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A UNIFIED VIEW OF (COMPLETE) REGULARITY 
AND CERTAIN VARIANTS OF (COMPLETE) 

REGULARITY 

J. K. KOHLI 

1. Introduction. Regularity and complete regularity are important 
topological properties and several generalizations of them occur in the 
literature on separation axioms. The properties of certain of these variants 
of (complete) regularity are similar to those of (complete) regularity and 
their theories run, either in part or in the whole, parallel to the theory of 
(complete) regularity. All the more, analogies inherent in their definitions 
as well as the nature of results obtained in the process of their study 
suggest the need of formulating a coherent unified theory encompassing 
the theory of (complete) regularity and its generalizations. An attempt 
leading towards the fulfillment of this need constitutes the theme of the 
present paper. 

Section 2 is devoted to preliminaries and basic definitions. In Section 3 
we devise a framework which leads to the formulation of a unified theorv 
of (complete) regularity, almost (complete) regularity, ( [26,], [27], [28] ), 
(complete) ^-regularity [13], (functionally) Hausdorff spaces, R\-spaces [3], 
and others. Certain aspects of the theory are then elaborated in 
subsequent sections. In particular, in the class of T\ -spaces the Hausdorff 
axiom is also viewed as a weak form of regularity. 

Preservation of (complete) regularity and its variants under mappings is 
investigated in Section 5 and this yields improvements and refinements of 
known preservation results under mappings pertaining to regularity, 
complete regularity, R\-spaces, Hausdorff spaces and their variants. In 
particular, in the process we obtain unified proofs and improvements of 
certain results of Chaber [2], Dorsett [4], Kohli ( [11], [12] ), Singal and 
Arya [26], and Singal and Singal [19]. 

Section 6 is devoted to examples which supplement the theory and 
reflect on the interrelations among standard separation axioms and weak 
forms of (complete) regularity discussed in the paper. 

2. Basic definitions and preliminaries. Let X be a topological space. A 
subset A of X is said to be regular closed if it is the closure of its interior. A 
it-set [35] is the intersection of any finite number of regular closed sets and 
a 8-closed set [30] is the intersection of any collection of regular closed 
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sets. The complement of a regular closed set is called regular open. We 
shall call a subset F of X a point closure if it is the closure of a singleton. A 
space is an R\-space [3] if point closures of distinct points are contained in 
disjoint open sets whenever they do not coincide. 

A subset A of a space X with topology r is called quasi H-closed relative 
to X [24] if each T-open family which covers A has a finite subfamily whose 
union is r-dense in A. 

Let E be a topological space. A subset A of X is said to be E-closed in X 
[22] if for some positive integer n there exists a closed subset B of En and a 
continuous function f:X —» £" such that v4 = f~x(B). An E-closed set is 
called D-closed [8] if £ is a developable 7j -space. 

A family Ĵ "of closed sets in Xis called a strongly closed G ̂ -family if each 
F G J£"is a countable intersection 

F = n (X - Fz: Ft e= 5*-}; 

the members of any such family J^are called strongly closed G$-sets. 

3. A unified framework. Let P denote a topological property possessed 
by certain subsets of a topological space. Properties with which we shall be 
dealing in this paper are quite diverse and include, among others, being a 
(regular) closed set, being an E-closed set, being a point closure, being 
a connected set; a complete list is given in the accompanying table. 

3.1 Definitions. Let X be a topological space and let A c X. We say 
that 

(i) A is a P-set if A possesses property P; and 
(ii) A has P-complement if X — A possesses property P. 

3.2 Definitions. A topological space X is called 
(i) P-regular if each closed P-set and a point outside it are contained in 

disjoint open sets; 
(ii) completely P-regular if for each closed P-set F and a point/? outside 

F, there is a continuous real-valued function / defined on X such that 
f(F) = l a n d / Q > ) = 0; 

(iii) weakly P-regular if every separated pair consisting of a closed P-set 
and a point outside is separated by disjoint open sets. 

The following implications are immediate from the definitions: 

complete regularity => complete P-regularity 

regularity =$> P-regularity => weak P-regularity 

Examples quoted in [13], [26] and [27] suffice to show that none of the 
above implications in general is reversible. 
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3.1 PROPOSITION. If P is a property which is preserved under the operation 
of taking closures and is enjoyed by all singletons, then a T$ (com­
pletely) P-regular space is (functionally) Hausdorff In particular, a r 0 

(completely) s-regular space is (functionally) Hausdorff 

A topological property P is an absolute property if "Z has P" does not 
depend on the space in which Z is embedded. 

