HOMOMORPHISMS OF CONTINUOUS PSEUDOGROUPS
JOSEPH E. D’ATRI*

Introduction. In this paper we attempt to set up a notion of homomorphism
for continuous pseudogroups and show that the kernel exists (as a continuous
pseudogroup) in the transitive case. This paper is really an extension of the
paper by Kuranishi and Rodrigues [11] which essentially examines the question
of the existence (as a continuous pseudogroup) of an image of a homomorphism.
A certain amount of overlap in definitions and statements of results was una-
voidable, especially in sections 2 and 3, but for many proofs and constructions
the reader is referred to that paper. For the basic notions of the theory of
continuous pseudogroups as used in section 4, see Kuranishi [9] and for the
terminology of the Cartan-Kzhler theory used in section 5, see Kuranishi [6].
Fuller expositions may be found in Cartan [1], Kihler [4], Kumpera [5], Kura-
nishi [7], and Schouten and v.d. Kulk [13].

The author would like to take this opportunity to express his deep gratitude
to Prof. M. Kuranishi for his assistance in this work for the last several
years.

§ 1. Basic Notions

Since important parts of this theory hold only in the real analytic case,
we assume that all manifolds, maps, etc. are real analytic. Most frequently,
we assume that our manifolds are pointed manifolods, i.e.,, pairs consisting of
a manifold and a distinguished point in that manifold. @We write (M, p) to
indicate that p is the distinguished point of M. Since our theory is primarily
local, it will often be desirable to “shrink” M, i.e., to replace M by an open,
connected neighborhood of p. We will usually not indicate such shrinkings in

our notation. It is usually assumed that a mapping from one manifold to
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another will carry the distinguished point into the distinguished point.

We assume familiarity with Ehresman’s concept of jet spaces. If Mis a
manifold, we let J*(M) denote the space of invertible &-jets on M, while a and
B will denote respectively the source and target projections. We also let AY(MD
denote the space of analytic k2-forms on M considered as a moduie over 4°(M),
which is just the space of functions on M.

Given manifolds M and N and a map p from M onto N, we will call the
triple (M, N, 4) a fibered manifold if p, maps the tangent space to M at each
point onto the tangent space to N at the image point. We usually assume that
each fiber is connected. Note that if we let I*(») denote the identity %-jet on
M at p, then (J¥(M), I*(p)) is a pointed manifold and (J*(M), M, «) and (J*(M),
M, B) are fibered manifolds. If (M, N, p) is a fibered manifold and we are
given a point pM and a coordinate system (x) = (x;) defined in a neighborhood
of p(p), it is always possible to choose coordinates (y) = (y;) defined on a
neighborhood of p such that xjop=y;. Such coordinates (y) will be called
fibering coordinates and we will loosely refer to this process as raising the
coordinates (x) to p. We will usually not distinguish notationally between x;op
and ;. If we are given a “diagram” of manifolds and maps, we will call this
a diagram of fibered manifolds if each “arrow” M —?N gives a fibered manifold
structure (M, N, p). Lastly, if it is necessary to shrink any of the manifolds
in such a diagram, it will be assumed that the others are also shrunk so as to
preserve the fibered manifold structures.

By a homeomorphism element on a manifold M, we will mean a homeo-
morphism f from an open set of M (frequently denoted by U(f)) onto another
open set of M (frequently denoted by V(f)) which is bianalytic. If f and g
are homeomorphism elements on M such that V(g) N U(f) is not empty, then
we define f>g in the obvious way as a homeomorphism element with domain
equal to g”(U(f)). Let I be a set of homeomorphism elements on M. Then
I' is called a pseudogroup of transformations on M if : (1) f contained in I”
implies that f™' is contained in I, and (2) f and g contained in I" implies that
fog is contained in I" whenever defined. Let I” denote the collection of all
homeomorphism elements f on M such that for any point x€U(f), there exists
an element g in I" which coincides with f in some neighborhood of x. T is
again a pseudogroup which is called the completion of I I itself is called
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complete if '=I. We call I' transitive if for any two points x and y in M,
there exists an element g in I' such that g(x)=y. If M;is an open submanifold
of M, then by I'| M, we will mean the set of g I" such that U(g) and V(g)
are contained in M;. Every time that the manifold M is shrunk, it will be
assumed that I" is also shrunk in this way.

