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Experiments are presented to explore the non-axisymmetric instabilities of spreading
films of aqueous suspensions of Carbopol and Xanthan gum floating on a bath of
perfluoropolyether oil. The experimental observations are compared against theoretical
predictions exploiting a shallow-film model in which the viscoplastic rheology is captured
by the Herschel-Bulkley constitutive law. With this model, we construct axisymmetric
base states that evolve from the moment that the film floats onto the bath, out towards long
times at which spreading becomes self-similar, and then test their linear stability towards
non-axisymmetric perturbations. In the geometry of a thinning expanding film, we find
that shear thinning does not drive a loss of axisymmetry at early times (when the degree
of expansion is small), but when the film has expanded in radius by a factor of two or so,
shear-thinning hoop stresses drive non-axisymmetric instabilities. Unstable modes possess
relatively low angular wavenumber, and the loss of symmetry is not particularly dramatic.
When the oil in the bath is replaced by salty water, the experiments are completely
different, with dramatic non-axisymmetric patterns emerging from interfacial effects.
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1. Introduction

Floating films of complex fluid feature in several problems in the geosciences and
engineering. When such films float atop a much less viscous Newtonian fluid, the
spreading flow experiences little bottom drag and the extensional stresses in the film
control flow. For a thin viscous film, one can then compactly capture the dynamics within
a reduced model (Oron et al. 1997; Craster & Matar 2009), as used in explorations
of the spreading of oil films over water (di Pietro & Cox 1979; Koch & Koch 1995).
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Figure 1. An experiment in which a suspension of Xanthan gum (dyed green; density 1g/cm?) spreads out
over a bath of water made denser by salt (NaCl, to a density of 1.15g/cm?; colourless). The dark circle at the
centre shows the position of a pedestal, the top surface of which is above the oil surface and onto which the
Xanthan gum is poured, to create a localized source. The pedestal has a radius of £ = 1.7cm, and the times of
the photographs (taken from above) after the Xanthan gum enters the oil are indicated. The container for the
bath is completely filled, so that any depth changes are prevented by overflow.

Generalizations of such models to power-law fluids have been exploited to study the
dynamics of ice shelves (MacAyeal & Barcilon 1988; MacAyeal 1989; Schoof & Hewitt
2013) and the Earth’s crust (England & McKenzie 1982, 1983).

Although floating viscous films spread out axisymmetrically from localized sources
(Pegler & Worster 2012), it has been observed that aqueous suspensions of Xanthan gum
do not. Instead, such non-Newtonian films suffer a dramatic non-axisymmetric instability
(Sayag & Worster 2019a), at least when floated out above a layer of salty water. An
illustration of this type of pattern formation is displayed in figure 1. In this experiment,
an aqueous suspension of Xanthan gum is floated out onto a bath of salt solution. The
moment that the Xanthan gum enters the bath, axisymmetry is immediately lost (the gum
spreads axisymmetrically over a pedestal that acts as the localized source).

In order to rationalize such observations, Sayag & Worster (2019b) analysed the
inertialess linear stability of an expanding cylinder of power-law fluid. They confirmed the
presence of non-axisymmetric linear instability, driven by non-Newtonian hoop stresses
acting at the advancing fluid edge. Although these instabilities arise mostly at early times
and are relatively weak (Ball er al. 2021), Ball & Balmforth (2021) demonstrated that
the instability carried over to radially spreading films and was potentially stronger if the
fluid film also possessed a yield stress. For the task, Ball & Balmforth (2021) exploited
a thin-film model for a viscoplastic fluid described by the Herschel-Bulkley constitutive
law (Balmforth et al. 2014).

In the present paper, we revisit the experiments conducted by Sayag & Worster (2019a)
in order to examine the effect of the fluid filling the bath underneath the floating film.
The experiments by Sayag & Worster, and those shown in figure 1, employ salty water
for the bath, but water is also the solvent used for the Xanthan gum. In this regard, Ball
et al. (2022) noted that aqueous suspensions of Carbopol gel (a complex fluid with shear-
thinning viscosity and a yield stress) spreading over wetted planes suffered dramatic non-
axisymmetric instabilities taking the form of fracture-like patterns. These patterns owed
their presence to the thin pre-wetted layer of water: when the plane was dry, or when
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it was wetted by a thin layer of immiscible fluid, the patterns did not appear. Instead, the
viscoplastic fluid expanded axisymmetrically in the usual manner of a gravity current (with
vertical shear stresses dominating the resistance to spreading). Ball & Balmforth (2021)
suggested that the patterns therefore arose not from a non-axisymmetric hydrodynamic
instability, but from solid-like fracture, exacerbated by the presence of the pre-wetted water
film that reduced the fracture toughness on contact. Similar patterns and phenomena arise
in viscoplastic displacement flows through Hele-Shaw cells (Ball et al. 2021; Hutchinson
& Worster 2024).

To eliminate the possibility that effects of this sort impact the Sayag & Worster
experiment, one must therefore avoid using a water-based fluid for the bath. In the
experiments conducted here, we instead employ a perfluoropolyether oil, which is
significantly denser than water and immiscible, permitting an exploration of the Sayag—
Worster instability for a spreading, floating film. We also use aqueous suspensions of
Carbopol in addition to Xanthan gum, to test whether a notable yield stress can prompt
stronger instability.

