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Abstract

John Blake (1947–2016) was a leader in fluid mechanics, his two principal areas of
expertise being biological fluid mechanics on microscopic scales and bubble dynamics.
He produced leading research and mentored others in both Australia, his home country,
and the UK, his adopted home. This article reviews John Blake’s contributions in
biological fluid mechanics, as well as gives the author’s personal viewpoint as one of the
many graduate students and researchers who benefitted from his supervision, guidance
and inspiration. The key topics from biological mechanics discussed are: “squirmer”
models of protozoa, the method of images in Stokes flow and the “blakelet” solution,
discrete cilia modelling via slender body theory, physiological flows in respiration and
reproduction, blinking stokeslets in microorganism feeding, human sperm motility and
embryonic nodal cilia.

2010 Mathematics subject classification: primary 76Z10; secondary 76Z05.

Keywords and phrases: cilia, flagella, Stokes flow, slender body, stokeslet, swimming,
propulsion, feeding, chaotic advection, mucus.

1. Introduction

This tribute to the legacy of late Professor John Blake (1947–2016) will focus on
one of several areas of applied mathematics in which he made major contributions:
very low Reynolds number biological fluid mechanics. Including theoretical work
which was motivated by biological applications, alongside more directly applied work,
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John1 published at least 74 papers in this field between 1971 and 2012, of which 12 at
the time of writing (August 2017) have above 100 citations on Google Scholar; four of
these landmark papers were published by the time he was 25 years of age. Remarkably,
John’s output in the distinct area of bubble dynamics was at least as significant –
although I will not address these major achievements in the present article.

A graduate of the University of Adelaide and a student of Tuck, John conducted
his Ph.D. research with Lighthill in Cambridge, followed by a postdoctoral position at
Caltech; he then returned to Australia, working at CSIRO for a period, followed by a
Chair at Wollongong, before moving to Birmingham, UK, where he remained for the
rest of his career.

Mathematically, the core of the field of very low Reynolds number fluid mechanics
is the solution of the Stokes flow equations,

−∇p + µ∇2u = 0, ∇ · u = 0,

where u is fluid velocity, p is pressure and µ is dynamic viscosity. These equations
describe the nearly inertialess regime of fluid mechanics on microscopic scales –
although they neglect the non-Newtonian effects that may be present, for example
in some physiological fluids.

Very low Reynolds number fluid dynamics describes the world encountered by
motile protozoa, sperm, bacteria and the cells making up the epithelia lining the
lung, fallopian tubes and the early embryo. While optical and electron microscopes
provide us with a means of gaining visual information within this realm, intuition about
physical principles of propulsion and molecular transport is fraught with difficulty
because of the altered balances of inertia versus viscosity, and diffusion versus
advection, as compared with the everyday world, often leading applied scientists
astray. Furthermore, the characteristic geometrical complexity frustrates both standard
analytical modelling techniques and even many state of the art computational codes.
What follows will describe some of the mathematical tools and the intellectual
frameworks that John developed to enable us to understand this world better.

2. Beginnings: squirming swimmers

As hinted above, John always encouraged his students to write and promptly
submit their work for publication (with varying success); this approach served him
extremely well during his days as a research student. However, his first research
project, completed in 1969 as an honours student working with Tuck at the University
of Adelaide, was not published until 2010, in a paper dedicated to Tuck [22]. This
project concerned the use of the “S-transform” [68]

S [ f (x)] =
1
2

∫ 1

−1

f (x) − f (t)
|x − t|

dt, |x| < 1,

1John Blake had little interest in formality and in the time I knew him, all of his students and colleagues
called him by his first name – for this reason I will use his first name throughout this article.
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which has the Legendre polynomials as eigenfunctions. The transform was applied to
approximate very low Reynolds number flow due to moving slender bodies, including
sperm-like shapes with a “head” and an elongated “flagellum”. While the mathematical
technique was not one which John would use extensively, the application area of
biological flow was one in which he would specialize.

Following his honours’ project and having been awarded University of Adelaide
George Murray and Commonwealth Scientific and Industrial Research Organisation
(CSIRO) scholarships to work in Cambridge, John began reading some relevant
literature. One of the papers he worked through was a 1952 study by the famous
applied mathematician Lighthill on the squirming motion of a sphere at low Reynolds
numbers. Lighthill’s paper [37], which had been published shortly after Taylor’s
celebrated “swimming sheet” model of propulsion at zero Reynolds number [67], was
part of a series of studies in the early 1950s in which the fundamental question of
how microorganisms could propel themselves without the assistance of inertia was
solved. As John would point out to his students, these findings were there two decades
before the celebrated 1976 lecture of Purcell [53], “Life at low Reynolds number”.
Whereas Taylor studied an infinite swimmer, Lighthill formulated the problem as the
solution of the axisymmetric Stokes flow equations around a sphere of radius a with
the “squirming” boundary condition

ur(a, θ) =

∞∑
n=0

AnPn(cos θ), uθ(a, θ) =

∞∑
n=0

BnVn(cos θ),

where Pn is the nth Legendre polynomial, Vn = 2P′n(cos θ) sin θ/(n(n + 1)) and An,
Bn are coefficients defining the squirming motion. Lighthill gave a solution for the
velocity field (ur, uθ), preceded by the (perhaps dangerous) phrase “It is easily seen
that the only combination of solutions . . . satisfying the boundary conditions is given
by . . .”. By seeking solutions only with finite energy, Lighthill was then able to show
that the velocity of translation of the sphere is given by U = (2B1 − A1)/3.