3.2 PROPOSITION. If P is an absolute property such that the closure of a 
P-set is again a P-set, then (complete) P-regularity is hereditary. 

Proposition 3.2 is false with "absolute property" replaced by "proper­
ty," even if the conclusion is weakened from hereditary to closed 
hereditary (see Example 6.9). (This was pointed out by referee who also 
supplied Example 6.9.) 

3.3 PROPOSITION. A space X is an R\-space if and only if X is P-regular 
with P = point closure. 

Proof. Let X be an R\-space. Clearly every point closure in X and a 
point outside it are contained in disjoint open sets. Conversely, suppose X 
has the property that every point closure and a point outside it are 
separated by disjoint open sets and let JC, y be any two distinct points in X 
such that {3c} ¥= {y}. Then there is a point z which is either in {3c} or in 
{y} but not in both. For definiteness suppose that z e {3C} and so there 
are disjoint open sets U and V containing z and {y}, respectively. Thus 
z e U c X — V and since z e {*}, x e U and hence {x} c X — V. 
Thus 

{x} n {y} = 0 

and so X is an R0-spa.ce [3], By [3, Theorem 2], {3c} c U. This completes 
the proof that X is an R\-space. 

3.4 PROPOSITION. A TQ (completely) R\-space is (functionally) Haus-
dorff. 

3.3 Definition. A topological space Xis called a semilocally P-space if for 
each x G X and each open set U containing x there is an open set V such 
that x e V c U and X — V is the union of finitely many closed 
P-sets. 

The notion of semilocally P-space, introduced and developed in ( [15], 
[16] ) represents unification of the concepts of semiregular space, 
semilocally connected space, completely regular space, (completely) 
Z)-regular space [9], (countably) compact space, Lindelôf space and others. 
The concepts of incompletely regular space due to Engelking and Mrôwka 
( [6], [22] ) and E-completely regular space due to Herrlich (which Herrlich 
named ^-regular spaces) also come under the purview of semilocally 
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/'-spaces to a certain extent. 
The table nearby illustrates the type of P-regulanty, complete 

P-regularity and semilocally P-space determined by property P. Refer­
ences are quoted as an aid to literature and an attempt has been made to 
quote the reference in which a concept or a notion appears for the first 
time. However, no claim is made to completeness or originality of the 
source. 

If P\ and P2 a r e two topological properties such that P\ implies Pi, then 
every (completely) / V ^ g u ^ r space is (completely) P\ -regular. However, 
the reverse implication does not hold in general (see Examples 6.1-6.8). 

In particular, everv Hausdorff space is c-regular and a oregular space is 
finitely regular and in the case of T\ spaces the concepts of o regularity, 
finite regularity and the Hausdorff property coincide. 

4. Results. 

4.1 THEOREM. A semilocally P-space is (completely) regular if and only if 
it is (completely) P-regular. 

Proof Necessity is obvious. To prove sufficiency, let X be a semilocally 
P-space and suppose that X is (completely) P-regular. Let F be a closed 
subset of X and let x <£ F. Since X is a semilocally P-space, there is an 
open set V such that x <E V c X — Fy and X — V consists of finite 
number of closed P-sets, F\, . . . , Fn. By P-regularity of X, there are 
disjoint open sets Nk and Vk for each k = 1, . . . , n such that x e Nk and 
Fk c Vk. Let 

N = Q Nk and U = (j Vk. 
k=\ A: = l 

Then TV and U are disjoint open sets containing x and F, respectively. 
In case X is completely P-regular, for each k = 1, . . . , n, there is a 

continuous real-valued function/^ defined on X such that fk(x) = 0, 
fk(Fk) = 1. D e f i n e / : * - > R by 

f(x) = sup{/i(x), . . . , /„(*) }. 

Then / i s continuous. f(x) = 0,f(F) = 1. 

4.1 Remark. Reading from the table, Theorem 4.1 includes several 
results in the literature; for example, with P = regular closed we get that a 
semiregular space is (completely) regular if and only if it is almost 
(completely) regular, a result that contains Theorem 3.1 of [26]. Similarly, 
the substitution P = connectedness in Theorem 4.1 yields [13, Theorem 
3.2]. 

