỹ))(5.4)

for all y ∈ Tn and all A ⊆ Tn . Then, φ ○ E is a (σh , β)-KMS state on C∗u(Tn); where
E∶C∗u(Tn) → �∞(Tn) is the canonical conditional expectation.

Proof Any partial translation f of Tn can be written as a disjoint union f = ⋃k
i=1 f i ,

where each f i is a composition of partial isometries of the form

x ∈ A→ ỹ(x) ∈ ỹ(A)
for some y ∈ Tn and A ⊆ Tn , and partial isometries of the form

ỹ(x) ∈ ỹ(A) → x ∈ A,

for some y ∈ Tn and A ⊆ Tn . Therefore, by Theorem 2.5, it is enough to notice that
(5.4) holds for partial isometries of the second kind. For that, fix y ∈ Tn and A ⊆ Tn ,
and let g∶ ỹ(A) → A be the partial translation given by g( ỹ(x)) = x for all x ∈ A. Then,
since

h(x) − h( ỹ(x)) = ∣y∣ for all x ∈ Tn ,

our assumption on φ implies that

φ(χA) = e−β∣y∣φ(χAeβ(h−h○ ỹ))

= e−β∣y∣φ(χ ỹ(A))

= φ(χ ỹ(A)eβ(h−h○g)).

So, we are done. ∎

12Equivalently, this could be obtained as in Lemma 4.13 above.
13In [Cho69], Chou works with semigroups, but this is precisely what Tn is endowed with the products

x ∗ y = x⌢y.
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Proof of Theorem 5.6. We start establishing some convention. Firstly, recall that
�∞(Tn) is canonically isomorphic to C(βTn). In order to keep track of notation, if
a ∈ �∞(Tn), we write ā to denote a as an element of C(βTn). Notice that, if a = χA
for some A ⊆ Tn , then

χA = χĀ,

where the closure Ā is taken in βTn . Therefore, if φ is a state on �∞(Tn), we can view
it as a state on C(βTn), that is, φ is a Borel measure on βTn and

φ(a) = ∫
βTn

ādφ for all a ∈ �∞(Tn).

With this in mind, we define the support of φ as the support of φ as a Borel measure
on βTn and denote it by supp(φ) ⊆ βTn . Suppose now that φ is a state on C∗u(Tn).
Then, φ ↾ �∞(Tn) is a state on �∞(Tn) and, by abuse of notation, we write

supp(φ) = supp(φ ↾ �∞(Tn)).

We now start the proof. By Lemma 5.5, there is a family (L j) j∈J of nonempty,
mutually disjoint, closed, invariant subsets of βTn such that ∣J∣ = 22ℵ0 . Fix j ∈ J and,
for simplicity, let L = L j . Denote the subset of all (σh , β)-KMS states on C∗u(Tn)which
vanish on the compacts by Kβ and define

KL
β = {φ ∈ Kβ ∣ supp(φ) ⊆ L}.

Clearly, KL
β is convex and weak∗-compact. Let us show KL

β is nonempty.
By Theorem 5.4, Kβ ≠ ∅. From now on, we fix φ ∈ Kβ . As L is nonempty, fix also

ω ∈ L. We define a state ψ on �∞(Tn) as follows: for each a ∈ �∞(Tn), let ã ∈ �∞(Tn)
be given by

ã(y) = ā( ỹ(ω)) for all y ∈ Tn .

We then let ψ be the state on �∞(Tn) given by

ψ(a) = φ(ã) for all a ∈ �∞(Tn).

We extend ψ to the whole C∗u(Tn) in the usual way, that is, we let ψ = ψ ○ E where
E∶C∗u(Tn) → �∞(Tn) is the canonical conditional expectation. Since it is immediate
that ψ is indeed a state on C∗u(Tn), we only need to show that ψ satisfies the required
KMS condition and that supp(ψ) ⊆ L.