Lighthill’s concise article suppressed a significant amount of calculation, which
John carefully attempted to reproduce. He discovered that Lighthill had made
an uncharacteristic error – terms had been omitted from the solutions for both
expressions. John’s resulting corrected solution took the form

ur(r, θ) = −U cos θ + A0
a2

r2 P0 +
2
3

(A1 + B1)
a3

r3 P1

+

∞∑
n=2

[(1
2

n
an

rn −

(1
2

n − 1
)an+2

rn+2

)
AnPn +

(an+2

rn+2 −
an

rn

)
BnPn

]
,

uθ(r, θ) = U sin θ +
1
3

(A1 + B1)
a3

r3 V1 +

∞∑
n=2

[(1
2

n
an+2

rn+2 −

(1
2

n − 1
)an

rn

)
BnVn

+
1
2

n
(1
2

n − 1
)(an

rn −
an+2

rn+2

)
AnVn

]
,

(2.1)
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Figure 1. The squirming envelope model of cilia propulsion, created using models from [7, 11].
(a) Geometric model of a ciliated spherical swimming microorganism, exhibiting the metachronal wave
of cilia coordination and “envelope” formed by the cilia tips, from Opalina cilia waveforms of [11] and
redrawn as in [7]. (b) 3D rendering of a squirmer, using the model of equation (2.2) [7, Table 2.4].

the additional terms being the series with coefficients Bn in the expression for ur and
An in the expression for uθ. In John’s words,

“This later led to [John Blake] undertaking a Ph.D. under the
supervision of Sir James Lighthill . . .; one of the first actions encouraged
by Lighthill was to publish a corrected version of the paper but with an
application directed at ciliary propulsion . . .” [56].

Motivating the application to ciliary propulsion, John initially focused on the ciliate
Opalina. Acknowledging that Opalina was relatively more disc- than sphere-shaped,
he made the following prescient observation:

“. . . the biological world provides much variety, so the following
problem may closely model some organism!” [7].

We will return to this observation at the end of this section.
A model was developed based on a combination of normal and tangential

motions associated with the “envelope” formed by the tips of the densely spaced
cilia (Figure 1(a)), which propagates as a metachronal wave, typically with cilia
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synchronized in the direction perpendicular to the direction of propulsion, and phase
shifted proportional to distance along the direction of propagation. A “discrete-cilia”
model of metachronal coordination is shown in Figure 3(c). Tables of parameters
corresponding to various model squirmer motions were constructed and the associated
swimming velocities calculated. One of the models explored is plotted in Figure 1(b);
mathematically this model is defined in terms of polar coordinates for the surface
position (R,Θ) of material points with equilibrium coordinates (a, θ) at time t:

R(θ, t) = a[1 + ε{(−4.5P20 + 4.5P22) cos(σt) + (−4.4P19 + 4.4P21) sin(σt)}],
Θ(θ, t) = θ + ε{(9.3V20 − 11.7V22) cos(σt) + (8.6V19 − 11V21) sin(σt)},

(2.2)

where ε is the amplitude of surface perturbation relative to the radius and σ is the
radian beat frequency.

The coefficients An, Bn in the solution (2.1) were then found by expressing the
boundary shape, and hence velocity, in terms of spherical harmonics, approximating
through a small-amplitude expansion about the undeformed sphere surface, and
applying the no-slip, no-penetration condition. As Taylor had previously found in
his analysis of a swimming infinite sheet, the time-averaged propulsive velocity Ū
was found at O(ε2), that is, proportional to the square of deformation height. After
calculation of the time-averaged rate of working P̄, the “hydrodynamical efficiency”
η = 6πµaŪ2/P̄ could then be derived. With parameters a = 100 µm, σ = 25 s−1 and
ε = 0.05, the propulsive velocity was calculated to be 104.8 µm/s, comparable to the
swimming velocities observed in nature.

John explored other similar models shortly afterwards, including planar and
cylindrical infinite swimmers [8, 10]; however, he predominantly focused on discrete-
cilia modelling and boundary integral/singularity-based methods throughout most of
his career. Nevertheless, the approach he developed with Lighthill was taken up by
many other researchers: a Google Scholar search on 14th August 2017 brought up 417
citations. Recent studies inspired by the Lighthill–Blake squirmer include analysis in
unsteady Stokes flow [34], nonlinear dynamics of swimmers in Poiseuille flow [70]
and, most recently, the multicellular algae Volvox [51]. The latter paper returned “full
circle” to his lifelong friend and the examiner of his Ph.D. thesis Pedley FRS, with
Goldstein FRS and Brumley. Volvox is perhaps the perfect example of a squirming
sphere that John had, in 1971, anticipated to be waiting in nature.

3. Slender body theory and the blakelet

The squirming envelope model of ciliary propulsion, while analytically tractable
and informative about species in which the tips of the cilia remain closely spaced, is
nevertheless limited in explaining some of the details of how the cilia beat pattern,
and interaction with the cell body, affect propulsion and flow. The model also fails to
describe widely spaced cilia such as those in the embryonic node. John’s aim therefore
was to model an individual cilium, and then to exploit periodicity to scale up to a dense,
coordinated field. Cilia, like the flagella of sperm, are slender organelles; therefore, he

https://doi.org/10.1017/S1446181118000020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000020


[6] Biological fluid mechanics 421

sought to extend the slender body theory approach pioneered for sperm propulsion by
Lighthill’s student Hancock [30, 31] to the situation of a slender object projecting from
a much larger body, as is the case for ciliated protozoa.

The key idea of slender body theory is to exploit the linearity of the Stokes flow
equations and model the object by a line distribution of fundamental solutions, or
stokeslets, to use the term coined by Hancock [31]. Consider the solution (u, p) to the
singularly forced Stokes flow equations,

0 = −∇p + µ∇2u + Fδ(x − ξ), ∇ · u = 0.

In three dimensions and with boundary condition u→ 0 as |x| → ∞, the velocity field
can be expressed as u j(x) = FkSjk(x, ξ), where Sjk is the second-rank tensor known as
the stokeslet (here and in what follows, the summation convention will be used),

Sjk(x, ξ) =
1

8πµ

(δ jk

r
+

r jrk

r3

)
,

where r j = x j − ξ j and r2 = r jr j.

