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On number fields with given ramification

Gaëtan Chenevier

Abstract

Let E be a CM number field and let S be a finite set of primes of E containing the primes
dividing a given prime number l and another prime u split above the maximal totally
real subfield of E. If ES denotes a maximal algebraic extension of E which is unramified
outside S, we show that the natural maps Gal(Eu/Eu) −→ Gal(ES/E) are injective. We
discuss generalizations of this result.

1. Introduction

Let E be a number field and S a nonempty set of places of E. We denote by ES a maximal
algebraic extension of E unramified outside S. Let us fix u ∈ S and an E-embedding ϕ of ES in
an algebraic closure Eu of Eu. In this paper, we are interested in the following property:

ES is dense in Eu, (PE,S,u)

where the identification of ES with ϕ(ES) is understood. It is easy to see that PE,S,u is independent
of the choice of ϕ, and equivalent to each of the following properties:

(i) the map Gal(Eu/Eu) −→ Gal(ES/E) induced by ϕ is injective;

(ii) the Eu-vector space generated by ES is Eu;

(iii) for all finite extension K/Eu, there exists a number field E′/E unramified outside S and a
place u′|u such that K has a continuous embedding into E′

u′ .

A trivial remark is that if u ∈ S′ ⊂ S, then PE,S′,u implies PE,S,u. Moreover, a simple argument
using Krasner’s lemma and a weak approximation theorem shows that a stronger form of (PE,S,u)
is true1 if S contains almost all of the places of E. However, Minkowski’s theorem asserts that
Q{∞} = Q, hence PQ,{∞},∞ is not satisfied. For these reasons and others related to arithmetic
geometry which will become clear later, we focus our attention on the case where S is a finite
set containing all of the archimedean places of E and all of the finite places dividing a given
prime number l. As PE,S,u is then obviously true for each archimedean place u (e.g. because of
cyclotomic fields), let us assume also that u is finite. At least in this setting, the question of
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1Let M be a local field, d � 1 an integer, and Q ∈ M [T ]d a separable polynomial of degree d. By continuity of roots
and Krasner’s lemma, if R ∈ M [T ]d is sufficiently close to Q, then M [T ]/(R) � M [T ]/(Q) as M -algebra. Now, let
S′ be a finite set of places of a number field E, and let us fix for each x ∈ S′ an étale Ex-algebra Ax, each of same
degree d. Then the argument above, the primitive element theorem, and the weak approximation for the affine line
over E, show that there exists an étale E-algebra A of degree d, with A ⊗E Ex � Ax for all x ∈ S′. It implies the
claim if we take S′ to be the set of places x of E such that x = u or x /∈ S, Au := K, and (for example. . . ) Ax = Ed

x

if x ∈ S′\{u}. Of course, this simple approach is inefficient when S′ is not finite.
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deciding whether PE,S,u is true seems to be in the folklore of algebraic number theory,2 and as
far as the author knows, there was no example before this paper of such a triple (E,S, u) where
the answer was known. Note that although local Galois groups are pro-solvable, it does not seem
possible3 to deduce property PE,S,u by induction from class field theory (or by the Grunwald–
Wang theorem [AT68, p. 105]), the obstructions given by units forcing us to enlarge S at each
step (see also Proposition 4.1). Let us mention also that a weak version of PE,S,u is known by the
work of Kuz’min and Mukhamedov [Muk84] (see also [NSW00, ch. X, § 6, Theorem 10.6.4 and the
last exercise]) concerning p-extensions of CM fields. For example, the following result is proved
in [Muk84]. Let p be a prime number and let E be a CM field with maximal totally real subfield F
such that each prime v of F dividing p splits in E. If v is such a place, then the canonical maps

Gal(Fv/Fv)p −→ Gal(E{p,∞}/E)p,

are injective. In this statement, Hp denotes the maximal pro-p-quotient of the profinite group H.
However, there seems to be no way to deduce property PE,{∞,p},v from these. We come now to our
main results.

Theorem 1.1. Assume that E is a CM field and that u is split above a finite place v of the maximal
totally real subfield F of E. If l is a rational prime number which is prime to v, and if S is the set
of places of E dividing lv, then PE,S,u holds.

Corollary 1.1. If E and S are as in Theorem 1.1, then any integer n � 1 divides the pro-cardinal
of Gal(ES/E).

Indeed, this last property is a general consequence of PE,S,u when u is finite, as Gal(Eu/Eu)
then has a continuous surjective homomorphism to Ẑ. As Milne pointed out to us, this corollary
answers in some cases a question raised in [Mil86, ch. I, § 4] (concerning the set P defined there).
Note that the hypotheses of Theorem 1.1 are satisfied, for instance, if E is a quadratic imaginary
field split at a prime number v = p, and l is a prime not equal to p. It has the following consequence
for E = Q.

Corollary 1.2. Let p be a prime number, N an integer such that −N is the discriminant of an
imaginary quadratic field in which p splits, and let S be the set of primes dividing Np∞. Then
PQ,S,p holds.

Explicit examples are given by (p,N) ∈ {(2, 7), (3, 23), (3, 11), (5, 22), (5, 11), (7, 3), . . . }. In fact,
as we will see later, we certainly conjecture that if p and l are distinct primes, then PQ,{∞,p,l},p
holds.

Theorem 1.2. Let p and l be any distinct prime numbers, and assume that Hypotheses 1 and 2
hold (see § 5.1), then PQ,{∞,p,l},p holds.

Although it is tempting to conjecture that PQ,{∞,l},l holds, we are unfortunately less definite in
this case (see § 5.2).

Let us describe a bit the strategy of the proofs. First, we have to construct a lot of number fields
unramified outside a given set of places S. By a well-known result of Grothendieck, the number
fields attached to the l-adic étale cohomology of a proper smooth scheme X over E satisfy this
property if X has good reduction outside S, and if S contains the primes dividing l. Although it