To complement these experiments, we provide theoretical predictions based on the thin-
film model developed by Ball & Balmforth (2021). In this model, axisymmetric base states
are constructed that evolve from the moment that the film floats onto the bath, out towards
long times at which spreading becomes self-similar. The linear stability of these states
is then explored by solving an initial-value problem for non-axisymmetric perturbations,
spanning the early- and late-time dynamics. One difference with our earlier analysis is
that we use here a different inner radial boundary condition that is more suitable to the
experiments: those tests are conducted by placing a pedestal in the bath whose surface
protrudes above the oil surface. The viscoplastic fluid is emplaced on this pedestal from
above, spreading axisymmetrically before the film is launched into the bath (see figure 1).
Above the pedestal, however, the film becomes substantially deeper because the fluid does
not slide freely over its top. The abrupt thinning of the film on detachment from the
pedestal demands a boundary condition that we derive in § 2, where we summarize the
theoretical model more completely. In this section, we further use the model to build
axisymmetric spreading states and test their linear stability towards non-axisymmetric
perturbations. Section 3 outlines our experiments, their analysis and the comparison with
the theoretical results.

2. Shallow-film model

Figure 2 presents a sketch of the geometry used for the theoretical model, in addition to a
photograph of the set-up used for the experiments. Cylindrical polar coordinates describe
the geometry of the model, which describes the expansion of a thin, floating film of a
Herschel-Bulkley fluid. The flow over the pedestal is not captured by the model, but
replaced by suitable boundary conditions at the edge of the pedestal, which has radius L.
Similarly, in the usual manner of a thin-film analysis in which sharp horizontal adjustments
cannot be captured, the viscoplastic fluid is assumed to instantaneously descend to its level
of neutral buoyancy on entry to the bath, resulting in a film profile like that illustrated in
figure 2.

When the bath is sufficiently deep or its viscosity is sufficiently small, the drag on the
floating film is not sufficient to generate significant vertical shear. The flow then becomes
plug-like throughout its depth, with horizontal velocity components, u ~ u(r, ¥, t) and
v~v(r, v, t). Providing the characteristic film thickness H remains much less than
L, the stage is then set for a standard type of free thin-film analysis, for which a
reduced model follows by integrating the governing fluid equations over the film’s depth
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Figure 2. Photograph of the experiment (left) and sketches of the film geometry (right), showing a view
from above, a vertical cross-section and an inclined perspective. In the model, we assume that the fluid
instantaneously adjusts to its level of neutral buoyancy once it flows off the pedestal, which has radius L.
After scaling horizontal lengths by £, the domain of the dimensional model consists of radii > 1; the influx
of fluid from the pedestal (shaded grey) is treated by imposing suitable boundary conditions at r = 1.

(Oron et al. 1997; MacAyeal & Barcilon 1988; MacAyeal 1989; Balmforth 2018). This
exercise was established in the present context of a viscoplastic film by Ball & Balmforth
(2021), although they considered fluid sliding freely over a flat surface. Here, instead, we
consider a partly submerged, floating film. Nevertheless, it is straighforward to incorporate
this submergence by simply taking the depth of the current above the top of the bath to be
a fraction (pp — p)/pp of the total film depth, where p is the film density and pp that of
the bath (e.g. MacAyeal & Barcilon (1988)). For the fluids used in our experiments (see
table 1), approximately half of the film is submerged. Moreover, we further account for the
effect of buoyancy by introducing the reduced gravity g’ = g(p» — p)/p», where g denotes
gravitational acceleration.

Although the model does not account for the flow over the pedestal in detail, one
aspect of that flow does impact the formulation: when the viscoplastic fluid flows onto
the pedestal from the feeder pipe, it forms a gravity current that spreads relatively slowly
in comparison with the expansion of the floating film. As the film descends off the
pedestal, the fluid therefore thins dramatically, much like the flow around the grounding
line between an ice sheet and shelf (e.g. Schoof (2007, 2011); Schoof & Hewitt (2013)).
In the thin-film model, this implies that the starting depth of the floating film should be
relatively large, but the horizontal velocity should be corresponding small, so that the
dimensional radial volume flux is kept at constant value Q. In principle, one should
consider the full, Stokes-like problem here, in view of a lack of any separation in the
vertical and horizontal scales. We avoid any such match here, however, and formulate
effective boundary conditions at the inner edge of the floating film that take some account
of the significant thickening that takes place there.

2.1. Scaling

In the reduction of the governing equations performed by Ball & Balmforth (2021), the
dimensions are removed from the problem by scaling vertical and radial distances by the
characteristic scales H and L, respectively. The horizontal velocity components u and v
are scaled by V = Q/(HL), and the vertical velocity w by HV/L, where Q is the volume
flux. Time is scaled by 7 = L£/V. The stresses and pressure are scaled by the hydrostatic
scale pg'H.

The Herschel-Bulkley law has three parameters: the yield stress 7, the power-law index
n and the consistency K. This constitutive law relates the (dimensional) second invariants
of the stress, 7, and deformation-rate tensor, y, through t =1, + Ky" (Balmforth e al.
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Bath viscosity (at 25°C) Wb 26 mPa s
Bath density b 1.85 gem™3
Bath depth Hyp 10.5 — 18 mm
Pedestal radius L 1.7 cm

Carbopol Xanthan gum
Yield stress Ty 20 Pa -
Consistency K 10 Pa ¢" 32 Pa s"
Power-law index n 0.4 0.12
Density P lgem™3 lgem™3
Surface tension (water—air) Ywa 72 mNm™! 72 mNm~!
Surface tension (water—oil) Ywo ~20—40 mN m~! ~20—40 mN m~!
Volume flux 0 1.25—-160 ml min~'  2.5—20 ml min~!
Height scale H=(KQ" /pg’ﬁ”’)nlﬁ 0.8 —3.3 mm 4.7 —5.8 mm

1

Time scale T = (KL?/pg' Q)1 0.4—-11.6s 5.1-324s
Bingham number Bi=t, (£2/,og/K% Q)T 1.3-53 -
Shear stress of bath vs film Equation (2.4) (1—4)x 1072 (1-9)x107*
Capillary length (water—air) Ae.wa = Vwa/08)'? 2.7 mm 2.7 mm
Capillary length (water—oil)  Ac.wo = (Ywo/ (06 — 0)g)'/? ~1.5-22 mm ~1.5-22 mm

Table 1. Experimental parameters, scales and dimensionless groupings. For the interfacial tensions quoted
(Ywa» Ywo), we assume that the Carbopol and Xanthan gum solutions are similar to water, and the perfluorinated
oil similar to other oils, and use typical values quoted in the literature.

