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A UNIFIED VIEW OF (COMPLETE) REGULARITY
AND CERTAIN VARIANTS OF (COMPLETE)
REGULARITY

J. K. KOHLI

1. Introduction. Regularity and complete regularity are important
topological properties and several generalizations of them occur in the
literature on separation axioms. The properties of certain of these variants
of (complete) regularity are similar to those of (complete) regularity and
their theories run, either in part or in the whole, parallel to the theory of
(complete) regularity. All the more, analogies inherent in their definitions
as well as the nature of results obtained in the process of their study
suggest the need of formulating a coherent unified theory encompassing
the theory of (complete) regularity and its generalizations. An attempt
leading towards the fulfillment of this need constitutes the theme of the
present paper.

Section 2 is devoted to preliminaries and basic definitions. In Section 3
we devise a framework which leads to the formulation of a unified theory
of (complete) regularity, almost (complete) regularity, ( [26,], [27], [28] ),
(complete) s-regularity [13], (functionally) Hausdorff spaces, R;-spaces [3],
and others. Certain aspects of the theory are then elaborated in
subsequent sections. In particular, in the class of 7'j-spaces the Hausdorff
axiom 1is also viewed as a weak tform ot regularity.

Preservation of (complete) regularity and its variants under mappings is
investigated in Section 5 and this yields improvements and refinements of
known preservation results under mappings pertaining to regularity,
complete regularity, R;-spaces, Hausdorff spaces and their variants. In
particular, in the process we obtain unified proofs and improvements of
certain results of Chaber [2], Dorsett [4], Kohli ([11], [12]), Singal and
Arya [26], and Singal and Singal [19].

Section 6 is devoted to examples which supplement the theory and
reflect on the interrelations among standard separation axioms and weak
forms of (complete) regularity discussed in the paper.

2. Basic definitions and preliminaries. Let X be a topological space. A
subset A of X is said to be regular closed if it is the closure of its interior. A
a-set [35] is the intersection of any finite number of regular closed sets and
a 8-closed set [30] is the intersection of any collection of regular closed
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sets. The complement of a regular closed set is called regular open. We
shall call a subset F of X a point closure if it is the closure of a singleton. A
space is an Rj-space [3] if point closures of distinct points are contained in
disjoint open sets whenever they do not coincide.

A subset 4 of a space X with topology 7 is called quasi H-closed relative
to X [24] if each m-open family which covers 4 has a finite subfamily whose
union is 7-dense in A.

Let E be a topological space. A subset A of X is said to be E-closed in X
[22] if for some positive integer n there exists a closed subset B of E” and a
continuous function f:X — E" such that 4 = f~(B). An E-closed set is
called D-closed [8] if E is a developable T-space.

A family Zof closed sets in X is called a strongly closed Gs-family if each
F € Zis a countable intersection

F=n{X—-F: F €%}

the members of any such family % are called strongly closed Gg-sets.

3. A unified framework. Let P denote a topological property possessed
by certain subsets of a topological space. Preperties with which we shall be
dealing in this paper are quite diverse and include, among others, being a
(regular) closed set, being an E-closed set, being a point closure, being
a connected set; a complete list is given in the accompanying table.

3.1 Definitions. Let X be a topological space and let A C X. We say
that
(1) A is a P-set if A possesses property P; and
(i1) A has P-complement if X — A possesses property P.

3.2 Definitions. A topological space X is called
(1) P-regular if each closed P-set and a point outside it are contained in
disjoint open sets;
(i1) completely P-regular if for each closed P-set F and a point p outside
F, there is a continuous real-valued function f defined on X such that

J(F) = land f(p) = 0;
(iii) weakly P-regular if every separated pair consisting of a closed P-set
and a point outside is separated by disjoint open sets.

The following implications are immediate from the definitions:

complete regularity = complete P-regularity

regularity = P-regularity = weak P-regularity

Examples quoted in [13], [26] and [27] suffice to show that none of the
above implications in general is reversible.
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3.1 PROPOSITION. If P is a property which is preserved under the operation
of taking closures and is enjoyed by all singletons, then a T, (com-
pletely) P-regular space is (functionally) Hausdorff. In particular, a T,
(completely) s-regular space is (functionally) Hausdorff.

A topological property P is an absolute property if “Z has P” does not
depend on the space in which Z is embedded.

3.2 ProrosITION. If P is an absolute property such that the closure of a
P-set is again a P-set, then (complete) P-regularity is hereditary.

Proposition 3.2 is false with “absolute property” replaced by “proper-
ty,” even if the conclusion is weakened from hereditary to closed
hereditary (see Example 6.9). (This was pointed out by referee who also
supplied Example 6.9.)