2In particular, it had been asked by Ralph Greenberg after a related question raised by James Milne concerning the
procardinal of Gal(ES/E) (see [Mil86, ch. I, § 4] and our Corollary 1.1).
3The author confesses that he did not manage to prove that ‘the maximal pro-solvable extension of E inside ES is
not dense in Eu’, although it seems reasonable.
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might be very difficult in general to find such an X (S being given), well chosen Shimura varieties
give some interesting examples. Even better, their l-adic cohomology is completely described, at
least conjecturally, by the Langlands conjectures, in terms of cohomological automorphic forms. By
the work of many authors, culminating in Harris and Taylor’s proof of local Langlands conjecture for
GLn, a big part of these conjectures is known for the so-called ‘simple’ Shimura varieties, which are
attached to some unitary groups. This combined with some other tricks allowed Harris and Taylor
to attach an l-adic representation to a wide class of cuspidal automorphic forms for GLn(AE)
(see [HT01, Theorem C]), compatible with the local Langlands correspondence at all finite places
not dividing l. Thus, we first show that we can construct cuspidal automorphic forms for GLn(AE)
satisfying Harris–Taylor’s conditions, and which are unramified outside S and of given ‘ramification
type’ at u. More precisely, we first construct some automorphic forms on well-chosen unitary groups
and we apply quadratic base-change to them (§§ 2.1 and 2.2). By Harris and Taylor’s result, their
associated l-adic Galois representations give us number fields with the required local properties and
some control at u (§ 3.1). The local Langlands correspondence shows then that we can produce
in this way many such number fields, using unitary groups of all ranks. Two little subtleties arise at
this point. First, we have little control, of course, on the Weil numbers in the above constructions,
i.e. on the unramified part of the completion at u of the number fields constructed. The second is
that the automorphic representations we consider must fulfill some conditions so that we may apply
to them the results of Harris and Taylor and the known cases of quadratic base change. However,
a simple trick (§ 3.2) allows us to show that we produced sufficiently many number fields to prove
Theorem 1.1.

As the sketch above shows, a question closely related to our initial aim is to ask if there exists
pure motives over E with ‘reduction type’ prescribed at each finite place (and, say, generic Hodge
numbers). On the automorphic side, it leads to the purely analytic problem of constructing non-
trivial, discrete, algebraic automorphic forms for a given reductive Q-group H, with prescribed
properties at all finite places. Of course, it is not always possible, e.g. an anisotropic torus has
this property if and only if its real points are compact. In § 4, we show how to construct these
automorphic forms under the following hypothesis on H: its center has finite arithmetic subgroups
and H(R) has a holomorphic discrete series. This result was probably known to specialists, but
we could not find any convenient reference in this generality. By similar arguments as in the proof
of Theorem 1.1, and using these automorphic representations, we explain in the last section some
consequences concerning property PE,S,u of some standard conjectures in the arithmetic theory of
automorphic forms. In particular, we obtain Theorem 1.2.

Notation

If F and G are two subfields of a given field, we denote by F.G the subfield generated by F and G.
This is also the F -vector space generated by G if G is algebraic over F ∩G. If K is a field, K denotes
a separable algebraic closure of K, and GK := Gal(K/K) its absolute Galois group, equipped with
its Krull topology. If ρ : GK → H is any continuous group homomorphism to a topological group
H, we denote by K(ρ) := K

Ker(ρ) the algebraic normal extension of K fixed by Ker(ρ). We say
that K(ρ) is the extension of K cut out by ρ. If K is a finite extension of Qp, Kur ⊂ K denotes its
maximal unramified extension, WK ⊂ GK its Weil group, and IK = Gal(K/Kur) ⊂ WK its inertia
group. If F is a number field, AF denotes the adèle ring of F and AF,f its quotient of finite ones. If
p+q = n, we denote by U(p, q) the real unitary group of signature (p, q), and we set U(n) := U(n, 0).

2. Construction of some automorphic forms I

Let E be a CM field as in the statement of Theorem 1.1. Let us fix a finite place w of F dividing
the prime number l (in particular, w �= v), and let n � 1 be an integer.
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2.1 Some unitary groups
We want to consider unitary groups attached to central division algebras over E, which are quasisplit
at each finite place not equal to w, v, and compact at infinite places for convenience. The relevant
‘Hasse principle’ is known and due to Kneser. We refer to Clozel’s paper [Clo91, § 2] for a convenient
exposition of Kottwitz’ interpretation of Kneser’s results in the special case of unitary groups.

Lemma 2.1. There exists a unitary group U(n) over F attached to E/F such that for a place x
of F , U(n)(Fx) is:

(a) quasisplit if x is a finite place not dividing wv;

(b) the group of units of a central division algebra over Fx if x = v;

(c) the compact real unitary group if x is real.

Proof. If n is odd, there is no global obstruction to the existence of such groups by [Clo91,
Lemma 2.1]. Assume n is even. By [Clo91, (2.2)], the global obstruction lies in Z/2Z and is the sum
of all local ones modulo 2. Assuming given local groups satisfying parts (a), (b), and (c), we can
make the global invariant vanish by requiring, if necessary, that U(n)(Fw) is either a non-quasisplit
unitary group or the units of a division algebra, because such groups have local invariant equivalent
to 1 mod 2 by [Clo91, (2.3)]. This concludes the proof.

2.2 Construction of automorphic forms
Let H/F be the unitary group U(n) given by Lemma 2.1. The group H(Fv) is the group of units of
a central division algebra D over Fv of rank n2. Let π be an irreducible, finite-dimensional, complex
smooth representation of D∗.

Lemma 2.2. There exists an irreducible automorphic representation Π of H(AF ) such that:

(a) if x �= v, w is finite place, then Πx is unramified;

(b) Πv � π ⊗ ψ for some unramified character ψ : D∗ → C∗.

Proof. We first choose, for each finite place x of F , a particular compact open subgroup Jx of
H(Fx). If x is different from v and w, H(Fx) is quasisplit so that we can take for Jx a maximal
compact subgroup which is very special in the sense of [Lab98, § 3.6] (when x does not ramify in E,
the hyperspecial compact subgroups of H(Fx) are very special; for almost all x we may and want
to take Jx = H(OFx)). For such a place x, an irreducible admissible representation of H(Fx) will
be said to be unramified if it has a nonzero vector invariant by Jx. If x = v, we take Jx = OD

∗ and
we fix an irreducible constituent τv of π|Jv

. If x = w, we take any compact open subgroup of H(Fx)
for Jx. Let J :=

∏
x Jx, it is a compact open subgroup of H(AF,f ). Let τ be the trivial extension to

J of the representation τv of Jv , via the canonical projection J → Jv .
As H∞ := H(F ⊗Q R) is compact, the group H(F ) is discrete in H(AF,f ). In particular, Γ :=

H(F ) ∩ J is a finite-group. For any continuous (finite-dimensional), complex representation W of
H∞, we set W (τ) := W ⊗ τ∗, viewed as an H∞×J-representation. By the Peter–Weyl theorem, we
can find an irreducible W such that W|Γ contains a copy of τ , and so a nonzero element v ∈W (τ)Γ