3.1. The image system for a stokeslet near a plane boundary Boundaries, such
as the body of a protozoa, ciliated epithelium or glassware in the laboratory, have a
critical long-range effect in Stokes flow. To take this effect into account, the most basic
problem to solve is to determine how the flow field produced by a concentrated force
is changed by the presence of an infinite plane boundary, represented mathematically
by the boundary condition u(x1, x2, 0) = 0; indeed, because the cilium is much shorter
than the radius of curvature of a typical ciliated microorganism, the ciliated surface
can be modelled as an infinite plane x3 = 0. I recall John telling the story of how he
found various texts in which the authors stated that the solution for the Stokes flow
given by a point force in the vicinity of a plane boundary was well known; however,
on writing to the authors he found that none were able to tell him exactly where the
solution had been written down. He therefore sought to find a solution himself, using
the method of images, that is, for a singularity located at ξ = [ξ1, ξ2, h], a fictitious
“image” would be placed outside the flow domain at ξ∗ = [ξ1, ξ2,−h]; the problem was
to find the form of this image. This task is substantially more difficult than the familiar
example in potential theory with a Dirichlet condition, because velocity is a vector
rather than a scalar. An image stokeslet alone cannot cancel components of the flow
both tangential and normal to the surface.

John’s approach, inspired by the elasticity theory, was to make use of a two-
dimensional Fourier transform to find the correction to the above naive images. Having
solved the problem and inverted the Fourier transform, the solution G jk, given by
John [9], can be expressed as

u j(x) = FkG jk(x, ξ)

=
Fk

8πµ

[{δ jk

r
+

r jrk

r3

}
−

{δ jk

R
+

R jRk

R3

}
+ 2h(δkαδαl − δk3δ3l)

∂

∂Rl

{hR j

R3 −

(δ j3

R
+

R jR3

R3

)}]
, (3.1)
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where α = 1 or 2, and r and R are defined as follows:

r = [(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − h)2]1/2

and R = [(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 + h)2]1/2,

the variables ri and Ri being apparent from these definitions. The term (δkαδαl − δk3δ3l)
is simply 1 if k = ` = 1, 2 and −1 if k = ` = 3; the derivative term in the last line of
(3.1) corresponds to a source dipole and a stokes doublet (that is, the first derivative
of the stokeslet). A schematic representation of the image systems and a plot of their
streamlines are given in Figure 2.

John acknowledged in his manuscript that the solution was, in principle, available
from the reciprocal theorem of H. A. Lorentz. However, as John observed, “. . . the
present method yields much more clearly the form of the image system” [9]. For this
reason, the solution is sometimes referred to as the blakelet in his honour.

With knowledge of the image system structure, the far-field behaviour could then be
inferred, providing insight into how cilia induce fluid transport. A stokeslet, oriented
parallel to a boundary, produces a stokes-doublet far field, also known as a “stresslet”,
decaying as r−2, whereas a stokeslet, oriented perpendicular to a boundary, produces a
stokes-quadrupole/source-doublet far field, decaying as r−3. This form of the far field
was described by John [9] and given explicitly in a later work [16] through the formula

u j(x) ∼
Fk

8πµ

[12hx jxαx3δkα

|x|5
+ h2δk3

(
−

(12 + 6δ j3)x jx3

|x|5
+

30x jx3
3

|x|7
)]
.

This expression also leads to the volume flow rate produced by a stokeslet parallel
to a boundary, which in fact was only explicitly stated by Liron [38],

q1 =

∫ ∞

−∞

∫ ∞

0
F1G11(x1, x2, x3; ξ1, ξ2, h) dx2 dx3 →

F1h
πµ

as x1 →∞.

As will be described later, this expression is valuable in assessing the propulsive
effectiveness of various cilia motions.

An additional benefit of John’s methodology was that the Fourier transform
technique could be applied to other problems. As a postdoctoral researcher at Caltech
and in collaboration with Chwang, he derived analogous results for a point-torque
singularity (“rotlet”), source and source doublet, in the vicinity of a solid plane
boundary [16]. Another important example is that for a point force between two
parallel plates, representing the environment between a microscope slide and cover
glass. I recall John stating that he had solved this problem as far as finding a solution
in Fourier space but did not publish it; N. Liron and S. Mochon [40] subsequently used
his method and expressed the solution in terms of both Hankel integrals and infinite
series. A subsequent study has expressed this solution in terms of two Blake image
systems and a rapidly decaying Hankel integral, which is ideally suited for numerical
use [64]. These solutions are of such value that, even recently, modified expressions,
regularized versions and doubly periodic versions have been developed [26, 33, 42].
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[8] Biological fluid mechanics 423

Figure 2. The image systems and streamlines of a stokeslet a distance h from a solid plane boundary
at x3 = 0. (a, b) Images for parallel and perpendicular oriented stokeslets, redrawn from [9]. (c, d)
Streamlines for parallel and perpendicular stokeslets, respectively; note the radial streamlines in the far
field of a parallel stokeslet and the closed streamlines associated with a perpendicular stokeslet.
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Figure 3. Reconstructed cilia beats from the graphs in [11]. (a) Opalina, (b) Paramecium, (c) the
symplectic metachronal wave of an array of Opalina cilia.

The existence of eddies produced purely by the presence of boundaries in viscous
flow was first evident from John’s derivation of the image system for a stokeslet acting
perpendicular to a plane wall (Figure 2(d)). Liron, building on John’s Fourier transform
technique, found that a stokeslet acting between parallel plane solid boundaries would
also produce eddies [38], a finding which is generically relevant to the flow patterns
produced by motile microorganisms viewed in a typical microscopy set up. Further
studies of eddies produced in cylindrical geometries, and by ring distributions of
stokeslets near plane boundaries, followed; a comprehensive collection of these results
was given by Liron and Blake [39]. Their overall summary of this research was
that “. . . flow fields produced by sessile micro-organisms are determined primarily
by the container geometry in which they are located . . .”, a crucial finding for any
microscopist studying such species to be aware of.