3.3 PROPOSITION. A space X is an R\-space if and only if X is P-regular
with P = point closure.

Proof. Let X be an R;-space. Clearly every point closure in X and a
point outside it are contained in disjoint open sets. Conversely, suppose X
has the property that every point closure and a point outside it are
separated by disjoint open sets and let x, y be any two distinct points in X
such that {x} # {¥}. Then there is a point z which is either in {X} or in
{ ¥} but not in both. For definiteness suppose that z € {x} and so there
are disjoint open sets U and V containing z and {y}, respectively. Thus
z€ Uc X — Vandsince z € {x}, x € U and hence {x} € X — V.
Thus

xyn{y =10
and so X is an Ry-space [3]. By [3, Theorem 2], {x} € U. This completes
the proof that X is an R;-space.

3.4 PrOPOSITION. A Ty (completely) R;-space is (functionally) Haus-

dorff.

3.3 Definition. A topological space X is called a semilocally P-space if for
each x € X and each open set U containing x there is an open set V' such
that x € V € U and X — V is the union of finitely many closed
P-sets.

The notion of semilocally P-space, introduced and developed in ( [15],
[16] ) represents unification of the concepts of semiregular space,
semilocally connected space, completely regular space, (completely)
D-regular space [9], (countably) compact space, Lindelof space and others.
The concepts of E-completely regular space due to Engelking and Mrowka
([6], [22] ) and E-completely regular space due to Herrlich (which Herrlich
named E-regular spaces) also come under the purview of semilocally
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P-spaces to a certain extent.

The table nearby illustrates the type of P-regularity, complete
P-regularity and semilocally P-space determined by property P. Refer-
ences are quoted as an aid to literature and an attempt has been made to
quote the reference in which a concept or a notion appears for the first
time. However, no claim is made to completeness or originality of the
source.

If P, and P, are two topological properties such that P, implies P,, then
every (completely) P,-regular space is (completely) P-regular. However,
the reverse implication does not hold in general (see Examples 6.1-6.8).

In particular. every Hausdorff space is c-regular and a c-regular space is
finitely regular and in the case of T, spaces the concepts of c-regularity,
finite regularitv and the Hausdorff property coincide.

4. Results.

4.1 THEOREM. A semilocally P-space is (completely) regular if and only if
it is (completely) P-regular.

Proof. Necessity is obvious. To prove sufficiency, let X be a semilocally
P-space and suppose that X is (completely) P-regular. Let /' be a closed
subset of X and let x & F. Since X is a semilocally P-space, there is an
open set V such that x € V € X — F, and X — V consists of finite

number of closed P-sets, Fy,..., F,. By P-regularity of X, there are
disjoint open sets Ny and V, for each k = 1, ..., n such that x € N, and
Fk C Vk- Let

n n
N= N and U = U Y
k=1 k=1

Then N and U are disjoint open sets containing x and F, respectively.

In case X is completely P-regular, for each & = 1,..., n, there is a
continuous real-valued function f) defined on X such that f,(x) = 0,
fi(Fy) = 1. Define f:X — R by

J(x) = sup{ /i(x), ..., [n(x) }.
Then f'is continuous. f(x) = 0, f(F) = 1.

4.1 Remark. Reading from the table, Theorem 4.1 includes several
results in the literature; for example, with P = regular closed we get that a
semiregular space is (completely) regular if and only if it is almost
(completely) regular, a result that contains Theorem 3.1 of [26]. Similarly,
the substitution P = connectedness in Theorem 4.1 yields [13, Theorem
3.2].

4.2 THEOREM. Let P denote a property possessed by all singletons in a
topological space. Suppose [:X — Y is a continuous, open and closed
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surjection defined on a P-regular space such that either X or Y is T\. If
£ Y y) is a P-set for each y € Y, then Y is Hausdorff.

Proof. In view of closedness of f, in either case we may assume that
Y is T). First we show that the set

A = {(x1, x2)f (x1) = [(x2) }
1s closed in X X X. If (x;, xo) & A, then

x1 & [T f(x)]

Since Y is Ty, in view of hypothesis on /., f ~ [ f(x,) ] is a closed P-set. By
P-regularity of X, there are disjoint open sets U and V' containing x|, and
f Y f(x2)]. respectively. Since f is closed, by [5, Theorem 11.6, p. 86],
there is an open set W containing f(x,) such that

Sl wy e

Then since fis continuous, U X f~ (W) is an open set containing (x|, x»)
which does not intersect 4. Thus 4 is closed in X X X.

Now, suppose that f(x;) and f(x,) are distinct points of Y. Then
(x1, x2) & A. So, there are open sets U; and U, containing x; and x»,
respectively, such that

(U X Uy) N A4 = 8.

Since f is open, f(U)) and f(U,) are disjoint open sets containing x; and
X,. respectively.