(for the diagonal action of Γ). We choose moreover an element ϕ ∈ W (τ)∗ such that ϕ(v) = 1. Let
h : H∞ × J → C be the coefficient of W (τ) defined by h(z) := ϕ(z−1.v). By construction, h is
smooth, left Γ-invariant, and generates copies of W (τ)∗ under the right translations by H∞ × J ,
because W (τ) is irreducible. It is nonzero because h(1) = 1. It extends then uniquely to a smooth
map fh : H(AF ) → C null outside the open subset H(F ).(H∞ × J) and satisfying fh(γz) = fh(z),
for all γ ∈ H(F ), z ∈ H(AF ), i.e. which is an automorphic form for H. Let Π ⊂ L2(H(F )\H(AF ),C)
be an irreducible constituent of the H(AF )-representation generated by fh.
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By definition, Πx is unramified if x �= v,w is a finite place, hence part (a) holds. Moreover, Πv

is an irreducible representation of H(Fv) whose restriction to Jv contains τv. As π is supercuspidal
and as (Jv , τv) is a [H(Fv), π]H(Fv)-type by [BK98, Proposition 5.4], π and Πv can differ only by
a twist by an unramified character of H(Fv), proving part (b). We recall the argument for the
convenience of the reader. Let Z = F ∗

v denote the center of D∗, J̃v := ZO∗
D ⊂ D∗, and τ̃ the

natural extension of τ to J̃v which is contained in Πv |J̃v
. Note that any unramified character of

Z extends to a unramified character of D∗, hence we may assume that π|J̃v
contains τ̃ , by replac-

ing π by some unramified twist if necessary. Note that D∗/J̃v � Z/nZ is finite abelian and that
its characters are unramified characters of D∗. We conclude as Πv is a constituent of IndD∗

J̃v
π|J̃v

�
π ⊗C C[D∗/J̃v ].

3. Proof of Theorem I

3.1 Construction of S-unramified number fields
With the assumptions of § 2, let S be the set of places of E dividing lv. We fix an embedding
ϕ : ES → Fv extending the F -embedding E → Fv given by u. Let us use the notation

GE,S := Gal(ES/E).

Attached to ϕ is a group homomorphism GFv → GE,S (see the introduction for the notation). We
keep the assumption of § 2.2, and we choose a Π given by Lemma 2.2. We assume from now on that π
corresponds to a supercuspidal representation of GLn(Fv) by the Jacquet–Langlands correspondence,
that is dimC(π) > 1 if n > 1. The local Langlands correspondence (see [HT01]) associates to π an
continuous, irreducible, representation

ψπ : WFv −→ GLn(C).

Let F ur
v (π) ⊂ Fv be the finite extension of F ur

v which is fixed by Ker((ψπ)|IFv
), that is the extension of

F ur
v cut out by (ψπ)|IFv

. Recall that l is prime to v and fix embeddings ιl : Q → Ql and ι∞ : Q → C.

Lemma 3.1. We have the following:

(i) there exists a continuous representation

R : GE,S → GLn(Ql),

such that R|WFv
corresponds to Πv ⊗ |det|(n−1)/2 by the local Langlands correspondence;

(ii) F ur
v .ϕ(ES) ⊃ F ur

v (π).

Proof. This lemma is a consequence of conditional automorphic base change [Clo91, CL98, HL04],
of Jacquet–Langlands correspondence, and of the main theorem of Harris and Taylor [HT01].
Precisely, let us denote by BC the quadratic base change from H to H ′ := ResE/F (H ×F E).
By Theorem 3.1.3 of [HL04] (generalizing [CL98, Theorem A.5.2] and [Clo91]), there is a cuspidal
automorphic representation Π′ of H ′(AF ) such that Π′

x = BC(Πx) for each place x �= w of F . It
applies because Π∞ is automatically cohomological as H(F ⊗Q R) is compact, and because H is
attached to a division algebra, as H(Fv) is. Note that BC has been defined for unramified rep-
resentations at the places x such that H(Fx) is a ramified, quasisplit, unitary group, in [Lab98,
§ 3.6, Proposition 3.6.4].4 In particular, Π′

x is unramified if x /∈ S, Π′
v = Πv ⊗ Π∗

v, and Π′∞ has the

4As Labesse explained to us, the confusing hypothesis ‘G is unramified, and KG is hyperspecial’ in [Lab98, Propo-
sition 3.6.4] should be understood as ‘G0 is unramified over Ex, and KG is hyperspecial viewed as a subgroup of
G0(Ex)’ (for us G0 = GLn(Ex)), so as to be of any use, and the same proof applies verbatim. If we did not use these
facts, we would be obliged to add, in the set S of the theorem, the places of E ramified above F . Note, however, that
this would suffice to obtain Corollary 1.2.
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base change infinitesimal character. We can then apply5 [HT01, Theorem C] to the image JL(Π′) of
Π′ by the Jacquet–Langlands correspondence (due to Vignéras, see [HT01, Theorem VI.1.1]), and
consider

R := Rl(JL(Π′))
given by [HT01] and the embeddings ιl, ι∞, which proves assertion (i).

We check the second assertion. Let us denote by ES(R) the subfield of ES fixed by Ker(R). As
Gal(Fv/(Fv .ϕ(ES(R)))) = Ker(R|GFv

), Galois theory shows that

Fv .ϕ(ES(R)) = Fv(R|GFv
).

By assertion (i), ψΠv is defined over ι∞(Q) and R|IFv
� il.i

−1∞ (ψΠv)|IFv
(it has finite image), so

that F ur
v (R|IFv

) = F ur
v (ψΠv ). However, by Lemma 2.2, π and Πv ⊗ |det|(n−1)/2 only differ by an

unramified twist, hence ψΠv⊗|det|(n−1)/2 and ψπ are equal when restricted to IFv . In particular,
F ur

v (π) := F ur
v (ψπ) = F ur

v (ψΠv ), and we conclude as F ur
v .Fv(R|GFv

) = F ur
v (R|IFv

).

3.2 End of the proof
Lemma 3.2. Let Qp ⊂M ⊂ L ⊂M be a tower of field extensions with M/Qp finite.

(i) Assume that L/M is Galois and Mur.L = M , then L = M .

(ii) If σ ∈ GM acts trivially by conjugation on the tame inertia of IM , then σ ∈ IM .

(iii) Assume that for all finite Galois extension K/M such that Gal(K/M) admits an injective,
irreducible, complex linear representation, we have K ⊂ L; then L = M .

Proof. (i) Let H := Gal(M/L) ⊂ GM . By assumption, H is normal in Γ and H ∩ IM = {1}, hence
IMH � IM × H is a direct product and part (i) (i.e. H = {1}) is an immediate consequence of
part (ii), which we now prove.

