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On the associativity of
the torsion functor

John Clark

Let R be a.commutative ring with identity. We say that tor
is associative over R if for all R-modules A, B, C there

is an isomorphism

R R R R
torl(A, torl(B, C)] o~ torl(torl(A, B), C]

Our main results are that

(1) tor is associative over a noetherian ring R if and only
if R 1is the direct sum of a finite number of Dedekind

rings and uniserial rings, and

(2) tor is associative over an integral domain R if and only

if R 1is a Prufer ring.

1. Introduction
In Cartan and Eilenberg [2] it is proved that any commutative semi-
hereditary ring R has the property that there is an R-module isomorphism

torﬁ 4, torf(B, C)] o torR

l(tor’l?(A, B), c]

for all AR-modules A4, B, ¢ . It is the purpose of this paper to examine

rings having this isomorphism property.
All the rings that we consider are commutative with identity. For

Received 5 October 1973. Some of the results presented here are
contained in the author's PhD thesis. The author wishes to express his
gratitude to his supervisors, Dr Chr. U. Jensen of the University of
Copenhagen and Professor E:M. Patterson of the University of Aberdeen, for
their invaluable assistance.

107

https://doi.org/10.1017/50004972700040697 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700040697

108 John Clark

simplicity we write tor(4, B) instead of torl;(A, B) for any two modules

A and B over the ring R , except when it is necessary to specify the
ring. Also given a ring R we say that tor 1i& associative over R if

there is an R-module isomorphism
tor(4, tor(B, ¢)) ~ tor(tor(4, B), C) ,
not necessarily natural, for all PR-modules A4, B, C .

Our main result is that if R 1is a noetherian ring then tor is
associative over R 1if and only if R 1is the direct sum of finitely many
Dedekind rings and uniserial rings. We also show that tor is associative

over an integral domain R if and only if R is Prufer.

2. The associativity of tor over local noetherian semi-prime rings

We prove in this section that tor is associative over a local
noetherian semi~prime ring K if and only if R 1is a discrete valuation

ring.

In the following result (and throughout the paper) the term "local

ring" simply means that the ring has precise€ly one maximal ideal.

PROPOSITION 2.1. Let R be a local ring with maximal ideal M and
let x be an element of R which i8 not a zero-divisor. If tor 1is
associative over R then, for any element y of R, either y divides

x or x divides y .

Proof. Suppose that y 1is any element of R and that y does not
divide x and x does not divide y . Since & is not a zero-divisor,

for any ideal a of R we have
tor(R/xzR, a) = ker(zR® a * xa) = 0 .

In particular, tor(R/zR, :cR+yR) = 0 . Thus, since tor 1is associative

over R , we have

tor (R/(xR+yR), tor(xR+yR, R/xR))
tor (R/(xR+yR), 0) = 0 .

tor (tor xR+yR, R/(:cR+yR)] s R/mR)

Now,

tor {xR+yR, R/(xR+yR)) = ker{g : (aR+yR) ® (xR+yR) + xR+yR) ,
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where g{(axtby) ® (ex+dy)) = (ax+by)(ex+dy) for =11 a, b, e, d in R .
Thus gz ®y -y®x) =xy - yr = 0 , so that
t®y - y ® x € tor(xR+yR, R/(zR+yR))
We will now show that z® y - y ® x is non-zero.
We define f : (xR+yR) x (xR+yR) » R/M by f((az+by, cx+dy)) = ad + M
for all a, b, ¢, d in R . Suppose px+qy =0 for p,q in R .

Then p is not a unit, since otherwise Yy divides & , contradicting our

assumptions. Similarly, g is not a unit. Thus
Fllpzrqy, cxtdy)) = pd + M = 0

since pd 1is not a unit and so must belong to the maximal ideal M . This
shows that f is well-defined on (xR+yR) X (xR+yR) . Also, easily, f
is bilinear. Thus, there is a homomorphism f : (xR+yR) ® (xzR+yR) ~ R/M
such that f((ax+by) ® (cx+dy)) = ad + M for all a, b, ¢, d in R . Now

flz®@y-y®x) = FHx@y) - Fly®=x) = (1+M) + (0+M) = 1 + M .
Thus *®y - y®x# 0. Thus tor{xR+yR, R/(xR+yR)) # O .