2014). The consistency K and characteristic strain rate, /L, can be combined into a stress
scale K(V/L)" which, when balanced with pg’#H provides the vertical length scale

W= (%) " @1

1

H L2 (Kﬁz)"“
T="C ()
0 pg' O

Two parameters remain from the scaling of the Herschel-Bulkley law: the power-law index
n and a Bingham number related to the dimensional yield stress 7,

Hence

(2.2)

n
T HL ez e
x> = .

Bi - v |
ko pg'K7Q

(2.3)

The parameters n and Bi feature in our model solutions; we exploit the time scale 7 in our
interrogation of experimental results.

The scales above can be used to gauge the importance of physical effects that are not
incorporated into the model. For example, to estimate the importance of viscous drag from
the bath, we note that, although the bath is deep relative to the film thickness, it remains
shallower than £. The main drag therefore stems from vertical shear stresses, of order
upY [ Hp, if up and H,, are the viscosity and depth of the bath. The vertical shear stress
in the film, on the other hand, is O (pg'H?/L). The importance of drag can therefore be
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measured by the ratio

1
,lLbVE b |:(pg/)2—n Q1—2n£6n :| n+l
P8 H*Hy,  Hp K3 '

Estimates based on our experiments in § 3 (table 1) indicate that this ratio is 0(107%) —
0(1072). Hence, drag from the bath is not significant. That said, once the film spreads
sufficiently far from the launch stage, the radius of the pedestal is not necessarily the
best choice for the horizontal length scale £. Nevertheless, we observed no significant
differences in the dynamics when a subset of the experiments were repeated with a bath
of almost twice the depth. The omission of surface tension is a little more tricky to justify,
an issue we return to later.

(2.4)

2.2. Model equations

In the polar coordinates (r,¢}), the dimensionless mathematical model combines
the depth-integrated conservation of mass and momentum equations for the fluid
depth h(r, ¥, t) and horizontal velocity (u,v), with the leading-order Herschel—
Bulkley constitutive law relating the horizontal stresses {t, Ti9, T} and strain rates
{¥1r» Y90, 110} The model equations are

8h+18(h)+18(h) 0 2.5)
— _—— r _—— = .
or Trar T raw YT
0 10 h
S —h@ret w) | - o ) e — T =0, (26)
190 0 2
~ o [492 = hm + 1) - L () — g =0, )
y =0, T < Bi,

Bi .. \r. . . . (2.8)
[T1r. To0, Tro] = (; + 9" l) [Vre: Vo0, o], T =B,

. ou 2 av 1 [ 0u v
[Vrr’ Yoo, Vr&] = [25, - (14 + ﬁ) - (% — U) + 5i| ) .9

where y = \/y%r + )}rzg + )?929 + YrYop and T = \/r%r + ‘Er29 + t929 + TrrTo0.
At the outer edge, r = R(¥, t), we impose the kinematic condition, and demand that the
net normal and tangential stresses vanish

with

JR n v R (2.10)
—+——=u, .
ot R 00
1, R Ry R}
Eh —h Trr + Too + \/% Trr — 2?7:1-9 —+ FT@G = O, (211)
R2+ R2
Ry R}
Tro — ?(799 —Tp) — Ffre =0. (2.12)
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Here and below we use the subscripts (7, ¥) to denote partial derivatives, which can be
distinguished by typeface from our notation (r, 8) for the tensor components.

We position the inner edge of the film slightly beyond the radius of the pedestal, at
r =1+ & with ¢ < 1. Here, we impose the incoming flux and angular velocity

2rhu=1, v=0. (2.13)
The abrupt increase in film thickness, implied by the match to the incoming gravity current
over the pedestal, can be imposed by taking i (1 + ¢, t) to diverge suitably for ¢ — 0, as
we explain below.
2.3. Axisymmetric spreading solutions
From (2.6)—(2.8), axisymmetric spreading states, with
h = H("’ t)’ u= U(r7 t)7 V= 03 R :ﬁ([), [Trr’ ‘[1'97 7799] = [Tl‘l‘(r’ t)9 07 TQQ(}’, t)]a

satisfy the equations

1
H+-@rHU), =0, (2.14)
r
§H —HQTw+Too) | + T(Tee —Tw) =0, (2.15)
r
Bi .. 2U . 5, 1 |,
[T, Topl=\ =+ T 2U,, — |, r=2/Us+-UU+ U= (210
r r r r
along with the boundary conditions
1
|:§H2—H(2Trr+T99)} =0, 27HU|,=1, (2.17)
r=R
and
R;=U(R,1), (2.18)

extending the shorthand subscript notation for partial derivatives to ¢.
Very close to the pedestal when » — 1 = O(e) « 1, the radial derivatives become
O (e~ 1). The main balances in (2.14)—(2.16) are then

(HU), ~0, (H?*/2—2HTy), ~0, Tu~2"U,|"sgn(U,)> Tpg, (2.19)
implying that the dynamics is controlled by the radial, power-law viscous stress. Hence,
1 1 1
H~—— and Ty~-H~—, (2.20)
2nU 4 8nU
given that 7';; must decline to O (1) values further from the pedestal. Consequently,
1 n
n T Tt
U~ S gy and  H~4|4n " +")( -n| . @an
8 (2n)"
For early times, the kinematic condition in (2.17) also implies that
o tn—H
R~1+————. (2.22)

87 (2n)"(n + 1)