Let Itr
M be the tame inertia quotient of IM , recall that there is an isomorphism

Itr
M

∼−→
∏
l �=p

Zl(1),

which means that the action of Γ by conjugation on Itr
M , which factors through the canonical map

ν : Gal(Mur/M) −→ Ẑ, is the multiplication by qν(·) ∈ ∏
l �=p Zl

∗, where q is the cardinal of the
residue field of K. Let γ ∈ Γ such that qν(γ) = 1, we aim to prove that ν(γ) = 0. We claim that for
any integers m � 2 and r � 1, we can find infinitely many primes l such that r divides the order
of the image of m in Fl

∗. Applying this claim to m = q, we get that r divides ν(γ) for all r � 1,
i.e. ν(γ) = 0. Let us prove the claim now (see also Van der Waerden’s lemma [Lan94, ch. X, § 2,
Lemma 1]). Note that if P ∈ Z[X] is such that P (0) �= 0 and m � 2 is an integer, then the sequence
(P (mN !))N�1 admits infinitely many prime divisors. Indeed, assuming that the assertion is false,
we can find a prime p such that each power of p divides P (mN !) for some N . As P (0) �= 0, p is
prime to m. Thus, if we let N go to infinity, we get that P (1) = 0 in Zp. This is a contradiction, as
P = X−1 certainly satisfies the assertion. The claim then follows from the special case P := the rth
cyclotomic polynomial.

We now show part (iii). Let K/M be any finite Galois extension, ρ1, . . . , ρt the irreducible,
complex, linear representations of Gal(K/M), and Ki ⊂ K the fixed field of Ker(ρi). By assump-
tion, Ki ⊂ L. The existence of the (faithful) regular representation of Gal(K/M) implies that⋂

i Ker(ρi) = {1}, so that by Galois theory we have K = K1 . . . Kt, and K ⊂ L.

5Note that JL(Π′) is cuspidal by Moeglin–Waldspurger’s description of the discrete spectrum of GLn, because
JL(Π′)v = JL(Π′

v) is supercuspidal.
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Let us finish the proof of Theorem 1.1. LetK/Fv be a finite Galois extension such that Gal(K/Fv)
admits an irreducible injective representation ρ : Gal(K/Fv) → GLn(C). The local Langlands
correspondence and the Jacquet–Langlands correspondence associate to ρ an irreducible smooth
representation π of D∗/Fv such that ψπ factors through ρ. Lemma 3.1(ii) shows that F ur

v .ϕ(ES) ⊃
F ur

v (π). However, F ur
v (π) = F ur

v .K, as ρ is injective. We have thus shown that K ⊂ F ur
v .ϕ(ES).

Applying Lemma 3.2(iii) to M = Fv and L = F ur
v .ϕ(ES), we conclude that F ur

v .ϕ(ES) = Fv .
Applying now Lemma 3.2(i) to M = Fv and L = Fv .ϕ(ES), we get Theorem 1.1.

4. Construction of some automorphic forms II

In this section, we generalize some results of § 2 concerning the construction of automorphic rep-
resentations with prescribed properties. Let H be a connected reductive group over Q, let J be
a compact open subgroup of H(AQ,f ), and let τ be a fixed, irreducible, smooth representation
of J . We aim to construct discrete, algebraic, automorphic representations Π of H, such that Πf |J
contains τ . From the point of view of types theory (see [BK98]), it allows us to prescribe the iner-
tial equivalence class of each Πv with v finite. For example, in the case of GLn over a local field,
the inertial equivalent class of a smooth irreducible representation determines the restriction to the
inertia group of its Langlands parameter, hence types control the ramification in a strong sense. In
general, it seems hard to prescribe more properties of Πv, as we certainly cannot guess easily its
Weil numbers if v is unramified for instance. Note moreover that such a Π may not exist, as the
obstruction given by units shows in the example of the torus H = ResE/Q(Gm/E) when E �= Q is
not quadratic imaginary.

4.1 Let H be as above and let Z denote its center. We assume that:

(A) H(R) has a holomorphic discrete series (i.e. the derived Lie algebra of H(R) satisfies (1)
of § 4.2);

(B) Z(Q) is discrete in Z(AQ,f).

Proposition 4.1. Let H be as above, let J be a compact open subgroup of H(AQ,f ), and let τ
be an irreducible smooth representation of J . There exists an irreducible, discrete, automorphic
representation Π of H(AQ) such that Π∞ is in the holomorphic discrete series, and Πf |J contains τ .

Remarks. Note that by [Bor69, Theorem 8.9], property (B) depends only of the isogeny class of Z.
If Z is anisotropic, it holds if and only if Z(R) is compact by [Bor69, Theorem 8.7]. It happens for
example when E/F is CM and Z is (ResE/QGm)NE/F =1. It is easy to see that properties (A) and
(B) both hold when H is GL2/Q, GSp2n/Q, the scalar restriction to Q of a unitary group attached
to a CM field, SO(n, 2)/Q, or when H(R) is compact.

Before proving Proposition 4.1, we mention the following corollary. Let E be a CM field, F its
maximal totally real subfield, v a finite place of F which splits in E, and write v = uu ′.

Corollary 4.1. Let π be a supercuspidal, irreducible, representation of GLn(Eu). There exists an
automorphic cuspidal representation Π of GLn(AE) satisfying Πc � Π∗, and such that:

(a) Π is unramified outside u, u′, and Πu is an unramified twist of π,

(b) for any x archimedean, Πx has a regular algebraic infinitesimal character.

Proof. By the same reasoning as in the proof of Lemma 2.1, Hasse’s principle shows that there
exists a unitary group U(n)/F attached to E/F which is quasisplit at all finite places not equal
to v, and the group of invertible elements of a central division algebra over Fv

∼→ Eu at v. In fact,
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as the local invariant of U(m + r,m − r) is r mod 2 by [Clo91, lemme 2.2], we could even assume
that U(n) is compact at all archimedean places, except maybe one where it is U(n − 1, 1). Then
H := ResE/QU(n) satisfies the hypothesis of Proposition 4.1, by the remarks above. Let π′ :=
JL−1(π) be the finite-dimensional representation of U(n)(Fv) corresponding to π by the Jacquet–
Langlands correspondence. By choosing a suitable compact open subgroup J of H(AQ,f ) as in the
proof of Lemma 2.2, Proposition 4.1 produces an automorphic discrete representation Π′ of U(n)/F
which is unramified outside v, such that Π′

v is a twist of π′ by an unramified character, and whose
archimedean components are discrete series (hence, cohomological by [BW80, Theorem 5.3(b)]). As
we are in the hypothesis of the ‘conditional’ quadratic base change, we conclude as in the proof of
Lemma 3.1(i) that Π := JL(BC(Π′)) satisfies all of the hypotheses of the corollary.