3.2. Discrete cilia modelling The construction of the plane boundary image system
then enabled John to pursue a slender body theory based on line distributions of these
singular solutions. While the majority of work on slender body theory has sought
high precision – for example, through higher-order corrections – John reasoned that
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Figure 4. The coordinate systems of the discrete cilia model, redrawn from [11]. (a) The global coordinate
system, where s is arc length, t is time and ξ(s, t) is the curved centreline. (b) The local coordinate
system, where n and t are normal and tangential vectors, VN and VT are normal and tangential velocity
components and FN and FT are normal and tangential components of force per unit length exerted by the
cilium on the fluid.

this level of mathematical precision was unwarranted for the biopropulsion problem,
and unlikely to result in significantly different predictions. The model he developed
would be the first to take into account detailed movement of the cilium beat, and
the associated wall-interaction and cilium-orientation effects that produce qualitatively
different results from the surface squirmer model. It would also form the basis for later
studies of physiological cilia-driven flow.

In this section, we will outline the mathematical model developed in reference [11],
John’s seminal first treatment of this formidable fluid mechanics problem. The first
step in formulating such a model is to consider the flow produced by an individual
cilium. The setup is shown in Figure 4(a): a cilium has instantaneous shape given as a
function ξ of arc length s ∈ [0, L] measured from the base at the origin X = O and time
t. The force per unit length exerted by the cilium on the fluid is denoted F(ξ), so that
the velocity field produced by the cilium is of the form of a line integral of stokeslets
and their images

u j(x, t) =

∫ L

0
Fk[ξ(s, t)]G jk(x, ξ(s, t)) ds.

The analysis of the far field of the image system then yields the far-field form

u j ∼
3r∗3
2πµ

∫ L

0

r∗jr
∗
α

r∗5
ξ3Fα ds + O

( 1
r∗3

)
, (3.2)

where r∗1 = x1 − ξ1, r∗2 = x2 − ξ2, r∗3 = x3 and r∗ =

√
r∗21 + r∗22 + r∗23 .

Cilia beat forwards and backwards to produce flow. The time invariance of the
Stokes flow equations means that the forward and backward strokes must be different
to enable an overall flow to be produced. During the forward or “effective” stroke,
the cilium is relatively extended, while during the backward or “recovery” stroke, the
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cilium moves much closer to the surface. John noted from equation (3.2) that the region
around the force singularity which was effectively propelled was proportional to ξ3.
By extending further from the surface during the effective stroke, more fluid would be
propelled than during the recovery stroke, producing net transport.

The next step was to take into account the fact that cilia form a dense array.
Fortunately, the metachronal coordination and periodicity of the ciliary array simplifies
the analysis considerably. Mathematically, this coordination can be expressed by
defining the beat pattern of the cilium with base at (x1, x2, 0) as

ξ′1(s, t) = x1 + ξ1(s, kx1 ± σt),
ξ′2(s, t) = x2 + ξ2(s, kx1 ± σt),
ξ′3(s, t) = ξ3(s, kx1 ± σt),

where σ is the radian frequency, positive x1 is the direction of the effective stroke,
+σt refers to antiplectic metachronism (the wave travels in the opposite direction to
the effective stroke) and −σt refers to symplectic metachronism (the wave travels
in the same direction as the effective stroke). A metachronal wave is depicted in
Figure 3. Distributing the cilia on a rectangular lattice x1 = ma, x2 = nb with m, n =

0,±1,±2, . . . , the flow field u(x, t) can be constructed as a doubly infinite sum of line
integrals,

u j(x, t) =

∞∑
n=−∞

∞∑
m=−∞

∫ L

0
Fk[ξ′]G jk(x, ξ′) ds.

The doubly infinite sum was then dealt with by using the Poisson summation formula,
which replaces the summand with its Fourier transform, and producing exponential
convergence. Retaining only the leading order term, and taking both a spatial average
in (x1, x2) and a temporal average yielded the mean velocity profile as a function of x3,

Uα(x3) =
1
µab

∫ L

0
w(s, t)K(x3, ξ3)Fα[ξ] ds + O

(ab
L2

)
σL (α = 1, 2),

U3(x3) = O
(ab

L2

)
σL.

The weight function w(s, t) depends on the type of metachronism, and the kernel
K(x3, ξ3) obtained from spatially integrating G jk is given by

K(x3, ξ3) =

x3 (x3 < ξ3),
ξ3 (x3 > ξ3),

which can be physically interpreted as a shear flow below the singularity location and
a constant streaming flow above.

To calculate flow fields, an essential task was to derive a description of the cilium
beat. Cilia beat at or above 10 Hz, are densely packed and both their radius and spacing
are below the wavelength of visible light. Because of these features, determining the
beat pattern was (and still is) challenging – much more so than determining the beat of
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sperm flagella, as pursued through high-speed cinemicrography by Gray and Hancock
some 15 years earlier. John focused on freehand sketches of Sleigh’s diagrams of cilia
beats of Opalina, Paramecium and Pleurobrachia, derived from high-speed cinefilms.
He constructed least-squares cubic approximations of each instantaneous waveform,
followed by Fourier interpolation over the sequence of waveforms. The procedure was
carried out by hand and in John’s words was “not particularly accurate”; however,
it provided the essential characteristics of the beat patterns of different ciliates, as
well as providing a methodology which could subsequently be applied to the electron-
microscopy data on frozen respiratory cilia [54].

The mathematical form of the model taken was

ξ(s, τ) =
a0

2
+

N∑
n=1

[an(s) cos nτ + bn(s) sin nτ], with

an(s) =

M∑
m=1

Amnsm,

bn(s) =

M∑
m=1

Bmnsm.

(3.3)

Approximations to the coefficients Amn, Bmn are given in Appendix A, Table 1 and
the associated beat patterns depicted in Figure 3. John noted that, while his model
was general enough to accommodate three-dimensional (3D) motion, due to the
unavailability of data, it was necessary to approximate the cilia beat as planar. Around
this time the nonplanarity of the recovery stroke of Paramecium cilia was described
by Machemer [41]; respiratory cilia, by contrast, appear to have a nearly planar beat
pattern [24].

