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Unstable periodic orbits are believed to underpin the dynamics of turbulence, but by their
nature are hard to find computationally. We present a family of methods to converge
such unstable periodic orbits for the incompressible Navier—Stokes equations, based
on variations of an integral objective functional, and using traditional gradient-based
optimisation strategies. Different approaches for handling the incompressibility condition
are considered. The variational methods are applied to the specific case of periodic,
two-dimensional Kolmogorov flow and compared against existing Newton iteration-based
shooting methods. While computationally slow, our methods converge from very
inaccurate initial guesses.
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1. Introduction

Exact coherent structures, and particularly unstable periodic orbits, are believed to
underpin the dynamics of turbulence, by acting as a ‘backbone’ of the chaos-supporting
set in phase space (Kawahara & Kida 2001; Kawahara, Uhlmann & Van Veen 2012;
Cvitanovi¢ et al. 2016). The most successful method for finding periodic orbits has
been the shooting method based on Newton iteration, which, though fast and easy to
implement on top of existing time-marching codes, is notable for a relatively small radius
of convergence, requiring extremely accurate initial guesses. Extensions to Newton’s
method, employing a hookstep procedure, have been successful in enlarging this radius
of convergence (Viswanath 2007; Schneider, Gibson & Burke 2010; Chandler & Kerswell
2013; Dijkstra et al. 2014; van Veen et al. 2019; Tuckerman 2020), but the issue of accurate
guesses remains. Alternative methods for finding exact coherent states have been proposed,
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for example, Lucas & Yasuda (2021) applied the idea of time-delayed feedback to stabilise
otherwise unstable steady states and travelling waves.

Lan & Cvitanovi¢ (2004) developed an alternative to the shooting method which
continuously deforms temporal loops in phase space into periodic orbits. The
method was successfully applied to the Kuramoto—Sivshinsky equation (Lan &
Cvitanovi¢ 2008), but it does not scale well to larger systems because of the need
for explicit Jacobian matrices. Boghosian et al. (2011) applied this method to a
lattice Boltzmann formulation of Navier—Stokes, but noted the prohibitively large
computational requirements. Azimi, Ashtari & Schneider (2022) used a matrix-free
method inspired by Farazmand (2016) to find periodic orbits in the Kuramoto—Sivashinsky
equation. Though they successfully demonstrated the method, challenges remain
towards the ultimate goal of applying this method to find unstable periodic orbits
in fluid dynamics, as the studied one-dimensional equation differs from the two-
and three-dimensional incompressible Navier—Stokes equations in important aspects.
In particular, the divergence-free condition and the presence of the pressure field,
satisfying a Poisson equation with a velocity-dependent source term, render the problem
non-local. These non-local effects due to incompressibility are absent in simpler,
local, partial differential equations but require careful consideration when formulating
variational methods for computing periodic orbits of the incompressible Navier—Stokes
equations.

As a stepping stone towards full three-dimensional turbulence, several previous authors
(Chandler & Kerswell 2013; Lucas & Kerswell 2015; Lucas & Yasuda 2021) have
studied the particular case of periodic, two-dimensional (2-D) Kolmogorov flow, at
relatively low Reynolds number. This has several attractions: in two dimensions the
number of degrees of freedom in the system is greatly reduced, yet this flow supports
turbulence-like chaos; the lack of physical boundaries simplifies computations, allowing
the use of a Fourier (pseudo-)spectral discretisation; and non-trivial invariant solutions,
which have been studied in detail for decades (Meshalkin & Sinai 1961; Obukhov 1983;
Platt, Sirovich & Fitzmaurice 1991; Fylladitakis 2018) appear at Reynolds numbers
achievable with the use of relatively low spatial resolutions. It is also possible to
achieve similar 2-D flows in experiments. Suri et al. (2020) found seven numerically
converged periodic orbits and showed that these closely matched the dynamics in an
experimental configuration of Kolmogorov flow. Recently, Yalniz, Hof & Budanur (2021)
used an existing Newton-hookstep method to find 18 periodic orbits in three-dimensional
Kolmogorov flow, which was sufficient to reduce the dynamics of the system to a
remarkably simple Markov chain model. We also concentrate on the case of 2-D
Kolmogorov flow, for the reasons listed above, as well as for comparison with this previous
work.