4.2 THEOREM. Let P denote a property possessed by all singletons in a 
topological space. Suppose f.X —» Y is a continuous, open and closed 
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surjection defined on a P-regular space such that either X or Y is T\. If 
f~~ (y) is a P-set for each y e 7, then Y is Hausdorff. 

Proof. In view of closedness o f / in either case we may assume that 
7 is T]. First we show that the set 

A = {(xhx2):f(xl) =f(x2)} 

is closed in X X X. If (jq, x2) £ A, then 

*i e / " ' [ / ( * 2 ) ] . 

Since 7 is T\, in view of hypothesis on ff~l[f(x2) ] is a closed P-set. By 
^-regularity of X, there are disjoint open sets [/and F containing x\, and 
/ _ 1 [ / ( x 2 ) ] , respectively. Since / is closed, by [5, Theorem 11.6, p. 86], 
there is an open set W containing j\x2) such that 

/ _ , [ / ( * 2 ) ] c / - ' ( W ) c K 

Then since/is continuous, U X / - 1 ( ^ ) is an open set containing (x\, x2) 
which does not intersect A. Thus A is closed in X X X. 

Now, suppose that f(x\) and / (x 2 ) are distinct points of 7. Then 
(x\, x2) £ A. So, there are open sets U\ and U2 containing x\ and x2, 
respectively, such that 

(Ux x u2) n A = 6. 

Since/ is open, f(U\) and f(U2) are disjoint open sets containing x\ and 
x2* respectively. 

4.2 Remark. Using the table, Theorem 4.2 contains several results in the 
literature; for example, with P = closed set we get that a T\ continuous 
open and closed image of a regular space is Hausdorff, a result that 
includes [33, Theorem 14.6, p. 94]. Similarly, for P = connectedness it 
yields Theorem 3.3 of [13]. 

None of the hypotheses of continuitv, openness or closedness in 
Theorem 4.2 can be omitted. 

4.3 THEOREM. Let X be a Hausdorff P-regular space and let A be a closed 
P-subset of X. Then the quotient space obtained from X by identifying A to a 
point is Hausdorff. 

4.4 THEOREM. Let X be a completely P-regular space. If K and F are 
disjoint subsets of X such that K is compact and F is a closed P-set, then there 
is a continuous function f.X —» [0, 1], such that f(K) = 0 andf(F) = 1. 

4.5 THEOREM. Let X be a completely P-regular space. If K is a compact G$ 
which is expressible as a countable intersection of open sets having 
P-complements, then K is a zero set in X. 
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We omit proofs of Theorems 4.3, 4.4, and 4.5. The special case of these 
theorems for P equal to connectedness is dealt with in [13] and with 
P = closed set they reduce to classical known results pertaining to 
(complete) regularity. 

5. Preservation under mappings. In this section we study the behavior of 
P-regularity and complete P-regularity under mappings. The known 
results, pertaining to the preservation of (complete) regularity, almost 
(complete) regularity, (complete) ^-regularity, R\-spaces, and Hausdorff 
spaces under mappings, follow as easy corollaries to the results so 
obtained. 

5.1 Definitions. A function f.X —> Y from a topological space X into a 
topological space Y is called 

(i) P-continuous [15] if for each x e X and each open set V containing 
f(x) and having P-complement there is an open set U containing x such 
tha t / ( I / ) c V\ and 

(ii) P-proper map if for each closed P-set K c Y,f~l(K) is a closed 
P-set in X. 

Continuity and several weak forms of continuity, which occur in the 
literature are special cases of P-continuity. For example, the concept of 
almost continuous function [25] (respectively, ocontinuous function [7], 
respectively ^--continuous function [11] ) coincide with P-continuous 
function with P = regular closed (respectively P = compactness, re­
spectively P = connectedness). Again, for P = connectedness P-proper 
maps have been studied by Jones [10] and Long [19], and for P = ô-closed 
by Noiri [23] and Mathur [21]. It seems an interesting and a profitable 
exercise to study the category of topological spaces and P-proper maps. 

5.1 THEOREM. Let f:X —> X be a P-proper closed surjection defined on a 
P-regular space. If either f is open or iff~\y) is compact for each y e 7, 
then Y is a P-regular space. 

5.2 THEOREM. Letf:X—> Y be a P-continuous closed surjection defined on 
a regular space. If either f is open or iff~\y) is compact for each y <E Y, 
then Y is a P-regular space. 

Proof of Theorems 5.1 and 5.2. Let P c Y be a closed P-set and suppose 
that y £ F. Then 

/ - 1 ( F ) n / - ' ( 7 ) = 0. 