The final step in computing flow fields was to model the force. In keeping with the
approximate but rational approach, John utilized the resistance coefficient approach of
Gray and Hancock [30], through which the force on a small segment of a slender body
of length δs is given by an anisotropic force–velocity relation,

δFT = CT VTδs = CT (v · t)δs,
δFN = CNVNδs = CN(v · n)δs,

where v is the local fluid velocity, the unit vectors t and n are tangential and normal
to the flagellum and CT , CN are resistance coefficients, with CN/CT ≈ 2, as shown in
Figure 4(b). Combined with the spatial and temporal averaging procedure, coupling
the velocity field due to a single cilium to the velocity field due to all cilia and
solving numerically, flow profiles could then be computed. The resulting flow profiles
showed backward flow close to the surface in the antiplectic species Paramecium and
Pleurobrachia, but not in the symplectic species Opalina. Further quantities that were
found via this method included the cilium force distributions and rate of working.

The key mechanisms by which protozoan cilia propel fluid would be summarized
by John as follows.
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(1) The wall effect – cilia are further from the no-slip boundary during the effective
stroke than the recovery stroke, and hence propel more fluid.

(2) The orientation effect – cilia move relatively more normal to their axis during
their effective stroke, and more tangentially to their axis during their recovery
stroke. Because CN > CT , more fluid is propelled by the effective motion.

This study, written before John was 25, shows a virtuoso in action, simplifying an
intimidating fluid mechanical problem to render it amenable to the limited research
computing technology of the late 1960s, and extracting physical insight from the
resulting mathematical expressions. As computing technology has developed, some
of these simplifications are no longer necessary; however, the core ideas of image
systems, modelling cilia with singularity solutions and Fourier representations of the
cilia beat are fundamental to current research. In the next section, we will see how
developments of this first paper could then be applied to human health and disease.

4. Cilia in physiological flows

Cilia are found throughout the eukaryotes, in particular, being crucial to
physiological functions in animals such as respiratory defence, transport of the ovum
and embryo and embryonic left–right symmetry breaking. John’s first foray into
physiological flow was while he was still at DAMTP, University of Cambridge, as
a postdoctoral fellow [12], formulating a model of flow in ciliated tubules such as
the trachea via the methods described in Section 3. As he had found for protozoan
cilia exhibiting antiplectic metachronism, John predicted that reflux could occur close
to the tracheal wall (reflux had been described in the related context of peristalsis
in the preceding years; see [35] for details and references). He followed this initial
study with a highly cited paper On the movement of mucus in the lung [13], which
investigated the effect of cilia, gravity and airflow in transporting mucus, and the
effect of the low-viscosity peri-ciliary layer which lies below the mucous layer on
these mechanisms. In addition to the propulsive mechanisms demonstrated in ciliated
protozoa (the wall effect and the orientation effect), respiratory cilia also engage the
highly viscous mucous layer only during their effective stroke, the recovery stroke
normally taking place entirely in the low-viscosity peri-ciliary layer. This selective
engagement again breaks forward/backward symmetry, enhancing mucus transport.
Other topics in physiological mechanics investigated around this period included flow
in the foetal lung [15, 36] and the role of cilia in ovum transport [23].

John returned to the subject of respiratory clearance after taking up his Chair at the
University of Wollongong (although it should be mentioned that he also collaborated
for a period with Aderogba on the pertinent topic of the action of a force near a planar
two-fluid interface [1, 2]). With his first Ph.D. student, Fulford, he studied the slender
body theory of an object straddling the interface between two viscous fluids (Figure 5),
as occurs during the effective stroke (published in [27] with a publication date of 1986
but submitted in 1984). Based on this detailed analysis, and retaining the leading order
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Figure 5. Schematic of cilia propelling a two-layer fluid, as found in the respiratory system with a lower
watery peri-ciliary layer and an upper highly viscous mucous layer [17, 27, 28]. (a) A single cilium
penetrating the mucous layer. (b) Characteristic shape of velocity profiles recovered from the discrete
cilia model, with zero or slight backward transport throughout most of the peri-ciliary layer. (c) Depiction
of a set of cilia with antiplectic metachronism propelling a two-layer fluid (pcl: peri-ciliary layer, ml:
mucous layer).

term, a modified theory of the type described in Section 3 could then be derived [17],

Uα(x3, t) =
1

Nab

N∑
n=1

∫ L

0
F(`)
α (ξ∗)K(`)(x3, ξ

∗
3) ds,

where N is the number of cilia in one wavelength and the superscript ` refers to the
peri-cilia layer (1) or mucous layer (2), the kernel now taking the form

(i) (0 < y3 < h)

K(1)(x3, y3) =


x3/µ1; 0 6 x3 < y3,

y3/µ1; y3 < x3 6 h,
y3/µ1; h 6 x3 6 H,

(ii) (h < y3 < H)

K(2)(x3, y3) =


x3/µ1; 0 6 x3 6 h,
(x3 + (λ − 1)h)/µ2; h 6 x3 < y3,

(y3 + (λ − 1)h)/µ2; y3 < x3 6 H.

https://doi.org/10.1017/S1446181118000020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000020


430 D. J. Smith [15]

The parameter λ = µ2/µ1 is the ratio of viscosities of the mucus and peri-cilia fluid.
The theory also revealed behaviour of the interface shape: the interface is depressed
immediately in front of the body.

In the follow-up paper in the Journal of Theoretical Biology [28], this theory was
applied to a respiratory cilia beat pattern extracted from the electron-microscopy data
of Sanderson and Sleigh [54], leading to a prediction of optimal cilia penetration depth
(10–20%) of the cilium length, and the conclusion that cilia penetration was necessary
for effective transport only in the case of low ciliary activity. Additionally, it was
confirmed that mean transport of the peri-ciliary fluid was likely to be minimal by
comparison with the mucous layer. These studies culminated in a highly cited state of
art review with Sleigh and Liron [55].