We translate the preceding results into effective boundary and initial conditions as
follows: instead of dealing with diverging conditions for r — 1, we instead place the
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Figure 3. (a,b,c) Axisymmetric solutions for the values of (n, Bi, ¢) indicated. Shown are film profiles at
equivalent outer radii, for baths with density ratios 0.83 (panel (a)) and p/pp = 0.54 (panels (b,c)). The profiles
of H(r, t) are replotted on a loglog scale in (d) and compared with (2.21) (red dashed lines). Panel (e¢) shows
time series of the outer radius R(r) for the three solutions, with the (red) dashed lines showing (2.22). In (d)
and (e) the modified early time solution (2.23) for Bi = 1 is shown by the (red) dotted lines.

inner edge of the computation atr = 1 + ¢. Here, we fix H(1 + ¢, t) and U (1 + &, t) using
(2.21). To commence computations, we then begin at a time ¢ = 79 > 0 for which the outer
radius is at R(tp) =1 + 2¢, and U (r, tp) and H (r, tp) are again given by (2.21). The initial
moment #y can be determined from (2.22), given a suitable choice for .

To advance solutions in time from this initial state, we first discretize in ¢. Then, at
each time and given the current profile of H(r, t), we solve the boundary-value problem
(2.15)—(2.17) for U (r, t) using Matlab’s in-built solver bvp4c. With the computed velocity
field U (r, t) in hand, we next employ (2.14) and (2.18) to advance the thickness H (7, t)
and outer edge R(¢) to a new time, using a Lagrangian scheme. The time step is chosen
sufficiently small that mass is conserved to less than 3 % over the duration of the
computation.

Sample numerical solutions for axisymmetric spreading films are presented in figure 3.
Panels (a—d) present series of snapshots of the film profile and H (r, t) for Newtonian,
power-law and Bingham fluids; corresponding time series of the outer radius R(¢) are
plotted in (e). The density ratios chosen for these solutions are similar to those for (a)
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syrup spreading on oil (p/pp = 1.54/1.85 = 0.83) and (b,c) Carbopol or Xanthan gum on
oil (p/pp =1/1.85 =0.54). The solutions mostly demonstrate a match with the expected
early-time behaviour for # < 1, and are not evolved sufficiently far to observe an entrance
to the long-time self-similar states for # >> 1, catalogued in Ball & Balmforth (2021).

Note that the Bingham computation does not converge particularly closely to the early
time solution in (2.21)—(2.22) for the value of ¢ = 10~ chosen (see panel (d)). It turns
out that, for these parameter settings, and for most of the computations with finite Bi, it is
a relatively poor approximation to neglect the yield stress in (2.16) for T',. If we instead
keep this term, we recover an alternative approximation in which U satisfies

&)/ 11 2041
(”il_”UZ'ZFI <”+ R ;8nBiU>=r—1, (2.23)
n

n o n n
where , F;(a; b; c; z) is the generalized hypergeometric function of order {p, g}. The
radius R(¢) then follows from inverting (2.23) and using the kinematic condition in (2.17).
As shown in figure 3(d,e), this alternative approximation is superior to the asymptotic
solution in (2.21)-(2.22).

In the linear stability analysis below, we use values of ¢ = 107> — 10~ to commence the
base state solution. This choice ensures that the inner boundary condition achieves a match
to a solution with a diverging incoming depth that is otherwise independent of the precise
choice for €. Simultaneously, the choice ensures that radial gradients remain well resolved
over the duration of the computation. Our inner boundary condition therefore avoids any
need to match with a full Stokes-type solution at the edge of the pedestal, or impose a
prescribed incoming flow depth Hy, as in Ball & Balmforth (2021), which would introduce
arbitrary parameter that we cannot calibrate. Nevertheless, our boundary condition is
equivalent to prescribing the incoming fluid depth, but then taking the limit Ho > 1,
leaving a solution that nearly diverges for r — 1, but otherwise becomes independent of
that parameter. Finally, having chosen ¢, we compute the corresponding initial moment
to using (2.22) if Bi = 0. To avoid the relatively weak convergence to the small-time limit
when Bi > (, however, we instead use the alternative approximation in (2.23).

2.4. Stability analysis
To study non-axisymmetric perturbations to the axisymmetric base states, we set

h=H(rt)+h(r, e, u=U@,t)+ir t)e™?, (2.24)

v="0(r, )™, R=TR()+ R(t)e™?, (2.25)

where m is the angular wavenumber. The linear stability equations are the same as those
in Ball & Balmforth (2021) (their equations (4.3)—(4.11)) and are restated in Appendix A.
At the inner boundary r = 1 + ¢, we further adopt the boundary conditions

i=h=0=0, (2.26)

assuming that the incoming flow cannot be perturbed. Finally, we use the initial conditions

R=Ry, h=04=0=0, att=1,. (2.27)

2.4.1. Early times, t << 1
At early times, the film forms a relatively narrow annulus where radial derivatives are
amplified. Provided m = O (1), we may then follow a very similar analysis to that presented
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earlier, with the angular dependence not featuring to leading order. In view of the inner
boundary and initial conditions, the perturbation to the radial velocity & remain small,
and the dynamics becomes slaved to the motion of the outer edge. Considering the early
time behaviour close to the pedestal, the perturbation to the outer radius then satisfies the
leading-order kinematic condition (see Appendix (A11))

R, ~ U (R)R. (2.28)
Combining with R; = U(R), we find
R(t) xU(R). (2.29)
For Bi — 0, we find
R(1) = R(t0) [_ﬁm—_l} " = R(1p) <i)n . (2.30)
R(to) — 1 fo

Although the perturbation grows with time, it does not in comparison with the
axisymmetric base state: here R J(R—1)oct™ 1.