4.2 Remark. Using the table, Theorem 4.2 contains several results in the
literature; for example, with P = closed set we get that a T continuous
open and closed image of a regular space is Hausdorff, a result that
includes [33, Theorem 14.6, p. 94]. Similarly, for P = connectedness it
yields Theorem 3.3 of [13].

None of the hvpotheses of continuity. openness or closedness in
Theorem 4.2 can be omitted.

4.3 THEOREM. Let X be a Hausdorff P-regular space and let A be a closed
P-subset of X. Then the quotient space obtained from X by identifving A to a
point is Hausdorff.

4.4 THEOREM. Let X be a completely P-regular space. If K and F are
disjoint subsets of X such that K is compact and F is a closed P-set, then there
is a continuous function f-X — [0, 1], such that f(K) = 0 and f(F) = 1.

4.5 THEOREM. Let X be a completely P-regular space. If K is a compact Gy
which is expressible as a countable intersection of open sets having
P-complements. then K is a zero set in X.
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We omit proofs of Theorems 4.3, 4.4, and 4.5. The special case of these
theorems for P equal to connectedness is dealt with in [13] and with
P = closed set they reduce to classical known results pertaining to
(complete) regularity.

5. Preservation under mappings. In this section we study the behavior of
P-regularity and complete P-regularity under mappings. The known
results, pertaining to the preservation of (complete) regularity, almost
(complete) regularity, (complete) s-regularity, R;-spaces, and Hausdorff
spaces under mappings, follow as easy corollaries to the results so
obtained.

5.1 Definitions. A function f/:X — Y from a topological space X into a
topological space Y is called

(1) P-continuous [15] if for each x € X and each open set V containing
f(x) and having P-complement there is an open set U containing x such
that f(U) C V; and

(ii) P-proper map if for each closed P-set K C Y, f “NK) is a closed
P-set in X.

Continuity and several weak forms of continuity, which occur in the
literature are special cases of P-continuity. For example, the concept of
almost continuous function [25] (respectively, c-continuous function [7],
respectively s-continuous function [11]) coincide with P-continuous
function with P = regular closed (respectively P = compactness, re-
spectively P = connectedness). Again, for P = connectedness P-proper
maps have been studied by Jones [10] and Long [19], and for P = §-closed
by Noiri [23] and Mathur [21]. It seems an interesting and a profitable
exercise to study the category of topological spaces and P-proper maps.

5.1 THEOREM. Let f:X — X be a P-proper closed surjection defined on a
P-regular space. If either f is open or if f ~(y) is compact for each y € Y,
then Y is a P-regular space.

5.2 THEOREM. Let f:X — Y be a P-continuous closed surjection defined on
a regular space. If either f is open or if f ~(y) is compact for each y € Y,
then Y is a P-regular space.

Proof of Theorems 5.1 and 5.2. Let F C Y be a closed P-set and suppose
that y & F. Then

fTIE N i) =8

Since f'is P-continuous, by [15, Theorem 3.1] f ~'(F) is closed. In case f is
a P-proper function, then f ~'(F) is also a P-set.

Case 1. fis open. Let x € f!(y). Then in view of regularity or
P-regularity of X, as the case may be, there are disjoint open sets U and V
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such that x € U and f~!(F) € V. Then f(U) and Y — f(X — V) are
disjoint open sets containing y and f, respectively.

Case 2./~ '(y) is compact for each y € Y. Then in view of regularity or
P-regularity, as the case may be, there are disjoint open sets U and V
containing f ~!(y) and /' (F), respectively. Since f is closed, the sets

Vi=Y—f(X—U) and Vo, =Y — f(X — Y)

are open. It is easily verified that V; and V; are disjoint and contain y and
F, respectively.

5.1 Remark. According to the table Theorems 5.1 and 5.2 contain
several results in the literature; for example, with P = closed set we get
that regularity is invariant under perfect mappings [5, p. 235] and that
regularity is preserved under continuous open closed surjections [2].
Again, in view of a result of Whyburn [32], with P = compactness, it is
easily deduced that a perfect image of a Hausdorff space is Hausdorff
[S, p. 234]. Similarly, the substitution P = point closure in Theorem 5.1
(or 5.2) yields an assertion which includes a result of [4] and the substitu-
tion P = regular closed yields Theorem 2.14 of [25]. Further, for
P = connectedness we get Theorem 3.7 of [13].

5.3 THEOREM. Let f:X — Y be an open closed P-continuous surjection
defined on a completely P-regular space X. If either X is completely regular,
or if f is a P-proper function, then Y is completely P-regular.