Over a decade later, experiments on human tracheo-bronchial cultures conducted
at the University of North Carolina at Chapel Hill would appear to refute the finding
of minimal peri-ciliary fluid transport, in part of a study on the competing roles of
fluid depletion and tonicity on the airway disease that occurs in cystic fibrosis [43].
By photo-uncaging fluorescent molecules dispersed through the surface liquid and
visualizing with confocal microscopy, the Chapel Hill team appeared to have observed
“cotransport” of both layers, contradicting the velocity profile prediction of the type
shown in Figure 5(b). These experiments would re-kindle John’s interest in the
respiratory system, initially through a conference paper with Eamonn Gaffney [19],
followed by my Ph.D. research with John and Eamonn which commenced in 2002. My
work with John and Eamonn focused on the role of viscoelastic effects and pressure
gradients induced by the presence of the mucous layer, formulated by developing a
spatially continuous “traction-layer” model [60], building on the active porous medium
model John developed while at CSIRO in the late 1970s [14]. The combination of
large oscillations in the velocity field induced by the cilia beat with the effect of shear-
enhanced diffusion across the thin airway surface liquid layer resulted in predictions of
fluorescent molecule transport that were compatible with the Chapel Hill experiments,
even with minimal time-averaged peri-ciliary liquid velocity [59]. The revisited model
also enabled effects such as airway surface liquid depth and viscosity ratio to be
investigated further – an initially surprising prediction of the model was that reducing
the viscosity of the mucus may actually increase transport, provided that the mucus–
peri-cilia interface is maintained – however, this prediction was supported by the
fact that the heavily diluted airway surface liquid transport occurring in the condition
pseudohypoaldosteronism is transported more rapidly than normal. These findings are
summarized in more detail in the review [61].

John also encouraged me to revisit discrete cilia modelling, an area in which it was
now possible to make further progress because of the increased computational power
that had become available over the previous two decades. We were able to model
flow around cilia below an oscillating mucous layer [58], combining John’s earlier
modelling ideas with methodological developments of three earlier collaborators of
John’s – Liron et al. [25, 38] – and Staben et al.’s repurposing of the Blake image
system [64]. We later applied our work on discrete cilia modelling to the embryonic
node, as will be discussed in Section 6.

https://doi.org/10.1017/S1446181118000020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000020


[16] Biological fluid mechanics 431

5. Flagellates, blinking stokeslets and chaotic advection

Another important role of cilia in nature is feeding. Examples which John
published include filter feeding of bivalve mussels [18] and sessile ciliated aquatic
microorganisms such as Vorticella and Stentor [20]. The latter example led him,
working with Steve Otto, a colleague at the University of Birmingham, to the idea
of the blinking stokeslet.

The earlier study of Higdon [32] (also a student of Lighthill) predicted that the
feeding current generated by a flagellum produced only a toroidal eddy, which would
not be optimal for bringing a continuous supply of new nutrients to the feeder.
Reasoning that sessile microorganisms must be able to increase the volume which
they can sample, John postulated that these microorganisms may alter the length of
their stalk in order to produce a chaotic flow field. To demonstrate the idea, Blake
and Otto [20, 21] constructed a conceptually simple, but dynamically rich blinking
stokeslet model, an adaptation of the earlier blinking vortex of Aref [3].

The blinking stokeslet is depicted in Figure 6. Briefly, the effect of the
microorganism on the fluid is assumed to switch between two states – concentrated
forcing of fluid towards the boundary at height h = 1 + ε and concentrated forcing of
fluid towards the boundary at height h = 1 − ε. In two dimensions, the flow due to a
stokeslet pointing towards a plane boundary is given by ux = ∂Ψ/∂y, uy = −∂Ψ/∂x,
where the streamfunction Ψ has the form

Ψ(x, z) =
F

8πµ
x
[1
2

ln
{ x2 + (y + h)2

x2 + (y − h)2

}
−

2hy
x2 + (y − h)2

]
.

The streamfunction for the blinking stokeslet is then

Ψ(x, y; t) = Ω+(t)Ψ+(x, y) + Ω−(t)Ψ−(x, y),

where Ψ± refers to the streamfunction with h = 1 ± ε and the switching protocol is
defined by

Ω± = 2Ω0
± sin

( tπ
τ

){
sin

( tπ
τ

)
±

∣∣∣∣∣ sin
( tπ
τ

)∣∣∣∣∣}.
The parameters Ω0

± are constants defining the amplitudes of the magnitude of each
stokeslet. With fixed force location, particles would move along the closed streamlines
shown in Figure 2(d); however, the temporally continuous periodic switching of
the force location caused particles to move between streamlines, greatly increasing
mixing and hence sampling space. The existence of chaotic advection was explored
via Poincaré sections, as shown in Figure 7. A key finding was that, as the period of
the switching oscillation τ increased, the flow became more chaotic.

In a follow-up paper with postdoctoral researcher Yannacopoulos [50], the analysis
of chaotic advection was further developed through the introduction of white noise,
to model molecular diffusion, and with additional mathematical tools, including delta-
function temporal switching, enabling the construction of an implicit map and the
calculation of finite-time Lyapunov exponents, revealing remarkably beautiful and

https://doi.org/10.1017/S1446181118000020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000020


432 D. J. Smith [17]

Figure 6. Schematic of the blinking stokeslet model of microorganism feeding. The flow is produced by a
switching protocol between point forces acting at ξ = [0, 1 + ε] and ξ = [0, 1 − ε], both pointing towards
the boundary. Open circles correspond to “off”, filled circles and arrows correspond to “on”.

Figure 7. Poincaré sections produced by a blinking stokeslet, for two different switching periods τ.
(a) τ = 0.1, (b) τ = 0.5. From [21], c© Springer, Berlin Heidelberg, 1998, with permission of Springer.

complex dynamics from such a conceptually simple model. Further applications of
this idea included the feeding of the choanoflagellate Amphoridium [49]; a review
following a 2011 meeting in Leiden which John participated in along with Aref and
many other leading figures in the field has recently been published [4].