In this early-time limit, the effect of the fluid rheology is therefore felt only through the
background velocity gradient, and R(t) increases fastest for Newtonian fluid (n = 1). The
growth of the perturbation corresponds to the geometrical spreading effect discussed by
Sayag & Worster (2019b), which here factors in the thinning of the base state at the outer
edge, as well as its stretching due to axisymmetric expansion. To see any sign of the Sayag
& Worster instability (at order-one azimuthal wavenumbers), we must therefore proceed
to later times.

2.4.2. Later times, t = 0O(1)
A numerical solution to the linear stability equations for Newtonian fluid (n = 1, Bi =0)
is shown in figure 4 for the mode with angular wavenumber m = 2. The amplitude of
the perturbation to the radius first grows linearly with time as predicted by (2.30), before
slowing down to approach a scaling 193, This dependence is predicted by the analysis
of long-time (¢ >> 1) self-similar solutions to the problem provided in Ball & Balmforth
(2021) (their Appendix A). Despite the different boundary conditions applying for r — 1,
this analysis applies here because, in the long time limit, the perturbations decay relatively
quickly on proceeding inwards from the outer edge, eliminating any dependence on the
conditions at the inner edge. The strengthening inward decay of the solutions can be
observed in figure 4(b,c,d), and the final panel compares # and ¥ with the corresponding
self-similar solutions. Consequently, for # > 1, the linear modes are all still expected to
decay relative to the expansion of the background axisymmetric state, regardless of the
value of m, as explored in more detail by Ball & Balmforth (2021). Note that the solution,
as with all those we present here, still lies a good way off the self-similar limit.
Low-angular-wavenumber solutions for a viscoplastic film (n = 0.4, Bi = 1) are shown
in figure 5. Unlike the Newtonian case, the mode amplitudes now begin to grow relative to
the base state at large times, as found in Ball & Balmforth (2021). For the modes shown,
withm =1 — 6, growth begins when the base state has reached dimensional radii of almost
3L. Eventually, provided the solutions all reach the self-similar plastic plate explored in
Ball & Balmforth (2021), the growth of the modes is expected to become exponential,
with a rate that increases with m. For the experimentally relevant times plotted in figure 5

(EZ — 1 < 10), however, the modes have yet to reach this limit and are growing comparably
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Figure 4. (a) Time series of the amplitude of the perturbation to the radius R scaled by its initial value,
for a Newtonian film (n =1, Bi=0, e = 10*4) with angular wavenumber m = 2. The dot-dashed line shows
the prediction in (2.30) and the dashed line indicates the long-time self-similar scaling (Ball & Balmforth
2021). In the inset, the amplitude is scaled by R — 1, then plotted againt R’ —1.The spatial structure of the
perturbations (i, 0, fz)/l? is shown in (b,c,d) for the times indicated in (a). In (e) the velocity perturbations
are scaled by |9(R, t)| and plotted against r/R(t); the dashed lines show the similarity solution from Ball &
Balmforth (2021).
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Figure 5. (a) Time series of |I§|/[§ — 1] against fz — 1 for a viscoplastic film (n =04, Bi=1, ¢ = 10_4/4)
with angular wavenumbers m =1, 2, ..., 6 (from green to blue, with m = 1 shown dashed). The dotted black
line shows the prediction in (2.30). Snapshots of scaled height and velocity perturbations (h, @i, ) / R are shown
in (b—d) for m =2, at the times indicated by stars in (a).

to one another, except for the m = 1 mode which upturns more slowly. The spatial structure
of the modes for m =2 is relatively simple (figure 5(b,c,d)); more spatial oscillations
appear at smaller radii with higher m (cf. Sayag & Worster (20195); Ball & Balmforth
(2021)).
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Figure 6. Time series of A(Bi)l]él/[ﬁ — 1] against FZ — 1 for a viscoplastic film with varying Bi=
1,2,3,4,5, 6 (from blue to red), with m =2, n=0.4 and ¢ = 10_4/4. The dashed black lines shows the
prediction in (2.29) for Bi =2 and 6; the dotted black line shows the prediction in (2.30) for Bi = 0.

The effect of increasing Bi whilst holding m and n fixed is illustrated in figure 6. For
the small-time approximation in (2.23), the base state solution remains dependent on Bi.
As a result, when the initial radius, R(#y) =1 4+ 2¢, is translated to an initial time ¢ = 1
using (2.23), it implies that linear stability computations with different Bi are initiated at
different times for a fixed ¢. To flatten the landscape for an unbiased comparison, some
scaling of the linear stability computations is therefore needed. In view of (2.29), we adopt
the scaling factor

__ UR@(Bi)
[U(R(to(Bi)))1pi=1

which suppresses the differences in the perturbation R introduced by changing the time
of initialization, and assures a common limit for # — 0. In figure 6, we show radius
perturbations scaled by A(Bi). At early times, the radius perturbation decays, with a
rate that increases with yield stress. But for the largest times shown in the figure, the
base state expands sooner towards the final, yield-stress-dominated, self-similar state for
higher Bi (cf. figure 11 of Ball & Balmforth (2021)). As a consequence, the relatively
strong instability in the self-similar state appears earlier. The two effects counter one
another somewhat, leading to solutions that depend relatively mildly on Bingham number
in figure 6. Indeed, for experimentally relevant times (corresponding to mean areas

R —1<10 or so0), figure 6 suggests that instability is weak and largely independent
of Bi.