For the KMS conditions, let y ∈ Tn and A ⊆ Tn ; so, ỹ ↾ A∶A→ ỹ(A) is a partial
translation on Tn . Notice that

χ̃ ˜ (A)y(x) = χ ỹ(A)(x̃(ω)) = χ ỹ(A)(x̃(ω)) = χ ỹ(Ā)(x̃(ω))(5.5)

for all x ∈ Tn . In order to understand χ ỹ(Ā)(x̃(ω)), notice that

ỹ({x ∈ Tn ∣ x̃(ω) ∈ Ā}) ⊆ {x ∈ Tn ∣ x̃(ω) ∈ ỹ(Ā)}

and

{x ∈ Tn ∣ x̃(ω) ∈ ỹ(Ā) and ∣x∣ ≥ ∣y∣} ⊆ ỹ({x ∈ Tn ∣ x̃(ω) ∈ Ā}).
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Therefore, as {x ∈ Tn ∣ ∣x∣ < ∣y∣} is finite and as φ vanishes on compacts, letting

B = {x ∈ Tn ∣ x̃(ω) ∈ Ā} and C = {x ∈ Tn ∣ x̃(ω) ∈ ỹ(Ā)},

we have that φ(χ ỹ(B)) = φ(χC). By (5.5), we have χ̃ ˜ (A)y = χC and our discussion gives

ψ(χ ỹ(A)) = φ( χ̃ ˜ (A)y)(5.6)

= φ(χ ỹ(B))

= φ(χB eβ(h−h○ ỹ)).

As h − h ○ ỹ is bounded, (h − h ○ ỹ)∼ is well defined. Let (z j) j be a net of elements
of Tn converging to ω. Notice that

h(x⌢y) = h(x) + h(y) for all x , y ∈ Tn .

Therefore,

(h − h ○ ỹ)∼(x) = (h − h ○ ỹ)(x̃(ω))
= lim

i
(h(z⌢i x) − h(z⌢i x⌢y))

= lim
i
(h(x) − h(x⌢y))

= (h − h ○ ỹ)(x)

for all x ∈ Tn . By the definition of B, it is clear that χB = χ̃A. Therefore,

ψ(χAeβ(h−h○ ỹ)) = φ((χAeβ(h−h○ ỹ))
∼

)(5.7)

= φ( χ̃A(eβ(h−h○ ỹ))
∼

)

= φ(χB eβ(h−h○ ỹ)).

By (5.6) and (5.7), we conclude that

ψ(χ ỹ(A)) = ψ(χAeβ(h−h○ ỹ)).

As y ∈ Tn and A ⊆ Tn were arbitrary, this shows that ψ is a (σh , β)-KMS state on
C∗u(Tn).

Let us notice that supp(ψ) ⊆ L. Suppose ω′ /∈ L. Then there is A ⊆ Tn such that
ω′ ∈ Ā and Ā∩ L = ∅. As ω ∈ L and L is invariant, x̃(ω) ∈ L for all x ∈ Tn . Hence,

χ̃A(x) = χĀ(x̃(ω)) = 0

for all x ∈ Tn . Then, thinking of ψ as being defined on C(βTn) as described above, we
have that ψ(χA) = 0. This shows that supp(ψ) ⊆ L and we concluded our proof that
KL

β ≠ ∅.
Since j ∈ J was arbitrary, we have that each KL j

β is convex, weak∗ compact,
and nonempty. Hence, Krein–Milman theorem implies that each of them contains
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extreme points. Since (L j) j∈J are disjoint, this implies that there are 22ℵ0 many
extreme points and we are done. ∎

5.3.2 Localization of KMS states on C∗u(Tn) for β = log(n).

We are left to notice that a version of Theorem 5.6 holds along every branch of Tn .
For that, we must further analyze the Higson corona of Tn . More precisely, we must
identify a C∗-subalgebra of C(νTn) which will help us to locate the KMS states on
C∗u(Tn) for inverse temperature β = log(n) better.

We first introduce some notation. Firstly, let [Tn] denote the branches of Tn ,
that is,

[Tn] = {1, . . . , n}N .

Given x̄ = (x j)∞j=1 ∈ [Tn] and k ∈ N, we let x̄∣k be the initial segment of x̄ with k letters,
that is,

x̄∣k = (x1 , . . . , xk).

We now set

Tn = Tn ∪ [Tn]

and endow Tn with an appropriate topology. For that, we first extend the concatena-
tion operation: for y ∈ Tn and x̄ ∈ [Tn], we let

y⌢x̄ = (y1 , . . . , y∣y∣ , x1 , x2 , . . .) ∈ [Tn].

Given any y ∈ Tn , we let

y⌢Tn = {x ∈ Tn ∣ ∃z ∈ Tn with x = y⌢z},

that is, y⌢Tn denotes the set of words, finite or not, which “start” with y. We define
y⌢Tn and y⌢[Tn] analogously, that is,

y⌢Tn = (y⌢Tn) ∩ Tn and y⌢[Tn] = (y⌢Tn) ∩ [Tn].

