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On Linear Independence of a Certain
Multivariate Infinite Product

Stephen Choi and Ping Zhou

Abstract. Letq, m,M > 2 be positive integers and r1, 12, . . . , I, be positive rationals and consider the
following M multivariate infinite products

M)y g =2MGD o g m M)y

s

Il
S

F; = (1+4q~

J

fori =0,1,...,M — 1. In this article, we study the linear independence of these infinite products. In
particular, we obtain a lower bound for the dimension of the vector space Q.Fy+QF; +- - - +QFy—1+Q)
over () and show that among these M infinite products, Fy, Fi, . . ., Fp—1, at least ~ M/m(m + 1) of
them are irrational for fixed m and M — oc.

1 Introduction and Result
For any integer m > 1 and fixed q € C with |g| > 1, the infinite product

o . . .
[TA+q z21+q %z +---+q ™z,)
j=0

defines an entire function in C”. In the case where m = 1, the one variable version
of the above product, H;’io(l + g /z), has been studied extensively and results on
its irrationality have been obtained since 1943 [1,4-10]. For example, Lototsky [5]
showed that for any integer ¢ > 2andr € Q,r #0,—¢q’ (j =1,2,...),

]O_O[(l +q*jr)
=0

is irrational. For the cases when m = 2 and m > 2, there are only few results
[2,3,12,13]. Recently, the second author [12] investigated the infinite products for
the multivariate case when m > 2 and showed the following.

Theorem 1.1  If g,m,M > 2 are positive integers and M > m? — 2, then for any
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positive rationals 11,15, . . ., 'y, at least one of the infinite products

FO = H(l + q_MJrl + q_ZM]rZ + ..+ q_mMer)’
7=0

> . . .
Fio=J[(0+q My 4 g M2y o oop g ™Mimmy )
=0

o0

Fyoy = [L(1+q Mim M0y qm2Mi=2M=D) )y gmmMj—mM 1)

j=0

is irrational. In particular, when M = m = 2, we have that at least one of the two
infinite products

00 ) ) ) ) )
[TU+q % r+q %) and [[(1+q 5 'rn+q Y )
=0 =0

is irrational.

Since
[MO+q ¥rn+q V) x [[A+q 2 'r+q ) =[0+q ' +q Yn),
=0 =0 i=0

the last result of Theorem 1.1 also shows that at least one of the two infinite products

o0 &)
[T0+q 7rn+q %r) and [[(A+q ¥ rn+q ¥n)
j=0 j=0

is irrational.

Like the one variable infinite product, one should expect all such M infinite prod-
ucts to be irrational. So when M is large, the above result is weak. In this article, we
improve this result by considering the linear independence of these infinite products
and prove the following theorem.

Theorem 1.2 If m, M > 2 are positive integers, let 11,15, . . ., 1, be positive rational
numbers and let ¢ = a/ > 1 be a rational number with « > [ > 0. Then the
dimension of the vector space QFy + QF; + - - - + QO Fy—; + Q) over Q) is at least

(LD) [1+M(M+2—m2)logq logﬁw_l_
' m(Mm+M+2) loga loga

where [x] is the smallest integer > x. In particular, if q is a positive integer and
m* —2+my/m? — 4
2 )
then the dimension of the vector space OL.Fy + QLF, + - - - + QLFy—; + Q) over Q) is at least

M >

+12>2.

1+ MM +2 —m?)
{ m(Mm+ M +2) —‘
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We remark that when m is fixed and M — oo, the expression in (1.1) is

M logq
m(m+ 1) loga’

M logq
m(m+1) log o

Hence, at least ~ of these infinite products Fy, Fy, . . ., Fp;_ are irrational.