Results for a power-law fluid film (n = 0.12 and Bi = 0) are shown in figure 7. As in
the Newtonian case, the modes initially grow as expected by (2.30), decaying relative
to the base state flow. The spatial structure of the modes is similar to that seen for the
viscoplastic film in figure 5. At early times, modes with higher-wavenumber decay slightly
faster, a trend that eventually reverses. The most conspicuous feature seen in figure 7(a)
is the onset of oscillatory growth for m > 1 at the final times, a feature noted previously
in Ball & Balmforth (2021). This leads to a node in the mode amplitude |I§|, visible as
the sharp negative spike in the logarithmic plot in figure 7(a). The non-zero frequency
suggests that patterns form pulsating standing waves or rotate in angle in the manner of a
travelling wave, depending on initial conditions. Oscillatory growth also arises for finite
Bi; the solutions for larger values of m in figure 5(a) are on the brink of such behaviour,

A(Bi) (2.31)
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Figure 7. (a) Time series of |1§|/[§ — 1] against ﬁz — 1 for a power-law film (n =0.12, Bi=0, ¢ = 10_4/4)
with angular wavenumbers m =1, 2, ..., 6 (from green to blue, with m = 1 shown dashed). The dotted black

line shows the prediction in (2.30). Snapshots of scaled height and velocity perturbations (ﬁ, i, v)/ R are shown
in (b—d) for m = 2, at the times indicated in (a).

which accounts for the downturn in the amplitude for the mode with highest m at the right
end of the plot.

3. Experiments
3.1. Set-up

To complement theory, we conducted a series of experiments in which a complex fluid
was floated out on top of a bath of denser viscous fluid, as illustrated in figure 2. For the
complex fluid we used aqueous suspensions of either Carbopol, with concentration 0.2 %
(Ultrez 21, neutralized with sodium hydroxide), or Xanthan gum, with concentration 0.6
%. Fits to the flow curves of these fluids, as measured in a Kinexus Malvern rheometer
(employing roughened parallel plates and a controlled decreasing shear-rate ramp) are
shown in figure 8. Parameter values and relevant dimensionless groups are presented in
table 1. Note that the fastest radial speeds in the experiments are of order a few millimetres
per second, over radial scales of a few centimetres, implying strain rates of 0.1 s~! or less.
Viscoelastic relaxation times for Carbopol and Xanthan gum are commonly quoted to be
a second or less. Therefore, Weissenberg numbers are expected to be relatively small,
suggesting that fluid viscoelasticity is not relevant.

The bath was filled up to the top with a perfluoropolyether oil (Galden HT 270, Lesker
Cor.). A pedestal with a height equal to the depth of the bath H{; was placed in the centre
of the bath to act as a launch stage for the complex fluid, which was emplaced from a tube
connected to a syringe pump delivering constant flux Q. Once the film of complex fluid
spread out over the bath, any displaced oil flowed over the brim to help maintain the level
of the bath. Images taken of the film from below were processed to extract the outer edge
(see figure 9). A second camera positioned at the level of the bath was used to record side
images of the floating film and to look for any changes in the depth of the surrounding oil.
No such changes in depth were observed, and capillary effects along the outer brim of the
bath did not appear to be significant.
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Figure 8. Flow curves for the two complex fluids used in the experiments. In these decreasing shear-rate ramps,
there are ten samples per decade of shear rate, and a 60 s wait time at each y to reach steady state. The points
show the rheometer measurements, the lines indicate the fits in table 1.

(@)

Figure 9. (a)-(c) Photographs from below and (d) extracted outlines of the fluid edge for an experiment with
Carbopol pumped above an oil bath of depth 10.5 mm with flux 20 ml/min. The reconstruction of the edge
outline from the photograph is also indicated in (c¢) as a green dashed line, as is the outer edge of the pedestal
(green solid line). Three other tests for the same experimental conditions are shown in (e). In (d), the outlines
are 5 s apart; in (e), the interval is 10 s. These outlines are coloured by time, from green to blue. The pedestal
(shown in black in (a—c) and shaded grey in (d,e)) has a radius of 1.7 cm.

3.2. First observations

The observed phenomenology of experiments with Carbopol is illustrated in figure 9,
which presents three successive images (taken from above) of the expanding floating film
in one of the experiments. Also displayed are reconstructed outlines of the outer edge for
this particular test, and for three other repetitions of it. After pumping commenced, the
fluid deposited on the pedestal spreads out, eventually reaching the edge of the pedestal
and coming into contact with the oil. The film then floated out above the bath, initially
in a roughly axisymmetrical manner, modulo any imperfections associated with a non-
axisymmetric contact with the oil at the edge of the pedestal (figure 9a,b). At later times,
however, the film significantly lost axisymmetry as one or two ‘clefts’ appeared at the outer
edge (figure 9c). These defects grew, diverting fluid sideways, with their roots retreating
backwards and often rotating around the pedestal (figure 9d). As illustrated in figure 10,
this phenomenology spanned the entire range of experiments with Carbopol performed
with varying flux.
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Figure 10. Outlines of the fluid edge for experiments with Carbopol (from above, coloured by time, from green
to blue) for tests with increasing flux (proceeding from left to right with Q =1.25, 2.5, 5, 10, 40, 60, 80, 120
ml/min). The intervals between these outlines varies between experiment.

20 ml/min

0 =2.5 ml/min

Figure 11. Outlines of the fluid edge for experiments with Xanthan gum for the fluxes indicated. The outlines
are 10 s apart and coloured by time, from green to blue.

Carbopol

Xanthan gum

Figure 12. Side images of floating films of Carbopol and Xanthan gum, showing the profiles above the rim of
the bath. The arrows indicate the edges of the pedestal with radius £ = 1.7 cm, as apparent from images taken
before the arrival of the complex fluid.

In repetitions of the tests with the same experimental parameter settings, the clefts
appeared at differing angular positions (see figure 9¢). Similarly, in figure 10 the clefts
have no preferred angular orientation. Thus, there appear to be no angular bias in the
tests due to an imperfect experimental set-up. That said, however, the angular position at
which a cleft formed did, on occasion, appear to be correlated with the location where the
complex fluid film first flowed out from the pedestal, as can be seen by careful inspection
of the early contours in figures 9 and 11.