Since/is P-continuous, by [15, Theorem 3 .1] / _ 1 (P) is closed. In case / i s 
a P-proper function, t h e n / _ 1 ( P ) is also a P-set. 

Case 1. / is open. Let x G f~l(y). Then in view of regularity or 
P-regularity of X, as the case may be, there are disjoint open sets U and V 
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such that x e U a n d / - 1 ( P ) c V. Then f(U) and Y - f(X - V) are 
disjoint open sets containing^ and/ , respectively. 

Case 2.f~l(y) is compact for each y e Y. Then in view of regularity or 
P-regularity, as the case may be, there are disjoint open sets U and V 
c o n t a i n i n g / " 1 ^ ) a n d / _ 1 ( F ) , respectively. Since/is closed, the sets 

Vx = Y-f(X- U) and V2 = Y - f(X - Y) 

are open. It is easily verified that V\ and V2 are disjoint and contain^ and 
F, respectively. 

5.1 Remark. According to the table Theorems 5.1 and 5.2 contain 
several results in the literature; for example, with P = closed set we get 
that regularity is invariant under perfect mappings [5, p. 235] and that 
regularity is preserved under continuous open closed surjections [2]. 
Again, in view of a result of Whyburn [32], with P = compactness, it is 
easily deduced that a perfect image of a Hausdorff space is Hausdorff 
[5, p. 234]. Similarly, the substitution P = point closure in Theorem 5.1 
(or 5.2) yields an assertion which includes a result of [4] and the substitu­
tion P = regular closed yields Theorem 2.14 of [25]. Further, for 
P = connectedness we get Theorem 3.7 of [13]. 

5.3 THEOREM. Let f:X —» Y be an open closed P-continuous surjection 
defined on a completely P-regular space X. If either X is completely regular, 
or if f is a P-proper function, then Y is completely P-regular. 

Proof. Let K c y be a closed P-subset and suppose that y £ K. Since/ 
is P-continuous by [15, Theorem 3.\] f~\K) is closed. In case / is a 
P-proper function, t h e n / - ](K) is also a P-set. Take a point x0 G f~l(y). 
Then in view of complete regularity or complete P-regularity, as the case 
may be, there is a continuous real-valued function <j>:X —> [0, 1] such 
that 

<H*o) = 1 and <Kf-\K)) = 0. 

Define <j>:Y -> [0, 1] by putting 

4>(y) = sup{cKx):x e f~\y)}. 
A A A 

Then <$>(y) = 1, <J>CF) = 0 and by [5, p. 96, Exercise 16] <j> is continuous. 
Thus Y is completely P-regular. 

5.2 Remark. Reading from the table Theorem 5.3 contains several 
known results in the literature; for example, with P = closed set we get 
that complete regularity is invariant under open-closed continuous 
surjections, a result due to Chaber [2]. Similarly, the substitution 
P = connectedness yields Theorem 3.10 of [13]. Further, with P = finite 
set we get that an open-closed image of a T\-completely regular space with 
closed point inverses is functionally Hausdorff, a result which includes 
Theorem 2.14 of [12]. 

https://doi.org/10.4153/CJM-1984-045-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-045-8


790 J. K KOHLI 

I - l <a r -H - t ^ O 

H x: 

cu 

B S 
O 
ex 

rj S G o 

om
p VII cu> o 

ex 
om

p 
^ c3 o 

di
na

 

ou
n 

m
it

e 
CJ 

o3 C3 O o 
CU T j * g 

c 

S 
c 

^ -5 r^ 
+-" <U C ^ 

a 

a 
, o 

«J r ^ O ~ 

X « 

ex 
S 
o 

>.. >> >, 

CX 

S 
o 

3 

^ ° «T" f oC ^ <L> 

1 * §• 
2 ^ 8 

« ^ 

•3 ^ 3 
O ^ H 

^ 3 ofi o£ ^ ^ - ûC ^ 

<u a> 

X <3 e Q 

u, T î T3 
ctf n> a> <vi 
3 n O 
OU 

U P4 oô fe; 

o 
O 

U U Ë U X 
'o 

p T3 

C/3 o % 
CJ 

- j o 
rî <D CJ 

„_, -O 
cu <T< C3 

O 

dui un
t 

as
i 

n> o o 3 

N U U a 

-*-' . _ :/3 

£ o o ^ 
cj £3 c j 

CTS JO 

| - r. O- O — 

https://doi.org/10.4153/CJM-1984-045-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-045-8