We endow Tn with the topology generated by

P(Tn) ∪ {y⌢Tn ∣ y ∈ Tn}.

So, Tn is an open subset of Tn and the inclusion

Tn ↪ Tn

is a homeomorphic embedding with dense range. Moreover, it is easy to see that Tn
is a compact space. Hence, Tn is a compactification of Tn .

As Tn is dense in Tn , this allow us to see C(Tn) as a C∗-subalgebra of �∞(Tn) in a
canonical way. Precisely, we identify C(Tn) with the image of the following injective
∗-homomorphism

f ∈ C(Tn) ↦ f ↾ Tn ∈ �∞(Tn).
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Lemma 5.8 Let n ∈ N and consider the n-branching tree Tn . Then:
1. For all y ∈ Tn , the projection χy⌢Tn is a Higson function.
2. The Banach space

Cn = span{χy⌢Tn ∣ y ∈ Tn}

is a C∗-algebra contained in Ch(Tn).
3. Under the identification of C(Tn) with the C∗-subalgebra of �∞(Tn) described

above, we have Cn = C(Tn). In particular, the compactification Tn is Higson
compatible.

In particular, identifying C([Tn]) = C(Tn)/c0(Tn) via Gelfand transfom, we have that
C([Tn]) ⊆ Q∗u(Tn).

Proof (1) Fix y ∈ Tn . Let ε > 0 and R > 0. Let

F = {x ∈ Tn ∣ ∣x∣ ≤ ∣y∣ + R}.

Then, if x , z ∈ Tn ∖ F and d(x , z) < R, we must have that either both x and z are in
y⌢Tn , or neither of them are. In either case, we have

∣χy⌢Tn(x) − χy⌢Tn(z)∣ = 0,

so χy⌢Tn is a Higson function.
(2) It is evident that Cn is closed under the adjoint operator. So, we only need

to show that Cn is also closed under product. If x , z ∈ Tn , we write x ≤ z if ∣x∣ ≤ ∣z∣
and x i = z i for all i ∈ {1, . . . , ∣x∣}. The fact that C is a C∗-algebra follows from the
straightforward fact that, for all x , z ∈ Tn , we have

χy⌢Tn χz⌢Tn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

χz⌢Tn , if y ≤ z,
χy⌢Tn , if z ≤ y,
0, otherwise.

So, Cn is closed under multiplication. The fact that Cn ⊆ Ch(Tn) follows from (1).
(3) We start noticing that

a ∈ Cn ⇔ a = ∑
y∈Tn

ay χy⌢Tn for some (ay)y∈Tn ∈ �∞(Tn) such that

the sums ( ∑
k∈N

ax̄ ∣k)
x̄∈[Tn]

are equi-convergent.

In particular, if x̄ ∈ [Tn] and a = ∑y∈Tn ay χy⌢Tn is as above, the limit

lim
k→∞

a(x̄∣k) = ∑
k∈N

ax̄ ∣k

exists. We can then define an ∗-isomorphic embedding Φ∶Cn → C(Tn) by letting

Φ(a)(w) = {a(w), if w ∈ Tn ,
limk→∞ a(w∣k), if w ∈ [Tn].
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It is straightforward to show that Φ is indeed well-defined, that is, Φ(a) is a
continuous function on Tn for all a ∈ Cn . Moreover, it is also clear Φ is an injective
∗-homomorphism and that

Φ(a) ↾ Tn = a.

We are left to notice that the Φ is subjective. For that, we show that the image of

span{χy⌢Tn ∣ y ∈ Tn}
under Φ is dense in C(Tn). Fix f ∈ C(Tn) and ε > 0. As f is continuous and [Tn] is
compact, we can pick y1 , . . . , yk ∈ Tn such that

[Tn] ⊆
k
⋃
j=1

y⌢j Tn(5.8)

and

∣ f (x) − f (z)∣ < ε for all j ∈ {1, . . . , k} and all x , z ∈ y⌢j Tn .

By (5.8), there is a finite set F ⊆ Tn such that

Tn ⊆ F ∪
k
⋃
j=1

y⌢j Tn .

For simplicity, assume F ∩ y⌢j Tn = ∅ for all j ∈ {1, . . . , k} and let a ∈ �∞(X) be
given by

a(x) = { f (x), if x ∈ F ,
f (y j), if j ∈ {1, . . . , k} and x ∈ y⌢j Tn .