2 Some Properties of the Infinite Products

In this section, for positive integer m and gq, x, %2, . . ., X, € Cwith |g| > 1, we define
2.1) f&) = falxr,xz, 0 xm)

=TI+ q 7 +q Pxx+- - +q ™Mx X)),
j=0

This infinite product defines an entire function in C" and we write its Taylor expan-

sion as
o0 . )
f@®= > ¢l -xlr, ¢, €C
Jiseees jm=0
Clearly since f(0,...,0) = 1, so we have ¢y o = 1. Moreover, in view of (2.1), the

exponent of x; in the Taylor expansion of f(x) is not less than the exponent of x; if
k < I. Hence the non-zero term x]' - - - x;; appearing in the Taylor expansion must
satisfy the condition j; > j, > --- > j,,. It then follows that

(2.2) Cjtyjm =0 if ji,..., jiy is not in a decreasing order.
In view of (2.1), the infinite product f(X) also has the following functional equation
(2.3) f(q®) = (1 +qx; + @i+ +q"x1% - - - %) f(F)

and hence the coefficients c;, . ;, satisfy the recurrence relation

2
R R T A A ) R
The following estimate to the coefficients is essential in the later sections.

Lemma 2.1 Forji,...,jm >0, letN=ji+jo+ -+ ju. N > 1, then

qN

le;ijwjm = WQ(Q)

where Q(q) € Z[q] of degree at most N(N — 1) /2.
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Proof The proof is by induction on N. If N = 1, by (2.2), the only non-zero
leijv"'xjm are

qco,...0 q
Civsjarim = €100 = q—1 q—1
by (2.4). Suppose the lemma is true for any ji, ..., j, > O such that j; +--- + j,, <
N — 1. We now suppose that j; > j, > -+ > jir > jo1 = -+ = jm = 0 for some

1 <k<mand j+- -+ ju, = j1 +- -+ jr = N. Clearly, N > k. Now by the
induction assumption and (2.4), we have

(@ = D¢y jorin

— ac. L k.. . .
= 4Cj—1jseejm T TG €~ 1o~ 1, ji—1,0...,0

qul ' quk
=g Q@+ Qo)
M- @ -n "
T {Q()+(N—1_1)Q()+...+< b (f—1))Q()}
H?]::l(qj -1) R N j=N=k+1 1 K
qN

= mQ(QL

where the degree of Qj(q) < (N — j)(N — j — 1)/2. Therefore the degree of Q(q) is
at most

(N—k+D+(N—-k+2)+- - +(N-1D)+(N—-k(N—-k—-1)/2
=NIN-1)/2—(N—-k)
< N(N —1)/2.

This proves the lemma. ]

Lemma 2.2 Let q > 1 be a real number and m be a positive integer. Define the
non-negative function 1(N) recursively by (N) = 0 for N < 0,4(0) = 1 and

(25) YN) = g~ NP = D) oot g NN — m)

for N > 1. Then for N > m, we have

(2.6) Y(N) < K(m,q)q~ "2,

where K(m, q) is an explicit constant defined below and depending only on q and m.

Proof By writing ¢)(N) = g~ /@m*N/2y(N), (2.5) becomes

X(N) — qu(ZNfi)(mfi)/(Zm)X(N _ 1)

i=1
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We claim that

(2.7) X(N) < max{x(0),...,x(m—1)} [] (1 — g~ @+m/@m)-1
j=0

for N > m. We prove this claim by induction on N. For N = m, we have

2m—1)(m—1)

X(m) = Xx(0) +q~ 5 x() +---+q = x(m—1)

gmax{x(O),...,X(m—l)}x{1+q_%+q_%+~-~+q_m771}

< max{x(0),..., x(m — D}(1 —q~5)".
This proves (2.7) for N = m. By induction assumption, we have

—1 2j+m

N—im—i) N1 —
X(N) < max(x(0), .. x(m — 1) Y= (1 g )

i=1 j=0

N—m—1

< max{x(0),-...x(m = D} " I] (1-q %) ’I{Zq i),

Here we understand that the empty product is 1. Now (2.7) follows from

oo
Zq_W"’ i) S Zq_%i — (1—q_2Nz_;rm)717

i=0

and this proves the claim. We next observe that

N—m ~2jmy —1 1 1 N=m gy —1
[ (1-g) <(-q7) T0-qa7)
j= j=

<(-qH) ' -qm "

