## A NOTE ON FOURIER TRANSFORMS AND IMBEDDING THEOREMS

## Robert A. Adams

(received June 1, 1967)

It is well known that Sobolev's Lemma on the continuity of functions possessing  $L^2$  distributional derivatives of sufficiently high order is a simple consequence of elementary properties of the Fourier transform in  $L^2$  (e.g. [1, p.174]). (In fact this statement remains true if 2 is replaced by p,  $1 \le p \le 2$ ). In this note we show that imbedding theorems of the type  $W^{m,p}$   $\subset L^q$  can also be obtained using Fourier transforms and an elementary lemma which reduces the cases p > 2 to the case p = 2. The simplicity of this approach is obtained at the expense of a slight loss of generality in the imbedding theorem.

Let  $\Omega$  be an open set in  $R_n$ . Let m be a positive integer and let p be real and satisfy  $1 \le p < \infty$ . We denote by  $W_0^{m,p}(\Omega)$  the closure of the set of infinitely differentiable functions with compact support in  $\Omega$  with respect to the norm

$$||\mathbf{u}||_{\mathbf{m}, p} = \left\{ \sum_{|\alpha| < \mathbf{m}} ||\mathbf{D}^{\alpha}\mathbf{u}||_{\mathbf{o}, p}^{p} \right\}^{1/p}$$

where  $\|\mathbf{u}\|_{0,p}$  denotes the norm in  $L^p = L^p(\Omega)$ . As is customary

$$\alpha = (\alpha_1, \ldots, \alpha_n); |\alpha| = \alpha_1 + \ldots + \alpha_n; D^{\alpha} = (\frac{\partial}{\partial x_1})^{\alpha_1} \cdot \ldots (\frac{\partial}{\partial x_n})^{\alpha_n};$$

the  $\alpha$  being non-negative integers. We prove the following

THEOREM (Sobolev): If 
$$2n(n+2)^{-1} then$$

Canad. Math. Bull. vol. 10, no. 5, 1967

 $W_0^{m, p} \subset L^r$  with continuous imbedding for  $p \le r < np(n - mp)^{-1}$ .  $(p \le r < \infty \text{ if } n = mp)$ .

The restriction  $2n(n+2)^{-1} < p$  occurs because the Fourier transform fails to be adequately defined in  $L^p$  for p > 2. This also results in loss of the endpoint  $r = np(n-mp)^{-1}$ . The conclusion for arbitrary m follows from that for the special case m=1 since the mapping  $u \to \frac{\partial u}{\partial x}$  is continuous from  $W_0^{m,p}$  into  $W_0^{m-1,p}$ .

For the case m = 1,  $2n(n + 2)^{-1} the theorem can$ be proven as follows. For u  $\varepsilon$   $L^p$  let  $\overset{\sim}{u}$  denote the function coinciding with u on  $\Omega$  and equal to zero in  $R_n - 1$ . Let  $\hat{u}$ be the Fourier transform of U, the transform variable being denoted by  $\xi$ . If  $u \in W_0^{1,p}$  then  $\tilde{u}, \frac{\partial \tilde{u}}{\partial x_i} \in L^p(R_n)$  and so  $\hat{u}, \xi_{j} \hat{u}, \epsilon_{k} L^{p'}(R_{n}) \text{ where } p^{-1} + p'^{-1} = 1. \text{ Thus } (1 + |\xi|) \hat{u} \epsilon_{k} L^{p'}(R_{n}).$ Since  $(1 + |c|)^{-1} \in L^{4}(R_{n})$  for every q > n it follows by Holder's inequality that  $\hat{\mathbf{u}} = (1 + |\xi|)^{-1} (1 + |\xi|) \hat{\mathbf{u}} \in L^{s}(\mathbf{R}_{n})$  for every s satisfying  $p' \ge s > s = np'(n + p')^{-1}$ . Since  $2n(n+2)^{-1} < p$  we have s < 2. Choosing s such that  $s_0 < s \le 2$  we obtain  $\hat{\hat{u}} \in L^{s'}(R_n)$  where  $s^{-1} + s'^{-1} = 1$  and so by Fourier's inversion formula  $u \in L^{s'}$  for  $2 \le s' < s' = 1$  $np(n-p)^{-1}$ . Since  $L^p \cap L^{s'} \subset L^r$  whenever  $p \le r \le s'$  it follows that  $u \in L^r$  for  $p \le r < np(n-p)^{-1}$ . The continuity of the imbedding in this case is an immediate consequence of the continuity of the Fourier transform as a mapping from L<sup>p</sup> into L<sup>p</sup>'.