It is straightforward to check that

a ∈ span{χy⌢Tn ∣ y ∈ Tn}
and that ∥Φ(a) − f ∥ ≤ ε. ∎

The next couple of results will focus more on KMS states on Q∗u(Tn) and will not
be necessary for the main result of this section per se (Theorem 1.12). The reader
interested only in Theorem 1.12 can safely skip to Lemma 5.12.

Definition 5.9 In the setting of Assumption 5.2: For each β > log(n), let φβ be the
(σh , β)-KMS state in Theorem 5.4. If (βk)k ⊆ (log(n),∞) is a sequence converging
to log(n) and U is a nonprincipal ultrafilter on N, then

φ = w∗- lim
k ,U

φβk

is a (σh , log(n))-KMS state on C∗u(Tn). We call any such KMS states a limiting KMS
state. By Theorem 5.4, those states always vanish on K(�2(Tn)).

Corollary 5.10 In the setting of Assumption 5.2: Let β = log(n) and φ be a limiting
(σh , β)-KMS state on C∗u(Tn). Let ψ be the (σ∞h , β)-KMS on Q∗u(Tn) such that
φ = ψ ○ π. Then, the restriction of ψ to C([Tn]) is faithful.
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Proof Let μ be the probability measure on [Tn] given by Riesz representation
theorem by restricting ψ to C([Tn]), that is,

ψ(a) = ∫
[Tn]

adμ for all a ∈ C([Tn]).

Since φ is a limiting (σh , log(n))-KMS state, let (βk)k ⊆ (log(n),∞) be a
sequence converging to log(n) and U be a nonprincipal ultrafilter such that

φ = w∗- lim
k ,U

φβk .

By the formula of each φβk given by Theorem 5.4, it follows that

φβk(χy⌢Tn) = e−βk ∣y∣ for all y ∈ Tn .

Hence, by the formula of φ, we have

φ(χy⌢Tn) = lim
k→∞

e−βk ∣y∣ = 1
n∣y∣

for all y ∈ Tn .

This shows that μ is the Bernoulli measure on [Tn] = {1, . . . , n}N. Since the
support of the Bernoulli measure is the whole [Tn], this shows that φ is faithful on
C([Tn]). This completes the proof. ∎

Corollary 5.11 In the setting of Assumption 5.2: If β = log(n), then for all x̄ ∈ [Tn]
there is an extreme (σ∞h , β)-KMS state ψ on Q∗u(Tn) such that

φ(a) = a(x) for all a ∈ C([Tn]).

Moreover, if φ is a limiting (σh , β)-KMS state on C∗u(Tn), then the (σ∞h , β)-KMS state
ψ on Q∗u(Tn) determined by φ = ψ ○ π is not extreme.

Proof The first assertion follows from Theorem 4.4 and Corollary 5.10. For the
second assertion, notice that if ψ = φ ○ π were extreme, then there would be x̄ ∈ [Tn]
such that ψ vanishes on the ideal

Jx = {a ∈ C([Tn]) ∣ a(x̄) = 0}

(see Proposition 3.3). However, it was shown in the proof of Corollary 5.10 that ψ is
faithful on C([Tn]); contradiction. ∎

We now return to the proof of Theorem 1.12. The following lemma is trivial and
we isolate it for further reference.

Lemma 5.12 Let n ∈ N and Tn be the n-branching tree. Given any x̄ , ȳ ∈ [Tn] there
is an isometry f ∶Tn → Tn such that f (x̄∣k) = ȳ∣k.

Given a metric space X and an isometry f ∶X → X, we let u f ∶ �2(X) → �2(X) be
the (linear) isometry determined by

u f (δx) = δ f (x) for all x ∈ X .
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Lemma 5.13 Let n ∈ N and Tn be the n-branching tree. Let f ∶Tn → Tn be an isometry
and consider the (linear) isometry u f ∶ �2(Tn) → �2(Tn) defined above. Then, the map

φ → φ ○Ad(u f )

is an affine isometry of the set of (σh , β)-KMS states on C∗u(Tn) to itself.

Proof It is enough to notice that φ ○Ad(u f ) is a (σh , β)-KMS state on C∗u(Tn)
given that the same holds for φ. Indeed, once this is done the result follows since this
map will clearly be an affine isometry with inverse φ → φ ○Ad(u∗f ).

Notice that

h( f (x)) = h(x) for all x ∈ X .