-
Il
—_

Hence this proves (2.6) for

K(m, q) = max{x(0), ..., x(m —1)}(1—q?) B ﬁl(l —‘f%‘) o u
i

Corollary 2.3  Let ji,...,jm > 0and N = j; + -+ ju. For N > 1, we have

2. N

NN
Cirojm < Ki(m,q)q~ "2

where Ky (m, q) is an explicit constant defined below and depending only on q and m.

https://doi.org/10.4153/CMB-2008-005-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2008-005-7

On Linear Independence of a Certain Multivariate Infinite Product 37

Proof We will show that

(2.8) Cirrim L1+t i)

for any ji,..., jm > 0 where ¢(N) is the non-negative function defined recursively

by ¢(N) = 0for N < 0,p(0) = 1 and
(2.9) (" = Dp(N) = qp(N — 1) + ¢ p(N = 2) + - - + g"p(N — m).

We claim that for N > 1, p(N) < ¥(N) H?’Zl(l — q7)~" where v is defined in
Lemma 2.2. The claim is clearly true for N = 1 because ¢(1) = gq/(q — 1) =
(1—g H tand ¢(1) = 1. From (2.5), (2.9) and the induction assumption, we have

g

©(N) g

l 1<p(N—i)

q (N —jy—1
YN —1i) [T(1—q77)

—1 s

R
< ; "
< -} 10 - g
i=1 j=1
N .
—u) [T —q )"
t

This proves the claim. By the recurrence relation (2.4), the inequality (2.8) can be
proved by induction on j; +- - -+ j,, in the same way as above. Thus, from Lemma 2.2,

we have
o N —
Cirjm < K(m,q)q "2 TT(1—q77)~
=1
< K(m,q)q ' [T —q )7
=1
=: Ky (m, q)q_%%.
This completes the proof of Corollary 2.3. ]

3 Padé Approximation

We need here the standard g analogue of factorial and binomial coefficients. Define
the g-factorial to be

("= D" "' =1)---(qg—1)
(g—1)"

[n]y! = [n]!:=

)
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where [0],! := 1 and the g-binomial coefficient to be

n| _|n| [n]!
L e

Then we have see [11])
n = [n+1
(3.1) kH(t —q )T = (=gt [ | ]t’.
=0 1=0

Lemma 3.1 1Ifq > 1, then we have

O [i] =G5 +a [ ) forn> k2

(ii) [Z] is a monic polynomial in q over /. of degree k(n — k) forn > k > 0;
(iii) all the coefficients of ||| in q are positive with sum at most 2";

(iV) [Z] < znqk(nfk)'

Proof The lemma follows easily from the identity

{n} _ (qn - 1)(q"*1 -1)--- (qn*k+1 1
k (¢F = D(gk-t—=1)---(g—1)

and the induction on #n and k. |

From now on, we assume q > 1 and integers M, m > 2 and consider
Fx) = fpu®) = [[(1+q Mxi+q Mxix+ - +q"™x - x)
=0
and write

(o]
(3.2) F@ = Y dj g x
jla---ajm:O

Similar to (2.3), the entire function F(X) satisfies the functional equation

(33)  F@ M%) = [[(1+q MMy 4.0 gmmMimmMeye )
=0

k=1 , , -1
= ( [TA+qg Mx;+-+q ™x xm)) F(x)
j=0

= Ry(%)"'F(x),

where }
—1 ) .
R(x):= JJ(1 + q’MJxl + q*'”fol e X)
=0
and Ry(x) := 1. Note that Ri(X) is a polynomial in x1,x1%,,...,X1%; - - - X,y 0Of de-
gree k.
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Lemma 3.2 Let

M—1 )
R(X) := Ry(X) [ Ruo1(q7'%) € ZIq "1, X152, - -, X1X2 -+ + Xy
j=1

be a polynomial in x1,x1%,, . . ., X1X3 + - - X, Of degree at most nM. Then for0 < x; < 1,
1<k<mnand j=0,1,...,M — 1, we have

‘ 7R(E) <u
Re(q=x)l ="

where ug := [[72(1+ g M+ +q="™MNM js g constant depending on q, m and M.

