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LOCAL MINIMAL OVERRINGS 

IRA J. PAPICK 

1. I n t r o d u c t i o n . Let R be a (commutat ive integral) domain having 
quotient field K. A domain 5 satisfying R C S C K, is called an overring of R. 
We say R has a minimal overring T, in case R Ç^L T Ç. K and there are no 
domains properly between R and 7\ The purpose of this paper is the s tudy of 
certain classes of coherent domains having local minimal overrings; tha t is, 
having minimal overrings with unique maximal ideals. 

In [3], Ferrand and Olivier s tudy the more general notion of minimal homo-
morphisms of rings, and in [4], Gilmer and Heinzer s tudy concepts related to 
minimal overrings. (Their notion of minimali ty differs slightly from ours.) 
We apply their work throughout this note. 

Any unexplained terminology is s tandard as in [5] and [7]. 

2. T h e local case . In this section we analyze those domains R t h a t have 
minimal overrings which are necessarily local. 

As in [9], an extension of domains R Ç T is said to satisfy GD if R Ç T 
satisfies going-down; R C T is called an i-extension if the contract ion map 
Spec (T) —» Spec (R) is injective. Recall [1, pp. 43-44] t ha t a commuta t ive 
ring is called coherent if each finitely generated ideal is finitely presented. 

PROPOSITION 2.1. Let R be local and integrally closed. If R has a minimal 
overring T, then T is local. 

Proof. Assume T is not local. Since R is integrally closed, [3, Théorème 2.2] 
implies t ha t R —> T is a flat epimorphism, and [9, Remark 2.10] gives t h a t 
R Ç T is an i-extension. Let / = (R : T)R. Then / is a prime ideal of T 
[3, Lemme 3.2]. Choose distinct maximal ideals Mi, M2 of T s u c h t h a t / Ç M\. 
As R C T is an i-extension, Ni = Mi H I ^ M2 C\ R = N2. Also, Ni and 
N2 are contained in I. For if t G Nu then t £ Mu i = 1 ,2; and so [3, Lemme 
2.1] puts t G / . T h u s / = TVi, and since / is prime in T, we have iVi = M\. 
Now by [8, o.D], R Ç T satisfies GD, and so the following diagram can be 
completed with some P £ Spec (T): 

T ^Ni = Mi 

R Ni^N,. 
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But , R C T being an i-extension implies P — M2, giving M2 £ Mi. This 
contradiction completes the proof. 

Remark 2.2. [4, Example 4.3] shows tha t the assumption R integrally closed 
in Proposition 2.1 is necessary. 

LEMMA 2.3. Let R be local, integrally closed, and assume R has a minimal over-
ring T. If u £ T\R, then u~l £ R. 

Proof. Suppose u~l d R and let M be the maximal ideal of R. Since T = 
R[u], we apply (u, u~l)-lemma [7, Theorem 67] to get a nonmaximal prime 
ideal M T in T. Let N be the unique maximal ideal of T (uniqueness follows 
from Proposition 2.1). An application of [4, Lemma 2.1], shows tha t MT = M 
and there are no ideals of T properly between M and N. Hence, N2 £ M 
[4, p. 141]. Let v e N\M. Thus v d R, which gives T = R[v] and MR[v] = M 
as before. But , v2 £ M = MR[v]. Hence by integrality or [7, Theorem 67] 
we get v or v~x £ R. This contradicts the fact t ha t v £ N\M. 

Remark 2.4. Another proof of Lemma 2.3 can be constructed through the 
use of [3, Théorème 2.2] and [10, Theorem 2]. 

PROPOSITION 2.5. / / R is local and integrally closed, then R has at most one 
minimal overring (and it is necessarily local by Proposition 2.1). 

Proof. Suppose 7 \ and T2 are distinct minimal overrings of R. For i = 1,2, 
let Ui £ T\R. Then, by Lemma 2.3, Tt = Rui~

l- Note tha t M does not 
survive in Tu since ut~

l £ M. Let NtTi be the maximal ideals of the 7 \ . 
So Nt £ M, and thus 7? £ i^iVi Ç 7"̂ . Minimali ty now gives RNi = Tt. 
Finally, by prime avoidance, R ^ RR\NI \jN2 Ç^ RNl, which in turn gives 
RR\N1 UN2

 = RNI — RN2I the desired contradiction. 