Proof. Let K C Y be a closed P-subset and suppose that y ¢ K. Since f
is P-continuous by [15, Theorem 3.1] f ~(K) is closed. In case f is a
P-proper function, then /~(K) is also a P-set. Take a point xy € /().
Then in view of complete regularity or complete P-regularity, as the case
may be, there is a continuous real-valued function ¢:X — [0, 1] such
that

#(x)) = 1 and &(f '(K)) = 0.
Define ¢:Y — [0, 1] by putting

¢(y) = sup{e(x):x € f'(») }.
Then <£(y) =1, qg(F) = 0 and by [5, p. 96, Exercise 16] <£ is continuous.
Thus Y is completely P-regular.

5.2 Remark. Reading from the table Theorem 5.3 contains several
known results in the literature; for example, with P = closed set we get
that complete regularity is invariant under open-closed continuous
surjections, a result due to Chaber [2]. Similarly, the substitution
P = connectedness yields Theorem 3.10 of [13]. Further, with P = finite
set we get that an open-closed image of a T}-completely regular space with
closed point inverses is functionally Hausdorff, a result which includes
Theorem 2.14 of [12].
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6. Examples.

6.1 A functionally Hausdorff space which is not Gg-regular. Let F denote
the Moore plane, i.e., the upper half plane { (x, y):y = 0) } in R? endowed
with the tangent disc topology (see [33, p. 36] ). Let D and E be the closed
sets of points on the x-axis in F whose first coordinates are rational and
irrational, respectively. Let X denote the quotient space of F obtained by
identifying the closed set D to a point and let ¢:F — X be the quotient
map. The space X is a functionally Hausdorff space in which the closed
Gs-set g(F) and the point ¢(D) cannot be separated by disjoint open
sets.

The next example is a quotient of the Tychonoff plank [33, p. 122].

6.2 A functionally Hausdorff completely Gs-regular space which is not
regular. Let © denote the space of ordinals up to and including the first
uncountable ordinal w; and let €y = @ — {w,}, where £ and Q possess
their natural order topologies. Let £(w) = N U {w} denote the one point
compactification of the discrete space of natural numbers and let T = Q
X §(w). The subspace

T =T — {(«, 0))

is called Tvchonoff plank.
Iet

A ={(w),n)n € N} and B = {(a, w): «a € }.

Let X be the quotient space of T obtained by collapsing B to a point and
let ¢:T — X denote the quotient map. The space X is a functionally
Hausdorff completely Ggs-regular space in which the closed set g(A4) and
the point ¢(B) cannot be separated by disjoint open sets.

6.3 A functionally Hausdorff space which is not c*-regular. Let T, A and B
have the same meaning as in Example 6.2. Let Y be the quotient space of T
obtained by identifying the closed set 4 to a point and let p:T — Y be the
quotient map. Then Y is a functionally Hausdorff space in which the
closed countably compact (in fact, sequentially compact) set p(B) and the
point p(A4) cannot be separated by disjoint open sets.

6.4 A Hausdorff completely C*-regular space which is not 1-regular. Let X
be the real line, with neighborhoods as usual except that basic
neighborhoods of 0 have the form (—e, €) — 4, where 4 = {1/n:n € N}.
Then A is a Lindelof closed set which cannot be separated from 0 by
disjoint open sets.

6.5 The space X of Example 6.2 is a functionally Hausdorff completely
1-regular space which is not regular.
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6.6 A finitely regular space which is not c-regular. Let X = [—2, 2] and let
X be endowed with the topology generated by all sets of the form

A, =[-24a),0<a<]
Ay, =[-La),0<a<l

Ay = o), —1<b<0<c<]l
Ny =(d,0<c<d<?2
Ap =(a2, —1<a<]l

The space X is a completely finitely regular, non-Hausdorff, compact
space which is not c-regular.

6.7 The example of a minimal Hausdorff topology [29, p. 119] is a
c-regular space which is not H-regular.

6.8 An H-regular space which is not regular. Let N* be the subspace
{0} U {1/n:n € N} of R. Let X be N X N* together with an ideal point a
whose neighborhoods have the form

Uy (@) = {a} U {(n, 1/m) € N X N*:n = n).
The resulting space is H-regular but not regular.

The example described in [34] of a Moore space on which every
continuous real-valued function is constant suffices for a regular nonweak
completely Gg-regular space, not completely D*-regular space.

6.9 Let P be the topological property: Z has P if and only if Z is closed
and Z has a neighborhood containing no isolated points. Then P is a
property such that the closure of a P-set is again a P-set. Let

X ={a, b, c d e}
with the topology
{0, X, {e}, {a. c, e}, {a, b, c, e}, {a, ¢, d, e} }.

Then X is P-regular since there is no P-set in X. Indeed, every nonempty
open set contains e which is isolated. Let Y be the closed subspace
{a, b, c, d}. Then Y is not P-regular. The singleton {d} is closed in Y and it
is a P-set in Y. But {d} and b cannot be separated by disjoint open sets.

The author wishes to thank the referees for their valuable suggestions
which led to the considerable improvement and shortening of earlier
versions of the paper.
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