The dynamics was similar in tests with Xanthan gum, as illustrated in figure 11. For this
material, however, the clefts responsible for prompting non-axisymmetric patterns were
much more rounded and developed after a longer time. The degree of asymmetry in the
final patterns was also less pronounced.

Images taken from the side of the experiment for films of both Carbopol and Xanthan
gum are illustrated in figure 12. The thinning of the film as it descends off the pedestal
is clear, as is the much flatter floating film that then forms (cf. figure 3). At the outer
edge of the film, the fluids are visibly rounded off, and probably thickened, by surface
tension. Such features, coupled with the perspective of the camera, make thicknesses
hard to estimate. Nevertheless, both images suggest that the film is several millimetres
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Figure 13. Plots of the area of the footprint of the film, as observed from above and scaled by the area of
the pedestal for tests with (a) Carbopol and (b) Xanthan gum. The stars indicate suites of experiments with
varying flux (colour from red to blue indicating increasing Q), the lines show theoretical results for n = 0.4
andBi=1,2,...,6in (a),and n =0.12 (solid), and n = 1 (dashed) in () (plus Bi = 0). The inset in (b) shows
the unscaled data; the fluxes are Q =2.5, 5, 10 and 20 ml/min. For (a), Q = 1.25, 2.5, 5, 10, 20, 40, 60, 80,
120 and 160 ml/min.

thick, given that submergences of a factor of two or so are expected from the density
differences. Such depths are larger than our estimates for the characteristic height scale
‘H in the theoretical model, as quoted in table 1. That said, the dimensionless film depths
achieved in model solutions suggest that actual depths can be larger than H by factors of
order unity (see figure 3). More awkward is the rounding of the film profile at the outer
edge, which suggests a prominent effect of surface tension. Indeed, we estimate capillary
lengths to be between 1 — 3 mm (see table 1). We discuss this issue further in § 4.

3.3. Analysis

If there is no yield stress, our dimensional analysis in § 2.1 indicates that we arrive at an
axisymmetric problem that is free of any parameters, but for the power-law exponent r,
when horizontal length are scaled by the radius of the pedestal £ and time by the scale T
defined in (2.2). Thus, with this scaling of lengths and time, data for axisymmetric films of
Xanthan gum with different fluxes should collapse. Conversely, corresponding Carbopol
data should remain dependent on the dimensionless yield-stress parameter, the Bingham
number Bi in (2.3).

Although the experimental films do not remain axisymmetrical, we follow in this vein
and seek to collapse the experimental data by plotting the scaled area of the films footprint
above the bath, A(t)/A(0), against t =7/7T ( being dimensional time). The area A(¢) is
calculated from integrating the outlines of the fluid edge obtained from image analysis, as
shown in figures 9, 10 and 11. We take A(0) to be the area of the pedestal as seen in the
outlines, and r =0 to be the time of the last image before we observe the fluid to fall off
the pedestal.

Figure 13 presents the results for suites of experiments with both Carbopol and Xanthan

gum. Also included are plots of 7R’ for axisymmetric solutions to the thin-film model
for (n, Bi) =(0.12, 0) (for comparison with Xanthan gum data), and varying Bingham
number with n = 0.4 (to compare with Carbopol; see table 1).

The scaling of the Xanthan gum tests convincingly collapses the data. For Carbopol,
there is a noticable difference at higher values of the Bingham number. This may arise
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Figure 14. (a) Times series of the minimum and maximum, R, (¢) and R, (¢), of the radius R(6, ) over
angle plotted against scaled area, for four Carbopol experiments at flux Q =20 ml/min. The angular variation
and extrema are normalized by the mean radius (R)(¢). In (b) data for the full suite of Carbopol tests with
varying flux (coloured by Q increasing from red to blue) are shown.

because the experimental films are not that shallow, especially above the pedestal, and fluid
may be piling up there. Qualitatively at least, the trend with Bi is reproduced by the model.

More quantitative details of the development of non-axisymmetry are shown in
figure 14. In (a), the four tests with Carbopol and flux Q =20 ml/min from figure 9 are
plotted, showing the angular maximum and minimum. Each are scaled with the mean
radius, (R)(¢) to remove the effect of film expansion. As can be seen from this figure,
the onset of non-axisymmetry, or equivalently the appearance of a cleft along the outer
edge, can be observed as an abrupt decrease in R;,/(R). However, the moment at
which this happens varies significantly between the tests, which probably arises from
non-axisymmetric perturbations when the film first detaches from the pedestal, which are
difficult to control. In figure 14(b), we plot the entire suite of tests with Carbopol and
varying flux. There is a clear trend with Q revealed by the plot: films with smaller fluxes
(higher Bi) become non-axisymmetric for smaller scaled areas. This correlation with flux
can also be seen through careful inspection of the outlines in figure 11.

Corresponding results for Xanthan gum are shown in figure 15. Again, there is some
suggestion that the development of the clefts and non-axisymmetry occur later for higher
fluxes. This is inconsistent with the theoretical model, where the only non-dimensional
parameter is the power-law exponent, implying that the data for different fluxes should
collapse (as for the average radius in figure 13). One possible explanation for this
discrepancy is that the Xanthan gum has a small yield stress. Indeed, yield stresses of
O (1)Pa are not ruled out by the rheometry in figure 8. However, such yield stresses imply
Bingham numbers of O(10~!), which are relatively small. Alternatively, the residual
dependence on flux may result from the manner in which non-axisymmetric instability
is initialized when the Xanthan gum descends off the pedestal, which we cannot control.
This initialization creates an initial perturbation shown by the difference between R,,;, and
Ryax at t =0 in figure 15 (and figure 14 for Carbopol). Despite this, those perturbations
appear to largely subside before instability truly sets in at later times.
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Figure 15. Times series of minimum and maximum, R, (t) and R,y (¢), of the radius R(6, t) over angle
plotted against scaled area, for Xanthan gum experiments with varying flux (coloured by Q increasing from
red to blue). The angular variation and extrema are normalized by the mean radius (R)(¢).