Proof For j > 0, we have

RE) | ’ R,_1(q7 /%)

M—1
_ L
‘Rk(Q’fi) | RilgT®) ‘|R"(x)| 1:1_[1 |Ry—1(q~ %)

)

n—2 i . on—1
< H(l _I_qulf] +... +q7lifm]) H (1 +q7Ml+ . +q7li)
1=k =0

M—1n-2

% H H (1 + q—Mr—l +... +q—mMr—ml)
=1 r=0
i

o0 M
< {H(1+q7Ml+~-~+q7li)} = u,.
1=0
The case j = 0 can be proved similarly. ]

For n > 1 a fixed integer, we let

_ 1 F(tx)dt
I(X) = %/ Mn 5
r ( H (t _ q—k)) t‘rl+1
k=0

where I is a circle centered at origin with radius > 1.
As in [12], we define

M
ar(q) == (—1)"{ kn]q"("“”“"", k=0,1,2,...,Mn,

Mn(Mn+1)/2 n

q

A0 = Ay

av(@)R; ' (%),
k=0

Mn(Mn+1)/2 11

1 vk j (@R (qTR), j=1,2,... . M—1,
k=0

A = T !
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and

o LK)
24 P dt"{ L - qk)}t_o'
It is proved in [12] that
(3.5) I(X) = Ag(X)F(X) + A (X)F(q'%X) + - - - + Ay 1 (X)F(g M%) + B(%).

However, A;(x) and B(x) are not integral over g and X. For j = 0,1,2,...,M — 1,

we let
2 Mn .
(3.6) A = g™ "R (T](1 - q77) REA; (),
j=1
2 Mn .
(3.7) B*(®) :=q™" """ V2 (11 — q97/)) RE)B().
j=1

From [12], we know that for j =0,1,2,...,.M — 1,
A}k(x%B*(E) € Z[q>x17xlx2> B xm]

and the degrees ofAj (%) and B*(X) in x1, x1X2, ..., XXy - - - X, are at most Mn and
(M + 1)n respectively.

Lemma 3.3  For integers ¢ > 1,M,m > 2 and positive real numbers 1 > xy,.. .,
Xm > 0, we have

degq(A;’f(X)) < %M(Mm +M+2)n* + 0(n)

and

A (E)’ < q%M(Mm+M+2)n2+O(n)
forj=10,1,2,... .M —1.
Proof By Lemma 3.2, we have
5 Mn X
436 = g2 (10 = g7 ) [REA)
=1

R(x)
Ry (%)

o n
= )Y g
k=0

n
S uqquln(nfl)/Z Z ‘aMk(q)|
k=0
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It then follows from Lemma 3.1(iv) that

(3.8) ‘AO (x)‘ <u qu n(n—1)/ Z |: :| Mk(Mk+1) /2+nMk
k=

n
< 2nMuq quzn(n—l)/Z Z qu(Mn—Mk)+Mk(Mk+1)/2+an

k=0

< 2nM(n I 1)uqq%M(Mm+M+2)n2+%M(lme)n

< q% (Mm+M+2)nz+O(n).
Since Aj(x) € Z[g,x1,...,%n] and u; < 1as g — +o0, so from (3.8) we have
1
deg, (A7 (%)) < EM(Mm + M +2)n* + O(n).

The case j > 1 can be proved in the same way.