Note that Proposition 4.1 is a generalization of Lemma 2.2, and the same proof as that of
Lemma 2.2 would allow us to conclude verbatim when H(R) is compact.6 The general case relies on
more delicate analytic facts. We are very grateful to Laurent Clozel for explaining to us an argument
using the Selberg trace formula, holding even under the assumption that H(R) has a discrete series.
In what follows, we give an argument using Poincaré series going back to Poincaré, Cartan and
Godement (see [Bor97, ch. 6], [Car53, exposé 1], and [Car57, exposés 6 and 10]; see also [Car57,
exposé 10] for the detailed case H∞ = GSp2g(R) and most of the ideas of the general argument),
so that Proposition 4.1 should certainly not be considered as original. Roughly, the difficulty is
twofold. First, we want to use coefficients of square integrable representations of H(R) to ensure
the convergence of some Poincaré series. Then, we must have a sufficiently good control on these
coefficients to produce some non-identically zero automorphic forms. Thus, as a preliminary, we
recall in § 4.2 some facts about Harish-Chandra’s realization of the holomorphic discrete series (due
to Harish-Chandra).

4.2 Holomorphic discrete series
In this section, we follow closely Knapp’s book [Kna86, ch. VI]. Let G be a real, connected, reductive
Lie group, and K a maximal compact subgroup. Assume that a Cartan decomposition g = k ⊕ p

satisfies

Zg(c) = k, (1)

where c is the center of k. For example, it is easily seen to be the case for any U(p, q) and for
symplectic groups (see [Kna86, ch. VI, § 2]). Let h ⊂ k be a Cartan subalgebra, associated to a
Cartan subgroup T ⊂ K, and let gC = hC

⊕
α∈∆ gα be its associated root space decomposition.

Recall that a root α ∈ ∆ is said to be noncompact (respectively compact), if gα ⊂ pC (respectively
in kC). This notion gives us a partition ∆ = ∆n

∐
∆K . We fix a good ordering on h∗R, i.e. with

the property that any positive noncompact root is bigger than any compact root. We set p± :=⊕
α∈∆±

n
gα, these are abelian Lie subalgebras of pC which are stable by ad(k). We fix a complex

matrix group GC whose Lie algebra is gC, and we let KC and P± be the complex analytic subgroups
of GC with Lie algebras kC and p±, as in [Kna86, ch. VI, § 3]. By Harish-Chandra’s decomposition,
the natural product map P+ ×KC × P− → GC is a complex open immersion, and GKCP

− ⊂ GC
is an open subset, and so inherits the complex structure of GC. Moreover, there exists a bounded
open domain Ω ⊂ P+ � Cp such that ΩKCP− = GKCP

−. As G ∩ KCP
− = K, the G-orbit of

1 ∈ GC/KCP
− is G/K � Ω.

Let us fix an analytically integral λ ∈ h∗R, which is dominant restricted to ∆+
K , and let Wλ be the

irreducible representation ofKC of highest weight λ. ThisWλ gives rise to a complex algebraic vector

6For the sake of exposition, and as much of the difficulty disappears in the compact case, we found it convenient to
separate the proof. Moreover, Lemma 2.2 is not only sufficient for the proof of Theorem 1.1, but also fix some ideas
about the general case.
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bundle on the grassmannian GC/KCP
−, and we want to consider holomorphic, square integrable,

sections of this bundle on Ω. Concretely, we fix a definite, K-invariant, hermitian product on Wλ,
and we consider the vector space Vλ of Wλ-valued functions f on G satisfying:

(i) for all g ∈ G, and all k ∈ K, f(gk) = k−1.f(g);

(ii) f is holomorphic (see below);

(iii)
∫
G |f(g)|2 dg <∞.

For a map f : G → Wλ satisfying part (i), part (ii) means that the canonical P−-invariant
extension of f to GKCP− is holomorphic. Note that Vλ is in a natural way a module over the ring
of bounded holomorphic functions on Ω, and a unitary representation Lλ of G by left translation.
Let δ := 1

2

∑
α∈∆+ α. We can now state Harish-Chandra’s theorem [Kna86, Theorem 6.6].7

Theorem (Harish-Chandra). Assume that 〈λ + ρ, α〉 < 0 for all α ∈ ∆+
n . Then Vλ is a nonzero

Hilbert space, and Lλ is an irreducible, square-integrable, G-representation.

We consider now a special case related to the standard jacobian automorphy factor on Ω. Let
ρn :=

∑
α∈∆+

n
α ∈ h∗R. We claim that ρn is analytically integral, dominant, and satisfies

〈ρn, α〉 > 0, ∀α ∈ ∆+
n . (2)

Indeed, if p := dimC p+, then ρn is the weight of the one-dimensional representation Λpp+ of k. In
particular, for all m ∈ Z, mρn is analytically integral, and dominant with respect to ∆+

K . Moreover,
by the definition of the ordering, ρn is also the highest weight of the natural representation of g on
ΛpgC ⊃ Λpp+, and so is dominant. The last part of the claim follows, as the parabolic subalgebra
kC ⊕ p+ is its own normalizer in gC.

As a consequence, we can fix an integer r > 0 such that δ := −rρn satisfies the hypothesis
of Harish-Chandra’s theorem. Let us fix an element j ∈ Vδ which is an eigenvector for the left
translations by K, and satisfies |j(1)| = 1. Such an element exists: we can take the one denoted by
ψλ in [Kna86, Lemma 6.7]. By Harish-Chandra’s convolution theorem (see [Kna86, Corollary 8.41]
and [Bor97, Corollary 2.22]), K-finite elements of Vλ are bounded on G, and so is j. In particular,
if f ∈ Vλ and if m � 0 is an integer, then (f · jm)(g) := f(g) ⊗ jm(g) defines an element in Vλ+mδ .
For convenience, we often identify the one-dimensional vector space Wδ with C, taking j(1) as a
norm one basis element.

Example. Let G := U(n−1, 1), let K be the diagonal U(n−1)×U(1), and let T ⊂ K be the diagonal
torus. We can choose a good ordering on the roots such that

∑
α∈∆+ gα is the standard upper Borel

subalgebra in gC = gln(C). In this case, KCP− identifies with the standard lower parabolic of
GC = GLn(C) of type (n − 1, 1). The bounded domain Ω identifies with the open unit hermitian
ball of Cn−1 = P+ ⊂ GC/KCP

− = Pn−1(C). We define ei ∈ h∗R by ei(x1, . . . , xn) := xi. With these
choices, ∆+

n = {ei − en, 1 � i < n} and ∆+
K = {ei − ej , 1 � i < j < n}. Then λ =

∑n
i=1miei

satisfies the hypothesis of Harish-Chandra’s theorem if, and only if, m1 � m2 � · · · � mn−1,
mn > m1 + (n − 1), and for all i,mi ∈ Z. We have ρn = (e1 + · · · + en−1) − (n − 1)en, and we can
take δ = −2ρn.