In this paper we study methods which follow ideas of Azimi et al. (2022), but which
are formulated for 2-D Kolmogorov flow and explicitly address the incompressibility
constraints of Navier—Stokes. In §2 we present the governing equations of the flow,
formulate objective functionals that are minimised at periodic orbits, and derive the
necessary gradients of these. Formulations are presented which tackle incompressibility
in different ways: either it is implicitly enforced by the governing equations; it is included
in the objective functional; or we explicitly project onto and restrict to the incompressible
subspace. In § 3 we discuss possible optimisation strategies for these objective functionals.
Section 4 compares three variational methods for two test cases and then applies the most
successful to a larger number of possible periodic orbits, comparing against the traditional
shooting method. Concluding remarks are given in § 5.
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2. Objective functionals for unstable periodic orbits

The well-known incompressible Navier—Stokes equations, in non-dimensional form,
describe the evolution of the 2-D flow velocity (u, v) with time ¢,

1

Ortt + udyu + voyu = —0yp + EAM + f (2.1)
1

0 + udyv + voyv = —dyp + R—eAv + £, (2.2)

subject to the incompressibility constraint
Oxut + dyv = 0, (2.3)

where the pressure p acts as a Lagrange multiplier to enforce the incompressibility. Here Re
is the usual Reynolds number, obtained by non-dimensionalising the equation with respect
to the forcing amplitude (note that different definitions of Re are used for Kolmogorov flow
in the literature), and f, and f, are the x- and y-components of a body force. Henceforth,
following previous authors (Chandler & Kerswell 2013; Lucas & Yasuda 2021), we will
take fy = sin4y, f, = 0, and consider a doubly periodic box of size 27 x 2m. Throughout,
we take Re = 40, which is sufficiently large to allow extensive chaotic behaviour, but
permits the use of relatively low resolutions to expedite computations. The system
(2.1)-(2.3) with this choice of forcing exhibits several symmetries which permit special
exact coherent structures. Continuous invariance under the family of translations x +—
x+ ¢ for ¢ € R allows travelling waves and relative periodic orbits (RPOs) with a drift
velocity c in this direction. The system is also invariant under the discrete transformation
(x,y) — (—x,y+ m/4), which permits RPOs, though these are equivalent to stationary
periodic orbits with eight times the period.

By differentiating (2.1) and (2.2), we can derive a governing equation for the vorticity
® = 0yv — Oy,

1
0w + 0y 0y — 0P dyw = R—Aa) + 4 cos 4y, 2.4)
e

where the streamfunction v is defined such that u = dy% and v = —0d,% and so w =
—AY.

These two formulations, called respectively primitive variables (PV) and streamfunction
vorticity (SV), are equivalent in two dimensions. The latter uses only two variables rather
than three, since incompressibility is directly built into the formulation, but this advantage
is lost when the equations are extended to three spatial dimensions. It is further possible
to eliminate w to give one equation solely in terms of 1. As variational methods based
on the resulting fourth-order equation were found to be very inefficient, we do not discuss
this formulation further.

Care must be taken when comparing the boundary conditions between the two
formulations. Assuming a doubly periodic streamfunction in the SV formulation implies
that # and v have no mean component over the domain, i.e.no net flow, which is not a priori
imposed by the PV formulation with periodic boundary conditions on u and v. However,
it is straightforward to show that (2.1)—(2.3) conserve the net flow, which is implicitly
specified by the choice of initial conditions. Therefore, the system modelled by the SV
formulation represents an invariant subspace of the PV system. For initial conditions with
no net flow, both formulations are equivalent, and we henceforth make this choice.
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Let us consider closed ‘loops’ in the phase space of the system, where each component
(u, v and p or ¥ and w) is defined analogously to

u(x,y,s):[0,2m) x [0,2n) x [0, 21n) — R, (2.5)

periodic in all three dimensions, and assumed to be sufficiently smooth. Similarly, we can
define loops of v, p, ¥ and w. Introducing a period T > 0, such loops are exact periodic
orbit solutions of the system if they satisfy the governing equations with 9; = (21t/7)d;. In
this perspective, s, which parameterises the loop in phase space, is a scaled time variable.
From the governing equations of the two different formulations, we can define objective
functionals based on the PV formulation