Example 2.6. This example shows tha t the assumption tha t R be integrally 
closed in Proposition 2.5 is needed. Let Q be the rational numbers and let x be 
an indeterminate over Q(\/2,\^). Let S = Q(V2,VS)[[x]], T1 = Q(\/2) + 
xS, T2 = Q ( \ / 3 ) + %S and R = Q .+ x5 . Then R is a local domain which is 
not integrally closed, and 7\ , T2 are local minimal overrings of R. (See [5, 
Theorem A, p. 560] for more details.) 

LEMMA 2.7. Let R be local and integrally closed. If R has a minimal overring T, 
then there is a prime ideal N of R such that T = RN, N = NRN, and all non-
maximal prime ideals of R are contained in N. 

Proof. From the proof of Proposition 2.5 we get a prime ideal N of R such 
tha t T = RN. (One could also deduce the existence of such a prime from 
Proposition 2.1 and [10, Theorem 2].) Minimali ty gives us tha t there are no 
prime ideals properly between N and M, the maximal ideal of R. A direct 
a rgument or an application of [3, Lemme 2.1] shows tha t N = NRN and [6, 
Proposition 1.2, (i)] proves tha t all the nonmaximal prime ideals of R are 
contained in N. 
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T H E O R E M 2.8. Let R be coherent, local, and integrally closed. If R has a minimal 

overring T, then R is a valuation ring. 

Proof. By Lemma 2.7, T = RN, for some N 6 Spec (R). Let M be the 
maximal ideal of R and choose a £ M\N. Then , applying L e m m a 2.7 gives 
t h a t M is minimal over (a : l)R. 

Let / be a finitely generated ideal of R. We wish to show t h a t / is invertible. 
Let J = II~l and consider a finite presentat ion of / : 

Rm-^Rn->I->0. 

Apply Honi/e ( —, R) to the above exact sequence and obtain the following 
exact sequence: 

0 -> H o m B (J, R) -> Rn - » Rm. 

Since I~l ~ Hoirie (I, R) as i^-modules and R is coherent, [1, Exercise 11, 
pp. 43-44] gives t ha t I~l is a finitely generated i?-module. Hence, by [7, 
Exercise 39, p. 45], J~l = R. Using the minimali ty of M over (a : 1)R, we 
apply [11, Lemma 3.1] to get / $£ M. Hence J = R and I is invertible. 

Remark 2.9. T h e domain R constructed in Example 2.6 is a Noetherian local 
domain which is not integrally closed, and so serves to show tha t the integrally 
closed assumption is needed in Theorem 2.8. By using the "D + M-construc-
t ion" [5, Theorem A, p. 506] and [2, Theorem 3] one can construct examples 
to show tha t the assumption of coherence is needed in Theorem 2.8. 

In general, a valuat ion ring R with maximal ideal M has a minimal over-
ring if and only if U {P G Spec (R) : P j£ M) £ M, or equivalently, if M 
is minimal over (a : b)R for some a, b G R. 

3. T h e n o n l o c a l case . In this final section we s tudy nonlocal domains t ha t 
have local minimal overrings. Throughou t this section, R will be a nonlocal 
domain. 

L E M M A 3.1. If R has a local minimal overring T with maximal ideal M, then 
T = RM p, R and M C\ R is a maximal ideal of R. 

Proof. Consider R ^ T. By localizing we obtain 7̂  ^ RM n R Ç T. So by 
minimali ty, T = RM n R. T h a t AI P\ R is a maximal ideal of R, also follows 
from minimality. 

Wi th Lemma 3.1 in mind we s ta te the following: 

L E M M A 3.2. If R has at least one local minimal overring RM, then R has 
exactly two maximal ideals M, N and each nonmaximal prime ideal of R con­
tained in N is also contained in M. 

Proof. Suppose R has more than two maximal ideals. Let ilf, A7\, N2 be 
three such maximal ideals. Then R £ RR\M\JNI £ RM, which contradicts the 
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fact t ha t RM is a minimal overring of R. Therefore, R has exactly two maximal 
ideals M and N. 

Next assume tha t there exists a nonmaximal prime ideal P C N such tha t 
P Çt M. Then, as before, R £ RR\P\JM £ RM contradicting minimality. 

LEMMA 3.3. If R has more than one local minimal overring, then R has exactly 
two local minimal over rings and each nonmaximal prime ideal of R is contained in 
the Jacob son radical of R {denoted J{R)). 

The proof of this lemma is a straightforward application of Lemmas 3.1 and 
3.2. 

I t would be interesting to know for what classes of domains the conditions 
forced on the spectrums in Lemmas 3.2 and 3.3 are sufficient. We show tha t 
for Priifer domains, these conditions actually are sufficient. 