An important class of pseudogroups is formed as follows. Let Ar(M)
denote the space of analytic Pfaffians on M considered as a vector space over
the feals and let 2 be any subspace of Akx(M). Then I'(2) will denote the set
of all homeomorphism elements ¥ on M such that f *w#w on U(f) for any

wef. Clearly I'(Q) is a complete pseudogroup on M.

§ 2. Cartan Spaces

DeriniTION 2.1. Let (M, p) be a pointed manifold and suppose we have
a system of real analytic Pfaffians w1, ..., wn, @1, ..., &m on M such that:

(1) w1, ..., wn, @, ...,dn are linearly independent at each point

(2) We can write dw;=c’*wjAwr+aPw; A @, where the ¢i* and o are
constants.

- By the structure matrices of such a system, we mean the matrices @ = ( a).
If such a system also satisfies:

3) The matrices a', . . ., @™ are linearly independent

then (ws, ..., ®n; @, .., dm) is a Cartan basis. The @, will be called sup-
plementary forms for the w; and the equation in (2) will be called the structure
equation for the basis. It will usually be assumed that the c’* have been made
skew-symmetric in the upper indices so that the structure equation is uniquely
determined. We remark that if we have a system of forms (w;; 7.) satisfying
(1) and (2), then we can find forms @, in the real vector space generated by
the 7, so that (wi; @) is a Cartan basis.

Now suppose we have vector subspaces 2 and I7 of Akx(M) and suppose we
can find a Cartan basis (wy, - .., on; @1, ..., dm) such that (wy, ..., ws)
is a basis for 2 and (w;, ..., ®n, @1, ..., dm) is a basis for II. Then (2, IT)
is called a Cartan system and (w;; @,) is called a Cartan basis for (@2, 7).
It is easy to see that if (@, IT) is a Cartan system, then (w;; @,) is a Cartan
basis for (2, I7) if and only if (w,) is a basis for £ and (wi, @) is a basis for

I1. The system is called complete if dim IT = dim M.
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Lastly suppose we have any subspace 2 of A:(M) for which there exists
a subspace IT making (£, IT) into a Cartan system. Then we call 2 a Cartan
space and (£, IT) will be called a system for 2.

DeriniTION 2.2. Let (2, IT) be a Cartan system with basis (w;; @) and
structure matrices (a?*). Let 2* denote the dual of 2 with dual basis o, . . .,
" and let a* € Hom (2% 2*) be defined by a*(«’) = a?*w’. The a* generate a
subspace of Hom (2% £%) which is independent of the choice of Cartan basis.
This subspace is denoted by L(2, IT) or simply L. Choosing a Cartan basis
induces natural bases on £* and L and hence associates to every element be&
Hom (2%, L) a canonical matrix representation (b]). We let D(2, IT) denote

the subspace of elements b satisfying

a’bf — ab] = 0 for all 4, 7, and k.
This is called the derived space in Kuranishi-Rodrigues [11] and the prolonged
space in Guillemin-Sternberg [3]. This space is also independent of the choice

of Cartan basis. Finally the system (2, I7) will be called involutive if L(2,
Il is involutive in the sense defined in Kuranishi-Rodrigues.

ProrosiTion 2.1. Let (2, IT) and (2, II') be systems for the Cartan space
Q. Then dim IT=dim IT', IT, = I} for any point q, and L(2, I1) = L(R, IT'). Now
let (wi; @) be a Cartan basis for (2, IT) with structure matrices (a?*). Then
there exists a basis of (@, II') of the form (wi; &) satisfying:

(1) &= &\ + hrwr where h¥ are functions on M.

(2) For each point g, the matrix (h(q)) is the camonical representation,
with respect to the bases induced by (wi; @), of an element of D(2, II).

(3) The structure constants of the two bases are the same.

Conversely, if E;, <« .,&m are Pfaffians on M satisfying (1) and (2), then
(wi; &) is a basis of a system for 2 and (3) follows. We remark that we can
always choose the supplementary forms &, so that ¥ p) =0 where D s the
distinguished point of M.