1

21 1 . 2
Jpylu, v,p, T] = 3 / { (Tasu + udyu + voyu + 0yp — ﬁAu — sm4y>

2 1 2 )
+ ?st + udyv + vdyv + dyp — EAU + (axu + 8},1)) dv,
(2.6)

and for the SV formulation,

1 2 1 2
JsvlY, 0, T] = 5/ {(%asw + Oy Y 0w — AP dyw — R—Aa) — 4 cos 4y)
e

+ (w+ Al/f)z} dv, 2.7)

where the integrals are taken over (x,y, s) € [0, 27)3. Both functionals are necessarily
greater than or equal to zero, with equality if and only if the governing equations are
satisfied everywhere on the loop. Therefore, finding zeros of these functionals gives us,
in general, periodic orbits of the system. Equilibria are a special case, for which dsu = 0
etc., and the value of 7 is arbitrary. While there is an exact correspondence between zeros,
i.e.global minima, of both objective functionals, local minima do not generally translate
from one formulation to the other.

To minimise these objective functionals, we derive gradients. For the scalar variable T,
these are simple partial derivatives, for example,

dJsy 27 27 1
W = —Easa) ?856() + ayv/'axa) - waaya) — EACI) — 4COS4y dv. (28)
For the loop variables u, v, p, ¥ and w, we must instead derive variational derivatives
which are defined at all (x, y, s) € [0, 27:)3, such as

dJsv

27 1
o —7851 — 0x(10y ) + 0y (I0yYr) — R—AI + (0 + AY), (2.9)

e

where for clarity, we have defined

2 1
I = ?T[asa) + 0y Y 0y — Y dyw — R—Aa) — 4 cos4y. (2.10)
e

Since we have no physical boundaries in this problem, such variational derivatives are
relatively straightforward to derive.
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2.1. Relative periodic orbits

As mentioned above, there are symmetries in both the x and y directions of the system,
which permit the existence of RPOs. We choose not to study RPOs which exploit
the discrete symmetry in the y-direction, though this would be a simple extension of
our method, where necessary considering two periods of the orbit to eliminate the
discontinuity caused by the change of sign in the x-direction, as in Chandler & Kerswell
(2013).

For an RPO with a drift velocity c in the x-direction relative to the frame in which there
is no net flow, we can transform into a frame moving with the RPO, so that it becomes a
simple periodic orbit. This is achieved by replacing (2rt/T)dsu by (21/T)dsu — coyu etc.,
so that extra terms appear in the gradients. We also now must optimise with respect to c,
using the partial derivative

sy
de

2 1
/ o (%330) — 0,0+ 8y Yt — DY — A — 4cos 4y) av
e
@.11)

and similarly for Jpy. Since a periodic orbit is a special case of an RPO with ¢ =0,
and travelling waves and equilibria are also captured, we use these extended objective
functionals for all computations. The full objective functionals and all the gradients are
given in the supplementary materials. It is important to note that the gradients for the PV
formulation have no mean component, assuming that # and v do not, and so the (zero) net
flow is conserved along gradients.

With the inclusion of the phase speed drift velocity c, the space of loops in each of the
formulations is represented as a vector space of tuples

X=wWwvpT,c) or X=(w,¥,T,c), (2.12)

with inner products defined on these in the obvious way,
(X1, X2)py = / (uruz +viva +pip2) AV + ThTr + cie, (2.13)

(X1, X2)gy = / (1w + Y1) dV + T1Th + cpc3. (2.14)

3. Optimisation methods for minimizing the objective functionals

Minimising the value of the objective functionals we have defined, which are single valued
functions of (at least in a discretised sense) a very large number of unknown variables with
known derivatives, is best performed through gradient-based methods. This contrasts with
methods by which we would directly find zeros of the integrands through Newton iteration
and related methods, which require the same number of equations as unknowns. Descent
methods find only local minima of the function, but to find exact solutions of the governing
equations, we need to find zeros, i.e.global minima, of these non-negative functionals. The
methods we present give monotonically decreasing and/or globally convergent results, but
this does not mean we are guaranteed to converge on exact solutions to the governing
equations.