COMPLETE REGULARITY 791 

6. Examples. 

6.1 A functionally Hausdorff space which is not G^-regular. Let F denote 
the Moore plane, i.e., the upper half plane { (x,y):y = 0) } in R2 endowed 
with the tangent disc topology (see [33, p. 36] ). Let D and E be the closed 
sets of points on the x-axis in F whose first coordinates are rational and 
irrational, respectively. Let X denote the quotient space of F obtained by 
identifying the closed set D to a point and let q\F —> X be the quotient 
map. The space A' is a functionally Hausdorff space in which the closed 
Q-set q(E) and the point q(D) cannot be separated by disjoint open 
sets. 

The next example is a quotient of the Tychonoff plank [33, p. 122]. 

6.2 A functionally Hausdorff completely G$-regular space which is not 
regular. Let 12 denote the space of ordinals up to and including the first 
uncountable ordinal cc\ and let 120 = 12 — {co]}, where 12 and 12() possess 
their natural order topologies. Let 12(co) = N U {co} denote the one point 
compactification of the discrete space of natural numbers and let T = 12 
X 12(co). The subspace 

T= T* - {(cob co)} 

is called Tychonoff plank. 
Let 

A = { (co,, n)\n e N} and B = { (a, co): a e 120}. 

Let X be the quotient space of T obtained by collapsing B to a point and 
let q:T —> X denote the quotient map. The space X is a functionally 
Hausdorff completely Gg-regular space in which the closed set q(A) and 
the point q(B) cannot be separated by disjoint open sets. 

6.3 A functionally Hausdorff space which is not c*-regular. Let T, A and B 
have the same meaning as in Example 6.2. Let Y be the quotient space of T 
obtained by identifying the closed set A to a point and let p: T —» y be the 
quotient map. Then Y is a functionallv Hausdorff space in which the 
closed countably compact (in fact, sequentially compact) set p(B) and the 
point p(A) cannot be separated by disjoint open sets. 

6.4 A Hausdorff completely C*-regular space which is not \-regular. Let X 
be the real line, with neighborhoods as usual except that basic 
neighborhoods of 0 have the form ( — e, e) — A, where A = {\/n:n e N}. 
Then A is a Lindelôf closed set which cannot be separated from 0 by 
disjoint open sets. 

6.5 The space X of Example 6.2 is a functionallv Hausdorff completely 
\-re<zular space which is not regular. 
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6.6 A finitely regular space which is not c-regular. Let X = [ — 2, 2] and let 
X be endowed with the topology generated by all sets of the form 

A-2a = [-2, a\ 0 < a < 1 
A - x a = [ - 1 , 0), 0 < a < 1 
^ " = (b, c), - 1 < b < 0 < c < 1 
A ^ = (c, d), 0 < c < d < 2 
Aa2 = (a, 2], - 1 < a < 1 

The space X is a completely finitely regular, non-Hausdorff, compact 
space which is not c-regular. 

6.7 The example of a minimal Hausdorff topology [29, p. 119] is a 
c-regular space which is not H-regular. 

6.8 An H-regular space which is not regular. Let N* be the subspace 
{0} U {\ln\n <= N} of R. Let Xbe N X N* together with an ideal point a 
whose neighborhoods have the form 

Uno(a) = {a} U { («, 1/m) G N X N*:« ^ «0}-

The resulting space is //-regular but not regular. 

The example described in [34] of a Moore space on which every 
continuous real-valued function is constant suffices for a regular nonweak 
completely G^-regular space, not completely Z)*-regular space. 

6.9 Let P be the topological property: Z has P if and only if Z is closed 
and Z has a neighborhood containing no isolated points. Then ? is a 
property such that the closure of a P-set is again a P-set. Let 

X = {a, b, c, d, e} 

with the topology 

{0, X, {e}, {a, c, e}, {a, b, c, e], {a, c, d, e) }. 

Then X is P-regular since there is no P-set in X. Indeed, every nonempty 
open set contains e which is isolated. Let Y be the closed subspace 
{a, b, c, d). Then Fis not P-regular. The singleton {d} is closed in Y and it 
is a P-set in Y. But {d} and b cannot be separated by disjoint open sets. 

The author wishes to thank the referees for their valuable suggestions 
which led to the considerable improvement and shortening of earlier 
versions of the paper. 
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