4. Discussion

The linear instability of Sayag & Worster reported for expanding cylinders of power-law
fluid is modified in the geometry of a thinning expanding film, with shear thinning no
longer driving a loss of axisymmetry at early times (when the degree of expansion is
small). Instead, at later times, when the film has expanded in radius by a factor of two or
s0, shear-thinning hoop stresses do come into play to drive non-axisymmetric instabilities.
We have presented theoretical results to illustrate these features, and compared them with
laboratory experiments. The experiments confirm that non-axisymmetric patterns begin to
grow when the dimensionless area of the film is O(1). In both the theoretical model and
experiments, unstable modes possess relatively low angular wavenumber, and the loss of
symmetry is not particularly dramatic.

The experimental patterns first appear when small indentations or clefts form at a few
angular locations around the outer edge. The roots of these defects then retreat to smaller
radii, often rotating sideways in angle. The possibility that patterns can rotate in angle
also arises in the theory: perturbations develop finite angular phase speeds at later times,
indicating the onset of travelling waves.

When the oil in the bath is replaced by salty water, the experiments are
completely different, with dramatic non-axisymmetric patterns appearing relatively
quickly. Following Ball et al. (2022), we believe these patterns have an origin that is
different to Sayag & Worster’s instability: the expanding film appears to fracture under
extensional stresses at the fluid edge, which may be facilitated by a reduction in fracture
toughness in the presence of water (the film’s solvent). Indeed, the present theory and
experiments suggest that Sayag & Worster’s instability for a floating film does not appear
at early times and does not lead to such a dramatic loss of axisymmetry.

There are some notable discrepancies between the predictions of the thin-film model
and the experimental observations: although the average expansion of the film is fairly well
reproduced, the manner in which the strength of the non-axisymmetric patterns depends
on flux is not. For Carbopol, the significant enhancement in pattern strength at lower flux
implies that instability should become stronger for higher Bingham number. The theory,
however, predicts a much weaker dependence, at least for the times corresponding to
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the duration of the experiments. Similarly, with Xanthan gum, the patterns are predicted
theoretically to be independent of flux for a given pumped area; the experiments, however,
still display some flux dependence. Both discrepancies may result from the way in which
non-axisymmetric patterns are initialized. In the experiments, this initialization occurs
when the film falls abruptly off the pedestal, which is relatively uncontrolled and difficult
to repeat, creating asymmetries in both the position of the outer edge and thickness
distribution.

Another limitation of the thin-film model is that neither surface nor interfacial tensions
are included. As a result, our axisymmetric base states feature an unphysical vertical cliff at
their edges. By contrast, the films in the experiments are noticeably rounded off along their
upper surfaces with air (visualizing the lower interface with oil was more challenging).
Estimates of the capillary length for the experiments are consistent with the scale at which
this rounding takes place. It is not obvious what impact this rounding has on the linear
stability analysis. Curvatures in the angular direction are expected to dampen any non-
axisymmetric fingering instability. However, for the thin film, the dominant curvature is
perpendicular, in the (r, z) plane. In Hele-Shaw cells, in which thicknesses are fixed, such
curvatures can play a relatively minor role, contributing primarily a constant capillary
pressure. For our films, however, the thickness evolves, changes the local curvature at the
edge. In our view, the neglect of surface tension is therefore the most problematic omission
in the theoretical model.
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Appendix A. Linear stability equations
To study non-axisymmetric perturbations to the axisymmetric base states, we set

h=H(rt)+h(r, )™, u=U@,t)+ir, t)e™?, (A1)

v="0(r, )™, R=R()+ R(t)e™’, (A2)
where m is the angular wavenumber.
Linearizing the force balance and continuity equations (2.6)—(2.5), we find the
amplitudes {A, i, 0, R} satisfy

A A A ~ im . H N h
0= |:H(h — 2T —T99) —hQT + TGQ)]r_ THTrG + 7(799 - Trr) + - (Too — Trr),

(A3)
1 A A
0= (rPHtg) —im|[H( =280 — ) —hCTos +T)|.  (A%)
r r
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N 1 A ]
hi + —[r(Uh + H)l, + —H) =0, (AS)
r r
where the perturbations to the stress components are given by
. A T . O TN
Trr = U rldy +;ﬁrr(u+1mv)’ Tog = oy + ;ﬂgg(l/l-Flmv), (A6)
R 9 (0 im,
Tg=p|r— |- )+—ul, (A7)
ar \r r
with
/ 1 / 2
=2 |u+4uU, 2Ur+;U ) Br=8uU, ;U+Ur s (A8)
8 , 1 4 2
0!99=;MU 2Ur+;U , Boo =2 M+;MU ;U+Ur , (A9)
u:l(Bi+1'“”) M’:—L[Bi—l—(l—n)f“”] (A10)
r ’ 203 '

The outer boundary conditions, after a Taylor expansion about the unperturbed edge, are
k[ - Urﬁ + 12
H (fz pY S fgg) —h QT+ Too) + [%Iﬂ —HQTw+ ng)] R=0! ar=R
r

g — imR(Tge — Ter) /R =0
(A11)

These equations can be solved numerically as an initial-value problem. Starting with the
initial conditions described in § 2.4, we discretize in . At each time step, given the current

profile of fz(r, t), we solve the boundary-value problem (A3)—(A4) for i(r, t) and 0(r, t)
using Matlab’s in-built solver bvp4c. A Lagrangian scheme is then used to advance the

thickness fz(r, t) solving (AS5), and hence calculate the radial perturbation R. This is the
same numerical scheme used to solve the initial-value problem in Ball & Balmforth (2021).
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