We now show that tor(R/xR, tor(xR+yR, R/(zR+yR))) # 0 , thus

obtaining a contradiction to our initial assumptions. In fact

tor(R/xR, tor(xR+yR, R/(zR+yR)))
= ker(h : xB ® tor(xR+yR, R/(xR+yR)) + tor(zR+yR, R/(xR+yR))) ,

vhere h(tzx ® a) = tza for every a in tor(zR+yR, R/(zR+yR)) and every
t in R . Thus, in particular,

hMe@®@(z®@y -y®x) =x(x®y - y ® x)
=xQuyr-axy®ex=xQyzr-xQyx =0,

sothat ® (x® y - y ® x) is an element of
tor (R/xR, tor(xR+yR, R/(zR+yR)))
We now define k : xR x tor(xR+yR, R/(xR+yR)) - R/M by
k((tx, (rotey) ® (uxtvy))) = tf((rz+sy) ® (ux+vy))

for all ¢t in R and all suitable r, s, u, v . Since f is a
homomorphism and x is not a zero-divisor, k is well-defined and clearly

a bilinear mapping. Thus there is induced a homomorphism

%k : xR & tor(xrR+yR, R/(zR+yR)) + R/M
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such that
k(tx @ ((rztey) ® (uztvy))) = tF((ratsy) ® (uatvy))

for all suitable », s, £, u, v in R. Now 2Q®y -y ® x is an element
of tor(xR+yR, R/(xR+yR)] and, moreover,

kK(z®(zBy-y®x) =1.7(x®y -y®a) = 1.(1+M) =1+ M .

Thus 2 ® (x®y -y ® x) is a non-zero element in
tor(R/xR, tor(xR+yR, R/(xR+yR))) . This gives a contradiction. Thus

either x divides y or y divides &x , as required.

PROPOSITION 2.2. Let R be a local ring with maximal ideal M and

oo
suppose that +tor is associative over R . If N M =0 and i1f there
n=1

exists an element in R which 18 neither a wnit nor a zero-divisor then R

i8 a valuation. ring.

Proof. We shall first of all show that R is an integral domain. By
hypothesis, there exists an element & of K which is neither & unit nor
a zero-divisor. Let Yy ©be any zero-divisor of R . Then, by Proposition

2.1, either x divides y or y divides x . Clearly the latter is

impossible and so x must divide y . In other words, there exists an

element ey of R such that y = e\x . Since ey is then a zero-

divisor, by repeating the argument there exists a non-zero element 02 of
- _ _ 2 .

R such that cl = c2.7: . Then y = cl:z: = 023: and so 02 is a zero

divisor. Repeating this procedure a suitable number of times we get, for
any positive integer n , that y = cna:n where cn is a zero-divisor in

[oe]

R . Thus, since & is an element of M , we have y € 0 It[l . Hence
n=1

y =0 . It follows that R is an integral domain. Thus, by Proposition
2.1, since tor is associative over R , given any two elements a and b
of R either a divides b or b divides a . This means that R is a

valuation ring, as required.

It can also be proved that the valuation ring of Proposition 2.2 is in

fact a discrete valuation ring by using, for example, Theorem 1L4.3
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and Theorem 14.5 of Gilmer [5]. We now come to the main result of this

section.

THEOREM 2.3. Let R be a local noetherian ring with maximal ideal
M such that either annM , the annihilator of M , is zero or R 1is
semi-prime. Then tor is assoctative over R 1if and only if R is a

discrete valuation ring.

(o o]
Proof. By Theorem 3, p. 50 of Northcott [13], N M =0 . fThus, if
n=1

there exists an element of R which is neither a unit nor a zero-divisor,
then, by Proposition 2.2, R 1is a valuation ring. Since R is

noetherian, A must be a discrete valuation ring.