Another type of flagellate is the sperm cell of higher animals, including humans.
John brought together a group of younger researchers involving Birmingham Women’s
NHS Foundation Trust Assisted Conception Unit, the School of Medicine, and
Mathematics at the University of Birmingham, including the author. This team has
grown over the last decade to include the Universities of Oxford, York, Warwick
and Kyoto and has led to a number of publications in journals ranging from applied
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Figure 8. The flow velocity magnitude around a swimming human sperm, via similar methods to [29].
(a, b) A cell in low-viscosity fluid (for example, laboratory saline), (c, d) a cell which has penetrated
fluid with viscosity similar to mid-cycle mucus (0.14 Pa s). (a, c) High-speed imaging; (b, d) flow-
field simulation using waveforms captured from experiment, calculated from slender body theory and the
boundary element method. Through its altered beat pattern, the cell in high-viscosity fluid produces a
much smaller magnitude flow; however, it progresses through fluid at the same velocity of approximately
50 µm/s. The absence of a “wake” emphasizes the very low Reynolds nature of the flow regime in both
cases.

mathematics and physics to reproductive medicine. During the period of John’s
leadership up to around 2011, our findings included a fluid dynamic interpretation
of the surface accumulation effect in sperm [57, 62], exploration of the flow field
(Figure 8) and internal moment generation in motile cells in physiological viscosity
fluid [29]. John certainly had an excellent instinct for the “right problem” to focus on
– I will conclude with perhaps his favourite example.
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Figure 9. Schematic of the embryonic node of the mouse – note the convention of depicting the left of
the embryo (L) on the right-hand side of the figure.

6. Embryonic nodal cilia

In July 2002, relatively early in my Ph.D. studies and shortly after being inducted
into the modelling techniques described in Section 3, John showed me a Nature
Letter [45] by the Hamada group in Osaka, Japan. This paper addressed the role of
cilia-driven flow in the early stages of embryonic left–right symmetry breaking. The
left–right axis in mammalian (including human) embryo development is the last to
appear, and in the vast majority of individuals breaks the same way – the heart is to
the left of the mid-line, the liver to the right. The role of cilia in this process had
been long suspected, following Afzelius’ discovery of defects in cilium structure in
individuals with Kartagener’s syndrome (a triad of respiratory disease, male infertility
and transposed left–right situs) in the early 1970s [5, 6], but it was not until around
20 years later that cilia were discovered in the embryonic node of the mouse at
approximately 8 days post-fertilization [65], along with the existence of the nodal
flow [46]. The process is shown schematically in Figure 9: a cilia-driven leftward flow
is produced lower in the layer (this is conventionally drawn the wrong way round),
with a slower rightward flow induced higher up in the layer, induced by the presence
of the overlying Reichert’s membrane and associated mass conservation.

The 2002 paper of Nonaka et al. [45] described remarkable experiments in which
the flow was reversed artificially in ex vivo mouse embryos, resulting in reversal of
situs in normal embryos and correction of situs in mutant embryos with immotile cilia.
Our initial modelling efforts did not however result in an explanation for the nodal
flow – nodal cilia were reported to “whirl” clockwise when viewed from above, but
how this flow was converted into directional transport was unclear. Two years later,
Cartwright, Tuval and Piro demonstrated conceptually that a whirling cilium which
was tilted towards the already established posterior axis would break symmetry, and
they calculated the flow field associated with an array of tilted rotlets. The tilt was
confirmed experimentally soon afterwards [48] and modelled experimentally [47]. The
latter paper re-ignited John’s interest in the area, and so as I was finishing my Ph.D.
studies, he encouraged me to revisit the problem, making use of the image systems he
had derived himself as a Ph.D. student.

Modelling individual and small groups of tilted, whirling cilia – the cilia in the
node are sparser than in the respiratory epithelium – we simulated the transport
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of morphogen-containing parcels. As may be expected, close to the cilia the flow
was highly vortical, with particles making multiple orbits before “escaping” towards
the left; above the cilia tips, particles underwent a “loopy drift” to the left. The
latter behaviour is not obvious from a “pure rotlet” model; however, it can be
interpreted as resulting from the image system induced by the no-slip boundary. The
stokeslet associated with a parallel-oriented point force induces an O(hr−2) stresslet far
field, whereas the perpendicular-oriented point force decays more rapidly, so can be
neglected to a first approximation. The rotational beat cycle can therefore be broken
up into a rightward motion and a leftward motion, in the latter case with h ranging
over larger values: the net effect is a leftward drift [58]: an example of the wall effect
John had found in his work on ciliates as a Ph.D. student. A similar “time-averaged”
interpretation can be deduced from the image system associated with a point torque
oriented parallel to a plane boundary [16, 58]. These qualitative features were soon
afterwards observed experimentally in the zebrafish embryo through imaging particles
released by laser ablation [66].

We later (see Appendix B for a more personal account) explored the volume flow
rate produced by a single tilted rotating cilium in the vicinity of a plane boundary
to attempt to deduce to what extent the cilium beat pattern is optimized to produce
maximum flow. John derived a very simple formula for this, which belies a fairly
involved derivation (we later arrived at a somewhat easier derivation through some
geometrical intuition; see [63]). For a cilium of length L, projecting from a plane
boundary at x3 = 0, performing a conical rotation (clockwise viewed from above) with
semicone angle ψ, tilted by angle θ in the posterior direction and radian frequency
ω, in a fluid with dynamic viscosity µ, the time-averaged volume flow rate in the x1
direction Q is given by

Q =
CNωL3

6πµ
sin2 ψ sin θ, (6.1)

where CN is the resistance coefficient associated with normal motion of the cilium.
The geometric setup is shown in Figure 10(a), where x1 is the right–left axis, x2 is
dorsal–ventral and x3 is posterior–anterior (in all cases, negative-to-positive). The
angular dependence is shown in Figure 10(b). Noting that ψ + θ 6 π/2 and that as
a nondecreasing function Q(ψ, θ) has its maximum value on the boundary ψ + θ =

π/2, we then seek the maximum of sin2 ψ sin(π/2 − ψ), which is easily found to
be ψ = arctan

√
2 ≈ 54.7◦, with θ ≈ 35.3◦. I (and colleagues) were initially surprised

that the optimal angle was not simply ψ = θ = 45◦, although this was clear from the
mechanical experiments of Nonaka et al. [47]. The formula compared well to more
precise simulation based on a computational implementation of slender body theory,
and the optimal angle prediction of θ ≈ 35◦ was consistent with the (fairly wide range)
of values in experiment – 40◦ by Okada et al. [48] to 27◦ by Nonaka et al. [47].