T H E O R E M 3.4. Let R be a Priifer domain with exactly two maximal ideals AI 
and N. 

(a) / / {P e Spec (R): P £ N} Ç {Q £ Spec (R): Q £ M] then R has 
exactly one local minimal overring, namely RM. 

(b) / / {P £ Spec (R): P £ N} = {Q £ Spec (R): Q £ M], then R has 
exactly two local minimal overrings, namely, RM and RN. 

Proof, (a) Lemma 3.3 guarantees us tha t we cannot have more than one 
local minimal overring, and Lemma 3.1 specifies tha t if one exists it must 
either be RM or RN. Assuming tha t 

[P e Spec (R): P £ N\ £ {Q G Spec (R): Q <= M] 

and arguing as in Lemma 3.2, we can eliminate RN as a candidate for a local 
minimal overring. 

I t remains to show tha t RM is a minimal overring of R. Assume R Ç 5 Ç RM. 
Since R is Priifer, S is flat over R, and since 5 $£ RN, NS = S [10, Theorem 1]. 
An application of [5, Theorem 22.1] gives 5 = RM to complete par t (a) . 

(b) Let R £ S ÇZ K; thus 5 ^ RM C\ RN. Argue as in par t (a) to see tha t 
RM and RN are local minimal overrings, and so the only possible ones. 

COROLLARY 3.5. Let R be a nonlocal Priifer domain. Then, R has exactly two 
local minimal overrings, if and only if each overring T of R with T 9^ R is local. 

Proof. The "only if" par t follows by combining Lemma 3.3 and the proof of 
Theorem 3.4 (b). 

By Theorem 3.4 (b), it suffices to show tha t each nonmaximal prime ideal 
of R is contained in J(R). If this is not the case, then we may assume there is 
a P e Spec (R) such tha t P £ M and P £ N for M, N G Spec (R). But then 
RR\PUN is a nonlocal overring of R different from R, which contradicts our 
assumption. 
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We end this section by analyzing the Noetherian case. 

LEMMA 3.6. Let R be Noetherian and not local. If dim (R) > 1, then there 

exists a nonmaximal height one prime ideal not contained in J(R). 

Proof. Let M be a maximal ideal such t ha t h t (AT) > 1 and let N be any 

other maximal ideal. Choose x £ M\N and let P be a prime ideal minimal over 

xll with P C M. Since h t ( P ) = 1 , P ^ M, and P g J(R) because / ( # ) £ TV, 

we are done. 

PROPOSITION 3.7. Let R be Noetherian and nonlocal. Then, R has exactly two 

local minimal overrings and is integrally closed if and only if R is a PID with 

exactly two nonzero prime ideals. 

Proof. The "if" par t follows directly from Theorem 3.4 while the other 

direction is a consequence of Lemmas 3.3, 3.6 and [7, Theorem 96]. 

Acknowledgement. The author is grateful to W. Vasconcelos for several en­

lightening conversations relative to this topic. I am also thankful to the referee 

for his helpful suggestions. 

REFERENCES 

1. N. Bourbaki, Commutative algebra (Addison-Wesley, Reading, Massachusetts, 1972). 
2. D. E. Dobbs and I. J. Papick, When is D + M coherent!, to appear, Proc. Amer. Math. Soc. 
3. D. Eerrand et J. P. Olivier, Homomorphismes minimaux d'amieaux, J. of Algebra 10 

(1970), 461-471. 
4. R. Gilmer and \Y. J. Heinzer, Intersections of quotient rings of an integral domain, J. Math. 

Kyoto University 7-2 (1967), 133-100. 
5. R. Gilmer, Multiplicative ideal theory, Queen's Papers in Pure and Appl. Math., No. 12, 

Queen's University, Kingston, Ontario, 1968. 
6. B. Greenberg, Global dimension of Cartesian squares, J. of Algebra 32 (1974), 31-43. 
7. I. Kaplansky, Commutative rings (Allyn and Bacon, Boston, Massachusetts, 1970). 
8. H. Matsumura, Commutative algebra (\V. A. Benjamin, New York, 1970). 
9. I . J . Papick, Topologically defined classes of going-down domains, to appear, Trans. Amer. 

Math. Soc. 
10. E. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799. 
11. \V. V. Vasconcelos, Divisor theory in module categories, Mathematics Studies No. 14 (North-

Holland, Amsterdam, 1974). 

A del phi University, 

Garden City, New York 

https://doi.org/10.4153/CJM-1976-075-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-075-3