Suppose, on the other hand, that every non-unit of R 1is also a zero-
divisor. Then, by Theorem 80, p. 55 of Kaplansky [10], M is the
annihilator of one of its elements. If annM = 0 this is impossible. If
R is semi-prime then M = 0 so that R is a field and therefore,

trivially, a discrete valuation ring.

3. Uniserial rings

If R is an artinian principal ideal ring then we say that R is a
wniserial ring. In this section we shall show that tor is associative
over any uniserial ring. We shall use the following proposition. Part (1)
has been proved by Kaplansky [9, Theorem 13.3] and part (2) is a result of
Kothe [11] (see also Cohen and Kaplansky [3]).

PROPOSITION 3.1. (1) Any uniserial ring is the direct sum of

finitely many local uniserial rings.

(2) Any module over a uniserial ring is the direct sum of ecyclic

submodules.

Let R be a local uniserial ring with maximal ideal M and suppose
that R is not a field. Then, since R is a principal ideal ring,

M = pR for some non-unit p of R . Moreover, since R 1is artinian,
Mn = 0 for some least positive integer n . Also, any proper ideal of R
is of the form ptR for some integer ¢ such that 0 < ¢ <n . Thus any

proper cyclic R-module is of the form R/ptR for some integer t such
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that O < ¢ < n . For convenience we will call this integer ¢t the order

of the cyclic module R/ptR . Any cyclic R-module is completely

determined by its order.

PROPOSITION 3.2. Let R be a local uniserial ring with maximal

ideal pR such that p' = 0 for some integer n > 1 but pn_l #0. If

s, t are integers such that 0 <s <n and 0 <t <n then

tor (R/p°R, R/ptR) is a eyclic R-module of order

min(n, s+t) - max(s, t) .

Proof. Suppose first that min(n, s+t) = n . Then
+
tor (R/D°R, R/pPR) = pmeX(8.t)p S¥ty _ jmax(s,t)y
+t max(s,t)

- pmax(s,t) )

since ps R =0 . Now define f: R->p R by f(1)

pn-max(s,t)R )

Then kerf = Thus, since f 1is an epimorphism,
pmax(s,t)R = R/kerf = R/pn—max(s,t)R Hence tor(R/psR, R/er) is a
cyclic R-module of order n - mex(s, t) = min(n, s+¢f) - max(s, t) , as
required.
Now suppose that min(n, s+t) = ¢ + t . Then
t s+t
tor(R/p°R, R/p'R) = pRe¥(&:t R84t

*%% vy g(1) = p

s+t-max(s,t)

max(s,t) max(s,t) + ps+t

Define g : R+ p R/p R . Then g

is an epimorphism with kernel p R . It follows that
tor(R/psR, R/ptR) is & ecyclic R-module of order
s + t - max(s, t) = min(n, s+t) - max(s, &)
This completes the proof.
COROLLARY 3.3. Let R be a local uniserial ring with maximal ideal

pR such that p' =0 for some integer n > 1 but pn-1 #£0. If r,s,

t are positive integers all less than n then

tor (R/p R, tor (R/P°R, R/ptR)) = tor (tor (R/p°R, R/ptR] , RID'R)
18 a eyelie R-module of order

min{n, m.in(s+t, n)-max(s, t)+r} - max{r, min(s+t, n)-max(s, &)} .
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THEOREM 3.4. +tor <s associative over any uniserial ring R .

Proof. By part (1) of Proposition 3.1, any uniserial ring is the
direct sum of finitely many local uniserial rings. Thus, since tor
commutes with finite direct sums of rings, it is sufficient to assume that

R is a local uniserial ring.

Suppose that R has maximal ideal pR where pn = 0 for some

integer 7 > 1 but p’ L #0 (in the case of n =1 the result is
obvious since R is a field). Let A, B, C be R-modules. Then, by part