Indeed, any isometry of the tree Tn must satisfy f (∅) = ∅. Therefore, for each x ∈ Tn ,
we have

h( f (x)) = d( f (x),∅) = d( f (x), f (∅)) = d(x ,∅) = h(x).

Using this, an immediate computation gives us that

⟨u∗f e i t h̄ ae−i t h̄u f δx , δy⟩ = ⟨e i t h̄u∗f au f e−i t h̄ δx , δy⟩

for all t ∈ R, all a ∈ C∗u(Tn), and all x , y ∈ Tn . In other words, the flow σh is invariant
under Ad(u f ). This shows that φ ○Ad(u f ) must be a (σh , β)-KMS state on C∗u(Tn)
given that φ is one (equivalently, this could also be shown with the help of Theo-
rem 2.5). ∎

Theorem 5.14 In the setting of Assumption 5.2: If β = log(n), then for each x̄ ∈ [Tn]
there are 22ℵ0 extreme (σh , β)-KMS states φ on C∗u(Tn) such that

φ(χx̄ ∣k⌢Tn) = 1 for all k ∈ N.

Proof Fix β = log(n). By Theorem 5.6, there are 22ℵ0 extreme (σh , β)-KMS states
on C∗u(Tn). By Lemma 5.8, Tn is a Higson compatible compactification of Tn .
Therefore, Theorem 4.6 implies that for any extreme (σh , β)-KMS state φ on C∗u(Tn),
there is x̄ ∈ [Tn] such that

φ(χx̄ ∣k⌢Tn) = 1 for all k ∈ N.(5.9)

Therefore, since ∣[Tn]∣ = 2ℵ0 , a pigeonhole argument implies that there is at least one
x̄ ∈ [Tn] for which there are 22ℵ0 extreme (σh , β)-KMS states on C∗u(Tn) satisfying
(5.9) for x̄. Fix such x̄ ∈ [Tn].

Let now ȳ ∈ [Tn] be arbitrary and let f ∶Tn → Tn be an isometry such that

f (x̄∣k) = ȳ∣k for all k ∈ N

(Lemma 5.12). Clearly, we must have that

f (x̄∣k⌢Tn) = ȳ∣k⌢Tn for all k ∈ N.
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Hence, Ad(u f )(χ ȳ∣k⌢Tn) = χx̄ ∣k⌢Tn for all k ∈ N and, if φ satisfies (5.9) for x̄, it follows
that

(φ ○Ad(u f ))(χ ȳ∣k⌢Tn) = 1 for all k ∈ N.

The result then follows from Lemma 5.13. ∎

Proof of Theorem 1.12. Theorem 5.4 gives that there is a (σh , β)-KMS state on
C∗u(Tn) if and only if β ≥ log(n). Moreover, item (1) and the first claim of item (2)
of Theorem 1.12 also follow from Theorem 5.4.

We are left to notice that the second and third claim of Theorem 1.12(2) hold. From
now on, let β = log(n). By Lemma 5.8, Tn is a Higson compatible compactification of
Tn . Therefore, Theorem 4.6 implies that any extreme (σh , β)-KMS state φ on C∗u(Tn)
must have the required form, that is, there must be x̄ ∈ [Tn] such that

φ(χx̄ ∣k⌢Tn) = 1 for all k ∈ N.

Finally, the fact that for each x̄ ∈ [Tn], there are 22ℵ0 extreme (σh , β)-KMS states on
C∗u(Tn) satisfying the above is now simply Theorem 5.14. ∎

5.4 Obtaining distinct KMS states on C∗u(Tn) for β = log(n)

We finish the article presenting a more concrete way of obtaining distinct KMS
states for inverse temperature β = log(n). Precisely, if (βn)n is a sequence converging
to log(n) from the right and (φβn)n is a sequence of states such that each φβn

is a (σh , βn)n-KMS state on C∗u(Tn), then w∗- limn ,U φβn is a (σh , log(n))-KMS
state, where U is an arbitrary nonprincipal ultrafilter on N. The next theorem shows
that, picking different sequences (βn) as above, this procedure may give us distinct
(σh , log(n))-KMS states. As mentioned at the end of Section 1.4, this kind of behavior
is unusual (see [vER07]) and known as chaotic behavior of chaotic convergence of KMS
states.

Theorem 5.15 In the setting of Assumption 5.2: different sequences (βn)n converging
to log(n) may converge to distinct (σh , log(n))-KMS states on C∗u(Tn).