The simplest method is gradient descent with a fixed step size € at each iteration.
Previous authors (Farazmand 2016; Azimi et al. 2022) have considered a dynamical system
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by the introduction of a fictitious time 7 such that

du 8J 31

dr — du’ G-
Simple gradient descent is equivalent to discretising this system with a forward-Euler
scheme, and some improvements may be found by considering terms implicitly or using
higher-order schemes, or adaptive time steppers. This differs from the method of Lan
& Cvitanovi¢ (2004), whose fictitious system evolves in a direction equivalent to an
infinitesimal step of a Newton—Raphson method, as opposed to in the steepest descent
direction for the cost function. This offers much faster convergence, but requires the
computation of an explicit Jacobian matrix.

However, we are not interested in solving the fictitious system accurately, but merely
in finding its stable fixed points. Faster convergence is found using the nonlinear
conjugate-gradient method (Hager & Zhang 2006), which requires only the first-order
gradients. If the Hessian matrix were also calculated, Newton’s method could be
employed. We implemented this with the Fletcher & Reeves (1964) choice of the
conjugate-gradient parameter . The optimal step size o was chosen by a line search,
from an initial guess of ¢ = 103 for Jpy and « = 1077 for Jgy. The strong Wolfe (1969)
conditions refine this initial guess, using the tunable parameters 0 < ¢; < ¢» < 1, where
a smaller ¢, enforces a sufficiently large step that the objective functional decreases
rapidly, while a larger ¢ enforces that we do not overshoot and take too large a step.
Through trial and error, we found acceptable values for these parameters to be ¢; = 107>
and ¢z = 0.999, though we make no claims that these are optimal. With this choice of
parameters, typically only one iteration on the line search algorithm was necessary before
the Wolfe conditions were satisfied. The significantly smaller step sizes required for the
conditions to be satisfied for SV mean that this method takes much longer to converge, as
discussed in § 4.

Since x, y and s are all periodic, the fields can be easily expressed as Fourier series,
using a pseudo-spectral approach — with 2/3 dealiasing — for the nonlinear terms.
A new code was developed for this work in C4+, with OpenMP parallelisation. Following
Chandler & Kerswell (2013), we perform time integrations using Heun’s method, with
Crank—Nicolson on the viscous terms at every substep. We concentrate on the specific case
Re = 40, which is sufficiently high to allow fully chaotic behaviour, but low enough so
that a spatial resolution of 64 x 64 grid points gives accurate results when compared with
previous work. A resolution of 64 grid points was also used in the temporal dimension,
which was found to be more than sufficient for even the longest periodic orbits studied.
A 2/3 dealiasing rule was applied in the spatial but not temporal dimensions.

3.1. Leray projection

In § 2 we gave objective functionals for two different formulations of the system. The PV
formulation does not assume the velocity field is divergence free, and instead includes the
incompressibility condition within the objective functional, whereas the alternative SV
formulation automatically enforces incompressibility. Since we know that any converged
solution must be divergence free, it may also be desirable to enforce this during the
optimisation within the PV formulation. However, care must be taken to ensure that the
resulting method still ensures the monotonic decrease of the objective functional. For this,
we recall the 2-D Leray projection operator (Temam 2001)

P: (u,v) = (u,v) — (0, 8y)A_l (0xu + 9yv), (3.2)
941 A17-6
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Figure 1. Projections of the guess (thin) and converged (thick) loops for the two examples discussed.
The energy input is defined as I = 8]usin4ydxdy/n2Re, and the dissipation as D = Sf(qul2 +
|Vv|?) dx dy/m2Re?, both of which have been normalised by the laminar solution (see Chandler & Kerswell
2013). The labels correspond to the snapshots shown in figure 2.