4.3 Convergence of Poincaré series
We now begin the proof of Proposition 4.1. Let Zc denote the maximal compact subgroup of Z(R)
(viewed as a real Lie group) and write Z(R) = Zn ×Zc for some closed subgroup Zn isomorphic to

7The identification of the space we call Vλ with that from [Kna86, Theorem 6.6] comes from Borel–Weil–Bott realiza-
tion of Wλ [Kna86, Theorem 5.29].
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some Rm. Let G denote the closed connected subgroup of the Lie group H(R) whose Lie algebra is
g = [h, h] ⊕ zc. If H(R)+ denotes the neutral component of the real Lie group H(R), then

H(R)+ = Zn ×G.

Let Γ ⊂ H(R)+ be the discrete subgroup H(Q)∩(H(R)+×J), let us show that Γ ⊂ G. Let C be the
Q-torusH/Hder and det : H −→ C be the canonical Q-morphism. Note that det induces a Q-isogeny
Z −→ C, hence C has finite arithmetic groups by assumption (B) and [Bor69, Theorem 8.9]. In
particular, det(Γ) ⊂ C(Q) is a finite subgroup. However, the induced map det : H(R)+ −→ C(R)
is injective restricted to Zn, and det(G) is compact, hence Γ ⊂ G.

The Lie algebra g satisfies (1) by assumption (A), so that we can apply to G the constructions
(and notation) of § 4.2. Let λ ∈ h∗R be as in Harish-Chandra’s theorem, we set Vλ(τ) := Vλ ⊗ τ∗,
viewed as a representation of G × J . We consider coefficients of Vλ(τ) of the following kind. Let
Wλ(τ) := Wλ ⊗C τ∗ viewed as before as a representation of K × J . If ϕ ∈ Wλ(τ)∗, we can see it
as a continuous linear form ϕ̃ on Vλ(τ) by f �→ ϕ(f(1)). We define h := hf,ϕ : G × J → C by
h(z) := ϕ̃(z−1.f) = ϕ((1 × z−1

J ).f(zG)). The Poincaré series Ph : G× J → C is defined by

Ph(z) :=
∑
γ∈Γ

h(γz).

We equip W (τ) with any hermitian norm | · | such that K × J acts by unitary transformations. As
f ∈ L2(G), it comes that Ph ∈ L2

loc(G×J). Indeed, if U ⊂ G×J is a compact set, then Γ∩ (UU−1)
is finite, hence∑

γ∈Γ

∫
U
|h(γg)|2 dg � |Γ ∩ UU−1|

∫
G×J

|h(g)|2 dg � C

∫
G
|f(g)|2 dg <∞, (3)

where C := vol(I) · |Γ ∩ UU−1| · ‖ϕ‖ > 0. As all of the g �→ f(γ.g) are in Vλ, and in particular
holomorphic, Ph converges in fact uniformly on any compact subset of G × J , to a holomorphic
function on G× J of right K × J-type W (τ)∗. In particular, we proved the following.

Lemma 4.1. Let λ ∈ h∗R be as in Harish-Chandra’s theorem, and let h be a coefficient of Vλ(τ) as
above. The Poincaré séries Ph is normally convergent on any compact subset of G× J .

4.4 Construction of nonvanishing Poincaré series
It remains to find a λ and an h such that Ph �= 0. Let Γ0 be the finite group Γ ∩ K. As in the
proof of Lemma 2.2, we can find a finite-dimensional, irreducible, complex representation W = Wλ

of K such that Wλ(τ)Γ0 �= 0. By twisting Wλ by Wm
δ for an integer m � 0 big enough and divisible

by |Γ0|, (2) shows that we may assume that λ ∈ h∗R satisfies the hypothesis of Harish-Chandra’s
theorem. We fix as before an element v ∈Wλ(τ)Γ0 of norm one and we choose a ϕ ∈W (τ)∗ of norm
one such that ϕ(v) = 1. By Lemma 4.1 applied to λ = δ and to the coefficients associated to the
function j itself, we get that

Γ1 := {γ ∈ Γ, |j(γ)| � 1}
is a finite subset of Γ, and Γ0 ⊂ Γ1. We claim that we can choose an f ∈ Vλ(τ) such that

f(1) = v and ∀γ ∈ Γ1\Γ0, f(γ) = 0.

As Vλ(τ) is nonzero and stable by the action of G × J , we can find a f1 ∈ Vλ(τ), such that
f1(1) �= 0. However, by irreducibility of Wλ(τ) as K × J-representation, we can find in C[K × J ].f1

an element sending 1 to v. We can thus assume that f1(1) = v. Then, we can multiply f1 by a
bounded holomorphic function f2 on Ω such that f2(1) = 1 and f2(γ) = 0 if γ ∈ Γ1\Γ0, which
certainly exists (e.g. restrictions to the bounded symmetric domain of polynomials on P+ = Cp).
The function f = f1f2 does the trick. This proves the claim.
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For any m � 1 divisible by |Γ0|, let us consider the element vm := v ⊗ 1⊗m ∈ Wλ+mδ(τ)Γ0

and ϕm := ϕ ⊗ id⊗m ∈ Wλ+mδ(τ)∗. We still have ϕm(vm) = 1. We define hm to be the coefficient
associated to f · jm and ϕm. By all of the previous choices, |hm(γ)| � |h0(γ)|, for all γ ∈ Γ.
As

∑
γ∈Γ |h0(γ)| <∞ by Lemma 4.1, we obtain

Phm(1) −→
|Γ0||m,m→∞

∑
γ∈Γ0

ϕ(γ.v) = |Γ0| �= 0. (4)

By (4), we may choose an integer m big enough such that Phm is not identically zero. We denote
again by Phm its canonical Zn-invariant extension to H(R)+ × J = G · Zn × J .

Let f : H(AQ) → C be the unique map which is H(Q)-invariant on the left, zero outside
H(Q).(H(R)+ × J), and which coincides with Phm on the open subset H(R)+ × J (note that f
is well defined). Then f is smooth, nonzero, and belongs to L2(H(Q)\H(AQ)/Zn,C) by the esti-
mate (3) (take U a measurable fundamental domain for Γ acting on G×J , they have finite volume).
The closure of the H(AQ)-subrepresentation generated by f is then a finite sum of topologically
irreducible representations, any irreducible constituent Π of which satisfies the hypothesis of Propo-
sition 4.1 by construction.

Remark. As shown by the proof above and by Lemma 4.2 below, we can even assume that the
parameter λ of Π∞ is as far from the walls of h∗R as we want.

Lemma 4.2. Let Γ be a finite subgroup of a compact connected Lie group K, and let τ be an
irreducible complex representation of Γ. For any real C > 0, we can find an irreducible representation
V of K such that V|Γ contains τ , and such that the highest weight of V has distance at least C from
the walls.