Lemma 3.4  For integers ¢ > 1,M,m > 2 and positive real numbers 1 > x1,. ..
Xm > 0, we have

degq(B*(x)) < %M(Mm + M +2)n* + O(n),

‘B*(§)| < qM(Mm+M+2)n2/2+O(n)

Proof In view of (3.1), (3.2) and (3.4), we have

_ ; [ Mn+l
B(x) = (~1)Mr gz djl,zdots,jmx{l---xfn’”[ }

j1;~~~1jn17120
it tjmtl=n

— ( 1)Mn+1 Mn(Mn+1) /ZZ |:(M+ 1)71 - :| Z d] Y x{I . 'er;n'

/=0 R S "
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Now using Corollary 2.3 and Lemma 3.1(iv), we have

_ M+ 1)n— W a2

B < Mn(Mn+1)/2 K , M My~ /(2m)+Mp/2

B®)| <q > e > Ki(mq")q

$=0 jrbet =

n
< an(Mn+l)/2K1(m7qM)Zq—Mﬂz/(Zm)JrM;L/ZZ(M+1)n—u

n=0

% q(n—/tr)((MH)n—u—(n—u)) Z 1

Jrteet jm=p

n
— 2 —
< Kl(m7qM)Z(M+1)onn(Mn+l)/2 Zq My’ /2m)+Mp/2+Mn(n—p) Z 1
=0 Jitet jm=p

n
< Kl(m,qM)Z(MJrl)onn(MnJrl)/2+Mn2 Z Z 1
B=0 it jm=p
< (n+1)"K;(m qM)Z(M+1)onn(Mn+1)/2+Mn2
= ) .

It follows from (3.7) and the fact that [R(¥)| < u, that

|B*(f)| < (I’l+ l)ml<1(rn7qM)uqz(M+1)nquzn(nf1)/2-*—M11(M11+1)/2+Mn2

< q;M(Mm+M+2)n2+O(n)

The degree B*(xX) in g can be estimated as before. ]

Lemma 3.5 For integers q > 1,M,m > 2 and positive real numbers 1 > x1, ...,
Xm > 0, we have

1
logI(x) = —ﬁM(M +1)%n? log g + O(n),

where the implicit constant depends on q, m, M and x;.

Proof We first have from [12, (2.19)] that

I(%) < c(q, M, m)q*M(Mﬂ)znz/(Zm)7M(M+l)n/2.
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We now consider the lower bound for I(x). Note that

1) = 1 / F(tx)dt
27T1 r (Hi\/lzno(t _ q—k)) il

= ﬁ/r t(}igﬁ?ﬂ (:\ﬁ;( 1— 11/(qkt)> ) o
“ s famenes (G

= o (2 TH() ")

Joremjatn >0 K0
_ oy Tt 1 F(tx)dt
271 T FMF+D)n+2+ (ot + jan)
J0ses iMn 20
E: k } : L,
= q Zko]k dl]lzlxlxz"'xnz
J0seees jMn >0 Il >0
htb+e -+l =(M+1)n+1+jot+- -+ jam
> E iy, X0 Xl
Iy iy >0
L+h+-- +l,,, (M+1)n+1
a+1 at+l_a a
> da+1 a+1,....a+1,a,....a%X] Xy Xpr1 X

where a and b are givenby M+ 1)n+1 =am+bwith0 <agand0 < b <m— 1.
Now using the recursion formula for dy,, _;,, we get

_ (q )bdaa,..,a
R qM(um+b —1

m?

da+1 ,atl,....at+la,..

and
d _ qMMdafl,afl,...,afl L qu
a,a,....a (qua . 1) (qua _ 1)(qu a—1) __ 1) ( Mm __ 1)
It follows that

(am+b)M

_ q
da+1 a+l,..,a+l,b,...b — (q(am+b)M _ 1)(qua — 1)(qu(a71) — 1) . (qu — 1)

> qum(l+-~~+u)
—Mma(a+1)/2
> q—Mm((M+1)n+1)/m(((M+1)n+1)/m+1)/2

MM+1)2n%  M(M+1)(m+2)n _ M(m+1)

= q 2m 2m 2m
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because a = [(Mtln)”“] < W*:J”“. Therefore

_ MM+D)2n?  M(MAD)(mi2)n _ M(mt1)
q 2m 2m 2m (xl . xm)((M+l)”+l)/m(xl e xb)
< I(f) < C(q,M, m)q—M(M+1)2n2/(2m)—M(M+1)n/2
and hence 5 5
MM +1)*n
logI(X) = —————logq + O(n
gI(x) T gq+O(n)
where the implicit constant depends only on g, m, M and x;. ]

4 Proof of the Theorem

To prove our theorem, we will apply the following result due to Nesterenko [7].