where A~! is the inverse Laplacian, here taken with periodic boundary conditions. For
any (u, v), observe that P(u, v) is divergence free. Then for the usual inner product,

<P(ua U)a (M, U)> = <P(H, U),P(M, U)> + (P(u5 U)s VA_l(axy + ay”))
= 1P, v)II> = (V « P(u, v), A~ (Ogu + 0yv))
= |[P(u, v)||I* >0, (3.3)

where we have used the fact that V is adjoint to —V. with respect to the inner
product. Therefore, using an update direction of —P(8Jpy/du, Jpy/Sv) instead of
—(8Jpv/Su, §Jpy/dv) will still converge to a minimum of the objective functional, since
the projected gradient is never directed opposite to the unconstrained gradient.

This leaves us with three potential variational methods: optimising Jgy (SV), optimising
Jpy (PV) or optimising Jpy with Leray projection of the gradient at each step to enforce
the divergence-free condition (PV-LP).

4. Comparison of methods

To compare the performance of the SV, PV and PV-LP methods, we discuss the
convergence starting from two initial candidates, which were found through a recurrent
flow analysis (see § 4.2). Figure 1 depicts a phase space projection of these two candidates
as well as the converged solutions, and figure 2 shows the flow structure at single snapshots
in time. The first candidate converged to a simple periodic orbit of period 7' = 5.38, given
as ‘P1’ in Chandler & Kerswell (2013), and the second to the RPO ‘R19’ with 7' = 12.2,
although the algorithm has converged to two periods of this orbit, to give T = 24.4. Note
how vastly more complicated the initial guess is than the converged solution in this latter
case, at least in this simple projection, hinting at the ability of the variational methods
to converge to solutions from very distant initial guesses. The initial candidates were
taken from a time series, with the 64 temporal collocation points for each loop evenly
distributed along the series between the starting point and the nearest recurrence. The
loop is then closed, which gives the appearance of a sharp discontinuity visible in figure 1.
Since temporal derivatives are calculated after a Fourier transform, this discontinuity is
not problematic.
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Figure 2. Slices at s = 0 of the vorticity field for the guess (a,c) and converged (b,d) loops discussed in the
text, at the snapshots labelled in figure 1. Movies are available in the supplementary materials available at
https://doi.org/10.1017/jfm.2022.299.

105 4 PV
10° 4 PV-LP
J 1075+ SV
10710 +
10715 3 T T T T T T
0 1 2 3 4 5 6
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Figure 3. Convergence of the respective residual Jpy or Jgy for the PV formulation, with (PV-LP) and without
(PV) projection and the SV methods applied to the first guess in figure 1. In the SV case, Jsy starts at a
significantly larger value, but also converges much more slowly.

Figure 3 shows the convergence of the relevant residual against the number of
conjugate-gradient iterations, for the first of these two candidates. The algorithms were
each run for three days of wall-clock compute time on a 28 core CPU. Due to the line
search requiring more evaluations, each SV iteration is on average around 40 % slower than
the two PV methods, which leads to fewer iterations in 72 h. More importantly, SV shows a
significantly slower convergence rate. All three methods show an initial fast improvement
of the objective function, followed by a much slower period, consistent with Azimi et al.
(2022); the convergence rate in this latter region is much faster with the PV methods, as
much smaller steps were required to be taken for SV. The precise reason for this is unclear,
and we make no claim that our conjugate-gradient algorithm uses optimal parameters,
but this result was robust after significant trial-and-error tweaking of them. This strongly
suggests that the equation (3.1) of the “fictitious’ system is much stiffer for SV than PV.
Whether Leray projection is used has negligible impact on the rate of convergence, but
the path taken towards the solution is certainly different as PV allows for compressible
intermediates. Consequently, the methods may converge to different solutions.