(2) of Proposition 3.1 we may write 4 =@A. , B=GB., , C=6C
1t J Y Kk K

where each Ai’ B., C is a cyclic R-module. Moreover, since tor

J’ Tk
commutes with direct sums of R-modules, we have

), C

tor{tor(4, B), C) =@ @& tor(tor(A_'., B k)
IJK vd

and

tor(4, tor(8, ¢)) =G @ tor(/li, tor(B.., Ck)) .
IJK J

Thus to prove the theorem it is sufficient to show that
tor{4, tor(B, C)) =~ tor(tor(4, B), c)
for any cyclic KR-modules A, B, C .
Let r, s, t be positive integers all less than 7n . We must show
that
tor(tor(é/prﬁ,/ﬁ/psR), R/p*R) ~ tor(R/p"R, tor(R/p°R, R/p'R))

By Corollary 3.3 these two modules are cyclic and so it is sufficient to
show that they have the same order, in other words that
min{n, min(s+t, n)-max(s, ¢)+r} - max{r, min(s+t, n)-max(s, t)}

= min{n, min(r+s, n)-max(r, s)+t} - max{t, min(r+s, n)-max(r, s)}

This can be proved by either reducing one side of the equation to an
expression symmetric in r, 8, t or by considering various cases -~ we omit

this verification.
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4. Local noetherian rings with annM # 0

Our objective now is to show that given a local nocetherian ring R
with maxifial ideal M then R is uniserial if eannM # 0 and tor is

associative over R . We require the following.

PROPOSITION 4.1. Let R be a local ring with non-trivial maximal
ideal M . If tor <s assoctative over R then sennM 1is contained in

every non-zero ideal of R .

Proof. Let a and b be non-zero elements of ann¥ and M

respectively. Then ab = 0 and a2 0 . Thus

aRnbR

DR = aR n bR

tor(R/aR, R/PR)

and

tor(R/aR, R/(aR+bR)) = % = aR .

Hence

tor{tor(R/aR, R/(aR+bR)), R/bR) = tor(aR, R/bR)
= ker(aR ® bR + aR) = aR ® bR ~ R/anna @ R/annb

= R/M@R/annb’:ﬁ;al;—

nb=R/M¢O.

However, since tor is associative over R ,
tor (tor (R/aR, R/(aR+bR)), R/bR) =~ tor(tor(R/aR, R/bR), R/(aR+bR))

and so tor(R/aR, R/bR) # 0 . Hence, by above, aR N bR # 0 . Thus there
exists s € K such that as # 0 and as € bR . Hence, since a € ann¥ ,

s must be a wnit and so a = (as)s™t € bR . It follows that annM C bR
and so that annM is contained in every non-zero idesl of R , as

required.

COROLLARY 4.2. Let R be a local ring with non-trivial maximal
ideal M . If tor is associative over R then R has either no minimal

ideals or precisely one, namely annM .

Proof. Let a = xR be a minimal ideal of A . Then either a¥ = a
or ali =0 . If aM=a then x = axm for some m € M . Thus

x(1-m) = 0 , which is impossible since x # 0 and 1 - m is a unit. Thus
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a¥ =0 and so ann # 0 . The result now follows from Proposition L.1l.

Recall that an ideal a of F 1is called large if for every non-zero
ideal b of R we have anb # 0 . Also, Z(R) , the singular ideal of
R , is the set of all elements of K which annihilate large ideals of R .

THEOREM 4.3. Let R be a local noetherian ring with non-trivial
maximal ideal 4 such that annM # 0 . If tor <is associative over R

then R 18 uniserial.

Proof. By Proposition 4.1, ann¥ is contained in every non-zero
igeal of R and so it is large. Thus M = ann(annM) € Z(R) and so
M = Z(R) . Hence, by Proposition 3, p. 107 of Lambek {1Z] there is a

+
natural number 7 such that M l=O but M %0 . Moreover IifgannM
since I'f.M =0 and so Il[l = annM . Since annM 1is a simple module it
follows that M' =~ R/M .