The validity of the theorem in the case  $\, \, m = 1, \, 2 is a consequence of the$ 

LEMMA. Let p > 2. If  $u \in W_0^{1, p} \cap L^q$  for all q such that  $p \le q < q_0$  then  $u \in L^r$  for all r such that  $p \le r < r_0 = 2n(n-2)^{-1} [1 + (p-2)q_0/2p]$ . Moreover, if  $||u||_{0, q} \le \text{const.} ||u||_{1, p}$  then  $||u||_{0, r} \le \text{const.} ||u||_{1, p}$ .

Proof. If  $\operatorname{np}(n-2)^{-1} \leq r_1 < r_0$  then  $r_1 = 2n(n-2)^{-1}[1+(p-2)q/2p]$  where  $p \leq q < q_0$ . Let  $v = |u|^s$  where s = 1 + (p-2)q/2p > 1 so that  $\frac{\partial v}{\partial x} = s|u|^{s-1} \operatorname{sgn} u \frac{\partial u}{\partial x} \in L^2$  by Holder's inequality. Also  $p/s \leq 2 \leq q/s$  so that  $v \in L^{p/s} \cap L^{q/s} \subset L^2$ . Thus  $v \in W_0^{1,2} \subset L^t$  for  $2 \leq t < 2n(n-2)^{-1}$  by the previous case. Therefore  $u \in L^r$  for any r = st satisfying  $2s \leq r < r_1$ . But 2s = p if q = p and  $r_1$  can be made as close as desired to  $r_0$ . Hence  $u \in L^r$  for any r such that  $p \leq r < r_0$ .

Now if  $\ \mathbf{C}_1,\dots \mathbf{C}_5$  denote various constants we have by the previous case that

$$||\mathbf{u}||_{o, \mathbf{r}} = ||\mathbf{v}||_{o, \mathbf{t}}^{1/s}$$

$$\leq C_{1}||\mathbf{v}||_{1, 2}^{1/s}$$

$$\leq C_{2}[||\mathbf{v}||_{o, 2} + \sum_{j=1}^{n} ||\frac{\partial \mathbf{v}}{\partial \mathbf{x}_{j}}||_{o, 2}]^{1/s}$$

But  $v \in L^{p/s} \cap L^{q/s}$  and  $\alpha p/s + (1 - \alpha) q/s = 2$  where  $0 \le \alpha \le 1$ . Thus by Holder's inequality and since  $||u||_{0,q} \le \text{const.} ||u||_{1,p}$  we have

$$||v||_{o, 2} \le ||v||_{o, p/s}^{\alpha p/2s} ||v||_{o, q/s}^{(1-\alpha)q/2s} = ||u||_{o, p}^{\alpha p/2} ||u||_{o, q}^{(1-\alpha)q/2}$$

$$\le C_3 ||u||_{1, p}^{s}$$

Also by Holder's inequality

$$\left|\left|\frac{\partial v}{\partial x_{j}}\right|\right|_{0, 2} \leq \left|\left|u\right|\right|\left|\frac{s-1}{o, q}\right|\left|\frac{\partial u}{\partial x_{j}}\right|\right|_{0, p} \leq C_{4}\left|\left|u\right|\right|_{1, p}^{s}$$

so that  $||u||_{0, r} \le C_5 ||u||_{1, p}$  completing the proof.

REMARK. If p>2 then  $W^{1,\,p}\subset L^r$  for  $p\leq r< np(n-2)^{-1}$  and  $||u||_{0,\,r}\leq {\rm const.}$   $||u||_{1,\,p}$  where the constant is independent of u. The proof is the same as for the lemma taking q=p.

The proof of Sobolev's theorem for m=1, p>2 can now be completed. Let  $r_0=p$ ,  $r_k=2n(n-2)^{-1}[1+(p-2)r_{k-1}/2p]$ . Successive applications of the lemma show that  $W_0^{1,p}\subset L^r$  for  $p\leq r< r_k$ ,  $k=1,2,3,\ldots$  with continuous imbedding. Clearly  $r_k\to np(n-p)^{-1}$  as  $k\to\infty$   $(r_k\to\infty$  if n=p) whence the theorem.

REMARK. The lemma can be modified to yield a proof of the imbedding theorem for the case  $p>p_0\geq 1$  when the theorem has already been established for  $p=p_0$ .

## REFERENCE

1. K. Yosida, Functional analysis, Academic Press, New York, 1965.

University of British Columbia