To investigate the range of convergence, we systematically vary the initial guess
by linearly interpolating between the converged solution and the candidate extracted
from flow recurrences, uinisiq = (1 — ¥ )Usolution + ¥ Ucandidate, With y = 0 being the exact
(relative) periodic orbit (P1 and R19) and y = 1 being the candidate. As shown on the
top left in figure 4, for the first candidate, the PV formulation, both with and without
Leray projection, shows good convergence over the full range of y, with Jpy consistently
reaching less than 10~ 13, However, extrapolating to y > 1, where the initial guess is very
different from the periodic orbit P1, the converged period 7 is shown to rapidly vary.
This is because, in this case, the algorithm is no longer converging to P1 but onto a
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Figure 4. Comparison of methods applied to an initial guess linearly interpolated/extrapolated between the
converged periodic orbit (y = 0) and the recurrent flow analysis candidate (y = 1). The top plots show
the final value of the residual Jpy, where a value of less than 10710 is well converged. The lower plots show
the final value of the period 7. Left and right as per the candidates in figure 1.

travelling wave solution, for which the period is indeterminate. Note that around y = 1.2,
the Leray-projected method does converge onto P1 whereas without it, it does not, which
confirms that Leray projection does indeed have a significant role, and that without it,
the PV formulation loses the divergence-free property of the guess in the course of
converging before again becoming divergence free as the solution converged, a fact which
was confirmed when the divergence was examined. In contrast with the PV formulations,
the SV formulation performed poorly, with the residual not reaching an acceptably low
level within the allotted time for all but the smallest values of y, and the final value T being
noticeably wrong for y > 0.3, without the rapid fluctuations indicative of convergence
onto a different solution.

For the second, longer period candidate, the results are similar, with convergence good
for the PV formulations but much worse for the SV formulation. However, in this case, for
y 2 1.3, the PV formulations appear to converge to a consistent value of T and a consistent
value of Jpy, which is considerably greater than zero. This, therefore, is a local minimum
of the objective functional. This demonstrates the importance of ensuring that the results
of the algorithms we find are genuine solutions, rather than just local minima.

4.1. Comparison with Newton-based shooting

As the SV formulation is significantly slower and has worse convergence properties than
the PV formulation, in this section we concentrate on the PV formulations, with (PV-LP)
and without (PV) Leray projection and compare its performance to a traditional shooting
method.

We compared against a Newton shooting (SN) method. This differs significantly from
the loop-based methods discussed in this paper. A single point in phase space is integrated
in time, using the SV formulation of the equations in a comoving frame, up to a guess
of the period T, with a guess of the phase speed c. The SN residual is then given by the
squared distance between the terminal and initial points, defined in our case, due to the
implementation, as a slightly unusual metric on the Fourier coefficients of the vorticity.
A Newton—Krylov solver attempts to minimise this so that the trajectory closes back on
itself. Since the handling of time between the methods is very different, a numerically
converged solution in SN does not automatically translate to a converged solution in PV,
and the converged periods were observed to differ by up to £0.001. We expect these
discrepancies to disappear as the resolutions are increased, though we did not test this.
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Figure 5. The PV method was paused at intervals and the SN method applied to the result. Top: the SN residual
after varying numbers of PV iterations, the (differently defined) residual for which is also shown. Bottom: the
number of SN iterations required for convergence to a residual of 107> after the PV method, for those which
converged. Where no point is shown, the method did not converge. Left and right as per the candidates in
figure 1.

We used the Newton solver from Channelflow (channelflow.ch) (Gibson et al. 2021). With
the Hookstep procedure of Channelflow, the algorithm is theoretically globally convergent,
but in practice with a poor initial condition the steps can become so small that numerically
the algorithm fails to converge, after a few hundred Newton iterations. The method was
run for a wall-clock time of three days in each case.

It is instructive to apply SN to the two candidates discussed above. In the first case, the
SN procedure described above does not converge starting from the initial guess. In the
second case, it does converge, but converges to a simple travelling wave solution (‘T1”)
rather than the RPO which the variational methods found.