Now let k be an integer such that 0 < k = »n and suppose that

y e vut y £ M Then

tor(tor(R/yR, R/H), R/MY) = tor HR—”I'/:, MY = tor(@;, R/Mﬂ]
| y il
= er(zf®yi+ﬁ—J M YR R ® o R ® R ® yR
vy yf/( y*

o~ R/[M+1/‘] ® yR ~ R/M @ R/anny == R/(M+anny) = R/M .
However, since tor is associative over K ,
tor(tor (R/yR, R/IH), R/MY) = tor(tor(r/yR, B/MY), r/)

= tor Hﬁ;\ﬁﬁ’ R/l‘f = tor 1‘/1 1-?/1‘/< ~ tor R/M R/l/< Mﬂb]( = ﬂ/c/IJ(H' .

yM M. 1

Thus [/(/I/ﬁl&R/M. Hence for any k , 0 <k =mn , Mk/h+l is a

+7
simple module. Thus R DM D M2 oL, DI/L ) I\f =20 is a composition

series for R . It follows, since R is local, that /M = xR for some

x €M , each ideal of R 1is of the form :L‘kR for some k , 0 =k = n+l ,

and so R 1is uniserial, as required.
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5. Arithmetical rings
Following Fuchs [4] we call a ring R arithmetical if
an(bte) =anb+ane

for all ideals a, b, ¢ of R . Jensen [§] has shown that a ring R is
arithmetical if and only if, for any maximal ideal M s, the ideals of the

locel ring RM are tofa.lly ordered by set inclusion. Using this we are
able to summarise the main results proved so far in the following theorem.

THEOREM 5.1. Let R be a noetherian ring. Then the following

statements are equivalent:
(1) R is arithmetical;

(2) R 1is the direct sum of finitely many Dedekind rings and

wniserial rings;
(3) tor <s associative over R .
Proof. The eguivalence of (1) and (2) has been proved by Asano [1].

By Theorem 3.4, tor is associative over sny uniserial ring. Also,
since every Dedekind ring is semi-hereditary, tor is essociative over any
Dedekind ring, by Proposition 3.5, p. 115 of Cartan and Eilenberg [2].

Thus, since tor commutes with direct sums of rings, (2) implies (3).

Now suppose tor is assocjiative over R . Let S denote the
localization of R with respect to a particular maximal ideal of R .
Then, by Theorem 7, p. 171 of Northcott [14], tor is associative over
S . Let M denote the maximal ideal of S . Then, if annM = 0 , by
Theorem 2.3, S is a valuation ring. If annM # 0 , by Theorem 4.3, S
is a local uniserial ring. Since in both valuation rings and local
uniserial rings, the ideals are totally ordered by set inclusion, it

follows that R is arithmetical. Thus (3) implies (1).

Because of Theorem 5.1 it seems reasonable to conjecture that given
any ring R then tor 1is associative over R if and only if R is

arithmetical. We now give further evidence to support this.

A semi-hereditary integral domain is called a Prufer ring. A well-
known result of Jensen (7] characterizes Prifer rings as those integral

domains which are arithmetical. Also Hattori [6] has shown that an
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integral domain R is a Prifer ring if and only if every torsion-free

R-module is flat.

Let R be an integral domain and suppose that tor is associative
over R . Let M be any maximal ideal of R . Then tor is associative

over the integral domain RM and it then follows from Proposition 2.1 that

R, is a valuation ring. Hence R is arithmetical. It may be of interest

M
to present here an alternative proof of this, independent of Proposition
2.1.

THEOREM 5.2. Let R be an integral domain. Then tor is associative
over R if and only if R is arithmetical.

Proof. Suppose R is arithmetical. Then, by the remarks above, R

is semi-hereditary and so +tor is associative over R .

Conversely, suppose tor 1is associative over R . Let M be any
torsion-free R-module. Let a be any non-zero ideal of R and choose
r €a, r# 0 . Then, for any R-module A we have
tor(R/rR, A) = ker(r : A + 4) where the mapping »r is multiplication by
r (see, for example, Cartan and Eilenberg [2], p. 129). Thus

tor(M, R/a) = tor(M, ker(r : R/a + R/a)) = tor (M, tor(R/rR, R/a))
~ tor(tor(R/rR, M), R/a) = tor(ker(r : M > M), R/a) = tor(0, R/a) ,

since M is torsion-free. Thus, for any non-zero ideal a of R ,
tor(M, R/a) = 0 . Hence M is flat. It follows now, from Hattori's

result mentioned sbove, that R is Prifer and so arithmetical, as required.
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