Lemma4.1 Suppose w = (w,...,w;) € RK\{0}. If there exist ny € N and
T > 0 and an unbounded, monotonically increasing function G: N — (0, co) with
limsup, .. G(n+1)/G(n) < 1, and a sequence (L,) >y, of integral linear forms sat-
isfying

(4.1) log |L,(W)| + TG(n) = o(G(n)), and log||L,| < G(n),
where ||L,|| is the usual Euclidean norm, then
dimg(Qw; + Qwy + - - -+ Qwy) > 1+ 7.

We now come to the proof of our theorem. Our aim is to construct an integral
linear form satisfying (4.1).

Let the notation be as in Theorem 1.2. Letr; = Z— with a;, b; > 0and ged(a;, b;) =
1. Let B := lem{by, b, ..., by} and x; = 1y, xj = r}'—il,] =2,3,...,m. In view of
(3.3), we can see that the irrationality of F(X) is equivalent to the irrationality of
F(q_MkE) for any integer k > 0. Thus, we may assume that 1 > r; > r, > --- >
tm>0sothat0 <x; < 1forl<i<m.

Letg = % > 1 with a, 8 > 0. Consider the linear form

Ln(w) — ﬂ%M(Mm+M+2)n2+O(n)B(M+1)n (AS(E)WO +... +A;/171(2)WM71 +B*(E)WM) )

Then since the degrees of A%(x) and B*(X) in x1,x1x2, ..., x1%2 - - - X,y are at most
(M + 1)n and their degrees in g are at most %M(Mm + M + 2)n? + O(n) by Lemmas
3.3 and 3.4, so the linear form L, (@) indeed has integer coefficients.

Letw; = F(q7/%),0 < j <M — 1 and wy = 1. Then in view of (3.5), (3.6) and
(3.7),

mMzrl(nfl

2 Mn .
L, (@) = GAMOmMse 0 g g S Ry () TT (1 — 7).
j=1
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Therefore,

M?*n?

2

log|L,(@)| = %M(Mm+M+ 2)n*log B + e logq + O(n) +log |I(x)],

because []7%, (1 —q7/) < H?i”l(l —q /) < landlog|R(x)| < log u,. Hence

1
log |L,(@)| = EM(Mm+M+2)n2 log 3

MO +MM+2 - m*))
2m

n*logq + O(n),
by Lemma 3.5. On the other hand,
tog L]l = 3 Tog {|A3 GO + - + |3, GO + |B* GO’}
+ %M(Mm + M +2)n? log B + O(n)

< —M(Mm + M + 2)n? log o + O(n)

N | —

by Lemmas 3.3 and 3.4.
Let

1
G(n) = EM(Mm +M +2)n*loga + O(n).
Then log |L,(W)| + 7G(n) = 0o(G(n)) and log ||L,|| < G(n), where

1+ MM+2—m?) logqg logf3
 mMm+M+2) loga loga’

Therefore, by Lemma 4.1
dimq (QF(®) + QF(q"'%) + -+ QF(q ™ V%) + Q) > 1+ 7.

This proves Theorem 1.1.
If g is an integer, i.e., 0 = 1 and o = ¢, then
1+ MM +2— m?)
m(Mm+ M + 2)

We note that 7 > 0 if and only if

2 7
M> m 2+mvm 4.
- 2
In particular, if m > 2 and
2 _ 2 _
M> m 2+72n\/m 47

then dimq (QF(X) + QF(qg~'%) + - - - + QF(g~™~Y%) + Q) > 2. This completes the
proof of Theorem 1.2.
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