Proof. Using character formulas of Weyl and Kostant, we could even prove that for a dominant
weight λ far enough from the walls, (Vλ)|Γ contains τ if and only if they have the same central
character when restricted to Γ. We thank Y. Benoist for explaining to us the following quick proof.
We fix h ⊂ k a Cartan subalgebra, choose a Weyl chamber, and we denote by Vλ the complex
irreducible representation of K of highest weight λ ∈ h∗R. By the Peter–Weyl theorem, we can
find dominant weights λ1, . . . , λr such that W :=

⊕
i=1 Vλi

contains, when restricted to Γ, each
irreducible finite-dimensional complex representation of Γ. Let λ be any dominant weight, then the
highest weights of Vλ ⊗CW lie in the ball of h∗R centered in λ and of radius supr

i=1 |λi| (see [Kna86,
ch. IV, § 11.13]). As τ ⊗C W ∗

|Γ contains all irreducible representations of Γ by construction, this
concludes the proof.

5. The case E = Q

The problematic in this section is the following: is it possible to reduce property PE,S,u to some
standard conjectures in the arithmetic theory of automorphic forms? To fix the ideas, we restrict
to the case E = Q. As Proposition 4.1 does not apply to GLn/Q for n > 2, we must use other
classical groups, which introduces some obstructions on the L-parameters we can reach with them.
It turns out that admitting the (certainly believed!) Hypotheses 1 and 2 below, we can prove that
PQ,{∞,l,p},p holds for any prime numbers l �= p, which is much stronger than Corollary 1.2. We end
the section by discussing PQ,{∞,p},p for a prime number p, which is the most interesting case in some
sense, as its truth would imply all of the results of this paper.

5.1 Case S = {∞, l, p}, p �= l (proof of Theorem 1.2)
In this section, we give one way (certainly among many others) to deduce PQ,{∞,l,p},p from some
expected properties of automorphic forms for the symplectic groups GSp2n/Q for all n � 2.
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The proof is very similar to that of Theorem 1.1, so that we are rather sketchy on some points.
Let Qab

p ⊂ Qp be the maximal abelian extension of Qp, note that Qab
p ⊂ Qur

p .Q{∞,p}.

Proof of Theorem 1.2. Let K/Qp be a finite Galois extension whose Galois group admits an in-
jective irreducible representation ρ : Gal(K/Qp) → GLn(C), we want to prove that K ⊂ Qur

p .Q{∞,p}.
The representation ρ extends to an irreducible L-parameter

ψ : WQp → GLn(C).

Note that Qab
p ⊂ Qur

p .Q{∞,p} by local class field theory, hence we can replace ψ by any of its twists
ψ′ by a continuous character WQp → C∗. We claim that for some well-chosen character, the dual
of ψ′ is not isomorphic to any unramified twist of ψ′. Indeed, as ψ|IQp

has a finite image, we can
find a g ∈ IQp ∩ Ker(ψ) acting on Qp(µp∞) as an element of infinite order. We can then find a
finite-order character χ of Gal(Qp(µp∞)/Qp) such that χ2(g) �= 1. Hence, ψ′ := ψ⊗χ does the trick
as tr(ψ′(g)) = nχ(g) �= nχ(g)−1 = tr(ψ′∗(g)). We can therefore assume that ψ∗ is not isomorphic to
any unramified twist of ψ.

Recall now that M := GLn ×GL1 is a Levi factor of the maximal parabolic subgroup of GSp2n

stabilizing a maximal isotropic subspace (the so-called Siegel parabolic). As the root datum of
GLn × GL1 is selfdual, GLn(C) × GL1(C) is also a Levi subgroup of ĜSp2n = GSpin2n+1(C). For
any unramified characters α, β : WQp → C∗, we can thus consider the L-parameter

ψα,β := ψ ⊗ α× β : WQp → GSpin2n+1(C),

deduced by functoriality. As ψ∗ is not isomorphic to any unramified twist of ψ, the centralizer of any
ψα,β in GSpin2n+1(C) is reduced to the center C∗ × C∗ of GLn(C)× GL1(C) (it obviously contains
it). Indeed, if an element γ ∈ GSpin2n+1(C) satisfies γψα,β(g)γ−1 = ψα,β(g) for all g ∈ WQp , its
image γ in PGSpin2n+1(C) = SO2n+1(C) self-intertwines

(ψ ⊗ α) ⊕ (ψ ⊗ α)∗ ⊕ 1,

and we conclude because this semi-simple representation is multiplicity free by assumption on ψ. As a
consequence, we expect that the hypothetical L-packet of GSp2n(Qp) associated to any ψα,β has only
one element. Namely, if πα,β denotes the supercuspidal representation of M = GLn(Qp)×GL1(Qp)
attached to ψ ⊗ α × β by Harris and Taylor, then the L-packet of ψα,β should consist of the full8

normalized parabolic induction from M to GSp2n(Qp) of πα,β. We come now to our first hypothesis.

Hypothesis 1. For all supercuspidal representations π of GLn(Qp) with no selfdual unramified
twist, the inertial equivalence class [M,π × 1]GSp2n(Qp) admits a type in the sense of [BK98].

By the above hypothesis applied to π × 1, and by Proposition 4.1, we can find a discrete,
irreducible, automorphic representation Π of GSp2n(AQ) such that Πl is unramified if l /∈ {∞, p},
Πp ∈ [M,π × 1]GSp2n(Qp), and Π∞ belongs to the holomorphic discrete series. Moreover, by the
remark preceding Lemma 4.2, we may assume that the parameter λ of Π∞ is far from the walls,
hence Π should conjecturally belong to a tempered A-packet. Moreover, by the analysis preceding
Hypothesis 1, the L-parameter Ψp of Πp should have the form ψα,β for some α, β. By replacing Π by
an unramified twist if necessary, we may assume that Π∞ is algebraic. Let us fix a complex injective
representation r : GSpin2n+1(C) → GLnr(C), and embeddings ιl, ι∞ as in § 3.1. The reasoning
above gives credit to the following.

8This induced representation is known to be irreducible, see [Roc02].
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Hypothesis 2. For some r as above, there exists a continuous representation

R : Gal(Q{∞,p,l}/Q) → GLnr(Ql),

such that the representation ι∞.ι−1
l .R|IQp

� r ◦ Ψp|IQp
.

Of course, following Langlands, the hypothetical Galois representation R associated to the auto-
morphic representation Π, ι∞.ι−1

l and r, should satisfy this hypothesis. Assuming the above hypo-
thesis, we obtain by the same reasoning as in the proof of Lemma 3.1(ii) that Qur

p .Q{∞,p,l} ⊃ K,
which concludes the proof.