We then consider the effects of a partial convergence of the variational methods before
applying SN, a hybrid between the two. The procedure we follow is, after a fixed number
of PV iterations, simply to take the first point in the loop as the initial condition for the
shooting method, discarding information about all other points on the loop. Figure 5 shows
the results of this on the two candidates discussed before. In both cases, after a number
of PV iterations, SN converges rapidly to the same solution as the complete PV method.
Once sufficiently many PV iterations have been performed for the result to be within the
region of convergence for SN, performing more iterations did not appear to significantly
improve the convergence time of SN. Note the differences between the two solutions: in
the first case, many more SN iterations were required, but an order of magnitude fewer PV
iterations than in the second case.

The partially converged solutions from PV do not satisfy incompressibility, and so when
converting to the SV representation used by the SN time stepper (by setting w = d,v —
dyu and = —A~lw), some information is lost. This is not the case with the PV-LP
formulation, which was found to modestly improve this hybrid approach, with initial SN
residuals around one half of the equivalent PV case.

4.2. Recurrent flow analysis

To test the methods, we implemented a recurrent flow analysis to generate candidates for
exact coherent solutions. Our implementation follows that of Chandler & Kerswell (2013):
at regular intervals in a time series, the current state at time 7 is compared against previous
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snapshots at time ¢ — 7. The phase space distance, minimised over the phase velocity ¢ in
the x-direction, is plotted against ¢ and 7, and local minima below a threshold value are
stored as candidate solutions. We made no attempt to search for RPOs which exhibit a shift
in the y-direction, exploiting the discrete symmetry of the equations. There is no reason to
suspect that including this would affect the methods we study. Subsequent authors (Lucas
& Kerswell 2015; Page & Kerswell 2020) have improved upon this method to find more
candidates, but the focus of the present work is merely to investigate the properties of the
variational methods. A time series of length 200 was searched every 0.1 time unit for near
recurrences up to period 7 = 50, giving 106 candidate solutions for which the distance
[, y,1) —w@+cT,y,t —T))?dxdy/ [ @(x,y, H)*> dxdy was less than the threshold
of 0.5. This is a significantly greater threshold value than that used by Chandler & Kerswell
(2013).

Table 1 summarises the results from trying to converge each of these candidates via
PV, PV-LP and SN. We counted as converged any solution for which the residual Jpy
was less than 1073, as the known local minima all had Jpy > 107, For all cases except
those with particularly long periods, in practice the final value of Jpy was significantly
smaller than 1078, Each attempted convergence for each of the algorithms was given 72 h
of wall-clock time on a 28 core CPU, and terminated as soon as the convergence criterion
was met, and otherwise counted as a failed convergence. All three methods were successful
at converging solutions, including several that had been found previously and a number of
new solutions. Even with this relatively small sample, it is clear that our new variational
methods converge to a greater variety of solutions within the chaotic attractor than the
traditional shooting method. Instances were found where the Newton method converged
for a given candidate and the variational methods did not, and vice versa, hinting at the
complex, fractal regions of convergence that are believed to exist for the different methods.

Both our variational methods and the shooting method tend to struggle more in
converging orbits with longer periods compared with short ones, though the reasons for
this differ. As the shooting method time marches the orbit, exponential error amplification
leads to sensitive dependence of the recurrence condition on initial conditions and, thus,
an ill-conditioned root search. It is for this reason that multi-shooting methods have been
developed (Sdnchez & Net 2010). In our variational methods, the loop structure means
that recurrence is ‘built in’. Nevertheless, we observe that the algorithm converges more
slowly for longer orbits. Indeed, a large number of candidates appeared to be converging
to long-period orbits when the algorithms were terminated and may well have converged
had they been allowed to continue. In other cases, definite local minima were found
by the variational methods, at which point convergence is no longer possible. However,
switching to a different variational method (e.g.from PV to PV-LP) at this point was found
to subsequently lead to convergence to a solution.

5. Conclusions

In this paper we have presented the first use of variational methods to find unstable periodic
orbits in the incompressible Navier—Stokes equations. Though the algorithms were slow to
converge compared with existing techniques, we have demonstrated their apparently larger
region of convergence, raising the possibility of converging a larger number and a greater
variety of exact solutions in turbulent flows.