Equation (6.1) has since been extended to take account of higher-order
multipoles [69], modified to produce a parameterized point-torque representation for
whole-organ modelling [44] and generalized to model helical waveforms in long-cilia
mutants [52]. John told me that his “Q-formula”, derived from coordinate geometry,
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Figure 10. Geometric model of a whirling nodal cilium and prediction of the dependence of flow rate
from the geometric parameters. (a) A model of a nodal cilium as a rigid whirling rod, tracing out a
conical envelope with semi-cone angle ψ and tilt angle θ towards the posterior. (b) Plot of the function
sin2 ψ sin θ for the angles 0 6 ψ 6 π/2 and 0 6 θ + ψ 6 π/2. The optimum occurs for ψ + θ = π/2 and
ψ = arctan

√
2 ≈ 54.7◦.

calculus, resistive force theory, the Blake image system and yielding a physical insight
about the origins of symmetry in vertebrate embryos, was one of his proudest career
achievements. Its elegance, utility and generalizability exemplify his approach to
science.

7. Conclusions and personal reflection

This article has highlighted some of the many areas of biological fluid mechanics to
which John Blake made major contributions, in addition to a personal perspective to
give an indication of the inspiration he provided to his students. John supervised about
22 Ph.D. students and 17 postdoctoral researchers – I was fortunate to work with him
in both capacities, over a period (2002–2013) during which biological fluid mechanics
was making a resurgence, with many researchers internationally building on John’s
achievements. His enthusiasm, wealth of knowledge, insight and resources provided a
wonderful intellectual environment for an aspiring scientist.

If I may attempt to characterize John’s scientific ethos, it would be that he
developed elegant mathematical approaches to reveal the fundamental physical
effects in complex living systems. He combined the ability to distill the essential
physics of a system mathematically, with an instinct for the most fertile ground for
applied mathematicians to collaborate with experimentalists. John also insisted on the
importance of disseminating findings to all of the communities that needed to hear
about them.

In summary, John Blake provided mathematical theory to understand and make
predictions about the microscale world of fluid mechanics around cells, enabling us
to use mathematics as an improved microscope, capable of seeing the mechanical
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interactions and principles of movement and transport as well as shape and form.
His legacy is not simply the techniques he developed but also the collaborations he
fostered, the ethos he championed and the scientific careers he nurtured.

Appendix A. Fourier coefficients of the reconstructed cilia beat patterns

The coefficients Amn, Bmn of equation (3.3) were not published in [11] (although
coefficients were reported for subsequent studies on respiratory tract cilia). Retracing
John’s steps by performing the Fourier least-squares fit with Matlab leads to the
coefficients given in Table 1. These coefficients are somewhat approximate; however,
I recall John’s amusement at younger researchers taking to excessive precision
coefficients derived with, in his words, a “sheet of acetate and a piece of string”!

Appendix B. Genesis of the “Q-formula”

While our simulations of particle tracks produced by tilted whirling cilia had been
incorporated into [58], which was to be submitted in mid-2006, John was keen also to
submit a shorter article addressed at a wider community than mathematical biologists.
In Spring 2006, while we were producing this draft, John informed us that he was
ill, and would immediately have to take sick leave. Fortunately, John recovered and
returned to work (as Head of School) just over a year later. Characteristically, John
was not able to disconnect from scientific activity during his period of absence.

Figure 11. John’s initial work on the “Q-formula” for embryonic nodal cilia in 2006, communicated by
hand-written letter while recuperating in 2006 (the other individuals addressed are Paul Wakeley, then a
Ph.D. student with John, and colleague Eamonn Gaffney).
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Table 1. Fourier coefficients used to produce the beat patterns in Figures 1(a) and 3, via equation (3.3).
These coefficients were reconstructed via a least-squares procedure from the figures in [11].

(a) Opalina
Amn

n = 0 1 2 3 4
m = 1 0.725 0.097 0.187 −0.052 −0.005

−0.634 −0.009 0.112 0.229 −0.095
m = 2 −0.223 0.849 −0.615 −0.043 0.115

0.150 1.206 −0.191 −0.790 0.379
m = 3 0.204 −0.593 0.393 0.029 −0.078

0.026 −0.769 0.053 0.553 −0.285
Bmn

n = 1 2 3 4
m = 1 −0.336 0.145 0.089 −0.094

−0.298 −0.012 0.137 0.091
m = 2 0.264 0.186 −0.387 0.121

0.387 0.389 −0.432 −0.497
m = 3 0.007 −0.254 0.251 −0.029

−0.002 −0.398 0.206 0.398

(b) Paramecium
Amn

n = 0 1 2 3
m = 1 −0.583 0.436 −0.456 −0.021

−0.800 0.084 −0.090 0.025
m = 2 1.150 −2.492 1.012 0.279

−0.164 −0.286 0.294 0.192
m = 3 −0.276 1.645 −0.928 −0.358

0.453 −0.132 −0.240 −0.141
Bmn

n = 1 2 3
m = 1 0.514 −0.257 −0.117

−0.315 0.003 −0.024
m = 2 0.574 0.661 0.217

1.340 −0.428 −0.081
m = 3 −1.046 −0.571 −0.184

−1.217 0.382 0.045

https://doi.org/10.1017/S1446181118000020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000020


[24] Biological fluid mechanics 439

Although he was often not able to meet his students and colleagues in person,
he communicated through regular hand-written letters – an example is shown in
Figure 11, which shows the opening pages of John’s first draft of modelling flow
generation by a tilted whirling cilium, resulting (after a couple of iterations) in the
“Q-formula” of equation (6.1).
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