Remark 5.1. (i) Bushnell and Kutzko show in [BK98, § 8] that Hypothesis 1 would follow from the
existence of GSp2n(Qp)-covers for the types they have constructed for the supercuspidal represen-
tations of GLn(Qp). Some of theses covers have already been constructed by Blondel in [Blo04], but
unfortunately only when π has a selfdual unramified twist.

(ii) Hypothesis 2 is known for n = 1 (Carayol, Deligne, Langlands).

5.2 Case l = p

We would like to apply the same reasoning as in § 5.1 to prove property PQ,{∞,p},p, by choosing a K
as above and using Π, and this time using the hypothetical p-adic Galois representation R attached
to Π. The proof of § 5.1 applies verbatim until the statement of Hypothesis 2, whose correct form
becomes (Π and r are chosen as above) the following.

Hypothesis 3. There exists a continuous representation

R : Gal(Q{∞,p}/Q) → GLnr(Qp),

which is potentially semistable at p, and such that ι∞.ι−1
p .(R|GQp

)W|IQp
� r ◦ Ψp|IQp

.

In the above statement, ρW is the representation of WQp attached by Fontaine to a p-adic pst
(i.e. potentially semistable) representation ρ of GQp (in fact, in the special situation above, the
monodromy operator N is automatically zero). Let ρ := R|GQp

. The last step to conclude would be
to establish a link between F1 := Qur

p (ρ|IQp
) (which is also Qur

p .ϕ(Q{∞,p}(R))) and F2 := Qur
p (ρW

|IQp
)

(which is Qur
p .K in the notation of the proof of Theorem 1.2). Note that F1/Q

ur
p (respectively F2)

is in general infinite (respectively always finite), it is the smallest algebraic extension (respectively
finite Galois extension) of Qur

p over which ρ becomes trivial (respectively semistable, even crystalline
here). It turns out that it is not always the case that F2 ⊂ F1, which prevents us from concluding
as before. We discuss this point in § 5.3.

Remark 5.2. The ‘modular form case’ of Hypothesis 3 (i.e. n = 1) is known by the work of Carayol,
Deligne, Langlands and Saito (see the main theorem in [Sai97]). In general, Hypothesis 3 would
follow from Hypothesis 2, the construction of the pure motive attached to Π and the conjec-
tured independence of l of the semisimplified Weil–Deligne representation associated to the l-adic
cohomology of a given proper smooth scheme X over Qp (see [Fon94, § 2.4.3]).

5.3 Kernels of pst representations
Let l �= p be a prime number, we recall first the l-adic situation. Let M/Qp be a local field.
We fix a ϕ ∈ WM lifting a geometric Frobenius element, and a nonzero continuous homomor-
phism tl : IM → Ql. Let ρ : GM → GLd(Ql) be a continuous representation. By Grothendieck’s
l-adic monodromy theorem, there exists a unique nilpotent matrix N ∈ Md(Ql) such that ρ and
the representation of IM defined by γ → exp(tl(γ)N) coincide on some open subgroup of IM .
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The Weil–Deligne representation attached to ρ is then the isomorphism class of the pair (ρW , N)
where ρW : WM → GLd(Ql) is defined by (see [Tat79, § 4.2] and [Fon94])

ρW (ϕnγ) := ρ(ϕnγ) exp(−tl(γ)N), γ ∈ IM , n ∈ Z.

Note that ρW
|IM

has finite image, hence consists of semisimple elements. In particular, Ker(ρ|IM
) ⊂

Ker(ρW
|IM

), that is

Mur(ρW
|IM

) ⊂Mur(ρ|IM
). (5)

Obviously, these inclusions are equality if and only if N = 0, that is ρ = ρW . We used implicitly
this trivial fact in the proof of Lemma 3.1(ii).

Assume now that l = p, and that ρ : GM → GL(V ) is a continuous representation on a finite-
dimensional Qp-vector space V , which is potentially semistable in the sense of Fontaine [Fon94]. It
means that Dpst(V ) :=

⋃
L/Kfinite(V ⊗QpBst)GL is free of rank dimQp

(V ) over Qp⊗Qp Qnr
p , where Bst

is the usual Fontaine ring. Fontaine defines then a representation, say ρW , of WM on Dpst(V ), whose
restriction to IM is obvious. However, the analogue of the inclusion (5) is not always satisfied in
this setting.9 We are grateful to P. Colmez and T. Saito for explaining to us the following example.

Example. Let M := Qp and K ⊂ Qp be a finite extension of Qp. Let ω : GK → Qp
∗ be a Lubin–Tate

character of K, and ψ : GK → Qp
∗ be a continuous character of finite order on IK , and χ := ωψ.

It is well known that ω is crystalline, hence χ is pst, and the representation χW |IK
on Dpst(χ) is

ψ|IK
. Let ρ := Ind

GQp

GK
χ. An easy computation shows that Dpst(ρ) = Ind

WQp

WK
Dpst(χ), hence ρ is pst

and ρW = Ind
WQp

WK
χW .

Let us assume from now that K/Qp is Galois to simplify. Let rec : O∗
K → Gab

K be the reciprocity
map of local classfield theory, recall that ω ◦ rec is the natural map O∗

K → Qp
∗ induced by some

field embedding K → Qp. We choose now ψ such that ψ ◦ rec is trivial on the pro-p-Sylow of O∗
K ,

and coincides with (ω ◦ rec)−1 on its p′-part. Then, F1 := Qur
p (ρW ) is the maximal, tamely ramified,

abelian extension of K, and is linearly disjoint with F2 := Qur
p (ρ) over Kur. In particular, when

K/Qp is unramified of degree greater than one, it gives examples of p-adic pst representations ρ of
GQp such that Qab

p (ρW ) is not included in Qab
p (ρ).

Remarks. (i) We do not know whether there exists a strict subfield L of Qp such that the inclusion (5)
holds over L for any ρ, or if (5) (or some variant) holds under a mild hypothesis on ρ. For our aim,
the only controls we seem to have on ρ are ρW

|IM
and some information on its set of Hodge–Tate

weights. What we do not control at all is the filtration data of Dpst(ρ). In this direction, we may
hope that the p-adic Langlands philosophy initiated by Breuil will allow us, in the future, to use
the Galois representations attached to p-adic automorphic forms, whose properties at p are less
restricted.

(ii) Assuming the extension of Saito’s theorem [Sai97] to Harris–Taylor’s automorphic forms, and
using Corollary 4.1, a solution of the above problem of kernels would imply property PE,{∞,u,u′},u
where E/Q is a quadratic imaginary field and p = uu′ a prime number which splits in E. We mention
this as the hypothesis we made in § 5.1 still seems to be out of reach (especially Hypothesis 2).
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9It is, however, obviously satisfied when ρ|IM

has finite image, as ρW = ρ|WM
in this case.
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