We showed that the PV formulation performs notably better than the SV formulation,
despite the fact that the latter automatically enforces incompressibility and eliminates
the pressure variable. Projecting onto the incompressible subspace or including the
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c T Name  Number converged

PV PV-LP SN

0 — El 7 7 7
0.0198 — T1 26 24 22
0 5.38 P1 9 11 3
0 2.83 P2 2 4 1
0 2.92 P3 2 0 0
0.0352 12.2 R19 2 2 0
0.0173 36.8 R47 2 3 0
0.00446 716 — 0 0 1
0.0213 18.1 — 0 0 2
0.00243  3.78 — 1 0 0
0.0472 8.46 — 1 0 0
0.00780  8.64 — 1 0 0
0.00352  9.62 — 1 2 0
0.0106 12.5 — 1 1 0
0.00993  15.7 — 1 1 0
0.0208 18.6 — 1 0 0
Total 57 55 36

Unique 14 9 6

Table 1. Results of different methods applied to candidates from the recurrent flow analysis. The names are
from Chandler & Kerswell (2013), for those solutions which are not new. All values are given to three significant
figures. Note that the sign of ¢ is irrelevant, due to the symmetries of the system.

divergence-free condition in the objective functional makes little practical difference to the
algorithm, suggesting that including incompressibility in the cost function but allowing for
compressible intermediate fields during minimization is a viable approach.

The natural extension to this work, and an important step to understanding turbulence
in practical flows, is to consider three-dimensional flow models with boundaries, such
as plane Couette flow or plane Poiseuille flow. This presents a number of issues not
considered here. Firstly, with a third dimension at moderately high Reynolds number, the
number of grid points required would be several orders of magnitude higher. However, all
computations in this work were performed on a single CPU with OpenMP parallelisation,
and with MPI parallelisation over many CPUs, or indeed GPU parallelisation, it should
be possible to apply such methods to much higher dimensional systems, since all
operations except the Fourier transforms are local in either spectral or physical space.
Secondly, the presence of boundaries significantly complicates the derivation of gradients
of the objective functionals, and care would need to be taken in particular for boundary
conditions of the pressure field, which can be a complicated issue (Gresho & Sani 1987).
Thirdly, the SV formulation does not have a simple analogue in three-dimensional flow,
though since it performed poorly here, this is a minor consideration.

In § 4.2 we showed that our method is able to converge more solutions than a shooting
method, but in some cases the shooting method converged when ours did not. This
suggests that the best strategy, if the aim is to converge as many different solutions as
possible, may be to run both methods simultaneously. Likewise, a hybrid method such
as that presented in § 4.1, where a variational method is performed for a certain number
of iterations, followed by a shooting method, may give the best results in terms of the
number of different solutions converged in a given time, though the number of iterations
required is likely to depend strongly on the system in question. In the Kolmogorov flow,
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many orders of magnitude fewer iterations of the variational method were required to
reach a result that the SN method could converge, versus achieving full convergence with
the variational method. Due to the slow convergence of the variational methods, given a
sufficiently diverse set of good guesses of periodic orbits, the existing SN methods may
still be the most efficient use of compute time. However, in situations where initial guesses
are insufficiently accurate for the Newton method to converge, variational methods will
increase the success rate.

All the solutions presented in this work were converged from near recurrences of the
state in a time series. This simple procedure has been found to be effective, but with the
enlarged region of convergence that our method provides, other ways of finding initial
guesses are likely to be useful. For example, Page & Kerswell (2020) used dynamic mode
decomposition to find unstable periodic orbits of much longer duration, in which cases
near recurrence becomes unlikely. This becomes more relevant at higher Re than we have
considered here, where near recurrences are harder to observe as periodic orbits become
less stable.

The ultimate goal of this field is to be able to use periodic orbit theory predictively in
fully developed turbulence, for which it will be necessary to find a very large number of
diverse periodic orbits. The methods presented here are a step in that direction, though it
is clear that without new advances in efficiency, they will have to be used in conjunction
with Newton-based methods where good initial guesses are available.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.299.
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