Proof Let β = log(n). For each β′ > log(n), let φβ′ be the (σh , β′)-KMS state on
C∗u(Tn) given by Theorem 5.4(1), that is,

φβ′([ax , y]) = ∑
y∈Tn

ay , y(e−β∣y∣ − ne−β(∣y∣+1))

for all [ax , y] ∈ C∗u(Tn). Given any nonprincipal ultrafilter U on N and any sequence
(βn)n converging to β from the right, we know that w∗- limn ,U φβn is a (σh , β)-KMS
state on C∗u(Tn). Our strategy will be to construct different sequences (βn)n as above
which give us different (σh , β)-KMS states on C∗u(Tn). For that, some manipulations
with the formula of φβ′ will be useful. Firstly, given E ⊆ Tn and k ∈ N, write

Ek = {y ∈ E ∣ ∣y∣ = k}

https://doi.org/10.4153/S2976859425100003 Published online by Cambridge University Press

https://doi.org/10.4153/S2976859425100003


42 B. M. Braga and R. Exel

and notice that ∣Ek ∣ ≤ nk . Then, given an arbitrary β′ > β, we have

φβ′(χE) = ∑
y∈E
(e−β′∣y∣ − ne−β′(∣y∣+1))

=
∞

∑
k=0

∣Ek ∣(e−β′k − ne−β′(k+1))

= (1 − ne−β′)
∞

∑
k=0

∣Ek ∣e−β′k .

Applying the change of variables τ = ne−β′ and letting ak = ∣Ek ∣/nk for each k ≥ 0, we
have that each ak is in [0, 1] and

φβ′(χE) = (1 − τ)
∞

∑
k=0

ak τk .

Moreover, β′ → log(n) from the right if and only if τ → 1 from the left. At last, notice
that if E is such that there are p < q ∈ N with

ak = {
1, k ∈ [p, q] ∩N,
0, k /∈ [p, q] ∩N,

then

φβ′(χE) = τp − τq+1 .(5.10)

This finishes the manipulations in the formula of φβ′ that we will need.
We now construct increasing sequences (τk)k and (θk)k converging to 1, and

sequences (pk)k and (qk)k of natural numbers by induction for which the following
holds:
• pk < qk < pk+1 − 1 for all k ∈ N,
• τpk

k − τqk+1
k > 1/2 for all k ∈ N, and

• θ pm
k − θqm+1

k < 2−m−2 for all k, m ∈ N.
This can be easily done as follows: let k ≥ 2 and suppose (τm)k−1

m=1, (θm)k−1
m=1, (pm)k−1

m=1,
and (qm)k−1

m=1 where chosen appropriately; step 1 of the induction can clearly be done.
Step k of the induction goes as follows. Pick pk > qk−1 + 1 such that θ pk

m < 2−k−2 for all
m ≤ k − 1. Then pick τk ∈ (τk−1 , 1) such that τpk

k > 3/4 and qk > pk with τqk+1
k < 1/4.

Choose now θk ∈ (θk−1 , 1) with θ pm
k − θqm+1

k < 2−m−2 for all m ≤ k. This finishes the
induction.

We now use the sequences constructed in the previous paragraph to finish the
proof. Precisely, we show that if U is a nonprincipal ultrafilter on N, then

w∗- lim
n ,U

φτn ≠ w∗- lim
n ,U

φθ n .

For this, let E ⊆ Tn be given by

E = {x ∈ Tn ∣ ∣x∣ ∈
∞

⋃
m=1
[pm , qm]}.
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Then ∣Ek ∣ = nk if k ∈ ⋃∞m=1[pm , qm] and ∣Ek ∣ = 0 otherwise. Hence, letting ak = ∣Ek ∣/nk

as above, we have that

ak = {
1, k ∈ ⋃∞m=1[pm , qm]
0, otherwise.

Therefore, using (5.10) above, we have

φτk(χE) =
∞

∑
m=1
(τpm

k − τqm+1
k ) ≥ τpk

k − τqk+1
k > 1

2

for all k ∈ N. On the other hand,

φθ k(χE) =
∞

∑
m=1
(θ pm

k − θqm+1
k ) <

∞

∑
m=1

2−m−2 = 1/4

for all k ∈ N. Therefore, we conclude that

(w∗- lim
n ,U

φτn)(χE) ≥ 1/2 > 1/4 ≥ (w∗- lim
n ,U

φθ n)(χE).

This finishes the proof. ∎
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