See Kuranishi Rodriques for proof.

Because of this proposition, we can introduce the notation L(£2) and D(2)
to denote the spaces of Definition 2.2. In particular we see that the property
of being involutive is a property of 2 alone and is not dependent on the choice
of system. The same holds true for completeness.
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DeriniTION 2.3. A vector subspace £2' of a Cartan space £ is a Cartan

subspace -if 2’ itself is a Cartan space.

ProrosiTiON 2.2. A vector subspace 2' of a Cartan space 2 is a Cartan
subspace if and only if the equation Q' =0 is completely integrable. Under these
conditons, if (9, IT) is a system for 9, then there is a unique system (2', II')
of 2' such that II' CII. The vector space I'' N 2 is independent of the choice of
system (@, IT).

Proof. The first assertion appears in Kuranishi-Rodrigues and their proof
shows that under these conditions, £ will have a system (&', II') with I"cCIT.
Suﬁpose we had another system (2, /7") with II""cC 1. Then at any point g,
Iy =1). Since any two subspaces of IT which agree at each point must be
equal, wé have I = IT",

Now let (2, E) be another system for 2 and let (', 5') be the unique
system for @: induced by Z.. We can choose the basis (wi; @) of (2, IT) so
that

(1) (1 « o o, Onry Warddy o o o'y Wnrksry D1y o o o 6,,,'_;,)

is a basis for (2, II'). We can also choose a basis (w;; &) of (2, &) so that
the conclusions of Proposition 2.1 hold, in particular so that (w;; @) and (w;s;

£)) have the same structure constants. Then we see easily that
1y (W1 « ooy O Ontls oo oy Onrtsry §1y o0 oy Eqrmss)

is a Cartan basis, having the same structure constants as (1), and hence, by

uniqueness, must be a basis for (&', 5’). Clearly then I'N2=5'N 2.

DeriniTiON 2.4. Let 2 be a Cartan subspace of the Cartan space 2. Let
(2, IT) be a system for 2 and let (£, II') be the induced system. Then s(£2,
2') =dim (II' N ) —dim £ is called the supplementary dimension of £’ in Q.

DeriniTiON 2.5. Let (M, N, p) be a fibered manifold and let £ and £’ be
Cartan spaces on M and N respectively. The Cartan spaces are called compatible
if p*2'c 2. In this case p*Q' is a Cartan subsystem and we set's(Q, 2') =s(,

sk
072,

DeriniTION 2.6. Suppose we are given a diagram of fibered manifolds.
This is called a diagram of fibered manifolds and Cartan spaces if a complete
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Cartan space is given on each manifold and if these are all compatible with
the fibrations.

DerinitioN 2.7, Fix a complete Cartan space 2 on a pointed manifold (M,
p), a system (2, I7), and a basis (w1, ....w0n; ‘En, .. - @m) \;vith structure
matrices (a?). Let D=MXxM and let « ah(‘ir B de»nqte' thé brojections of D
onto the first and second factors respectively. Sét; Qi =B*w; and‘ ITA= B*Qm.
We will also want to consider a*w; and a*@, but v?ve will simply write these
as w; and @.

Let 3(2) be the exterior differential system on D generated as an ideal by
wi— Qi and doi—d2i. Let 6(2)=a*(A(M)), ie, 0 is equal to the 4°(D)
submodule of 4'(D) generated by w; and .. 0 is a system of %+ m independent
variables. The pair (J, ©) is called the exterior differential system with inde-
pendent variables assosicated to the Cartan space 2. It is clearly independent
of the choice of basis or system. Using the structure equations for (w:; @),
we see that J can also be characterized as the ideal ‘generated by o; —~ 2; and
aMw; A (@ — ). o

Let SCD. Then S is a solution manifold of (%, @) if and only if S is the
graph of a transformation in I 2). Also it is easy to show that the set of
n+m dimensional integral elements of (2(2), @(.Q)) is a submanifold of thc
n+m dimensiqnal Grassmannian Qf M with diménSion equal to 2 dim (b) +
dim D(Q). Finally it is well known that the Ca‘rtan épace is involutive if and
only if the associated exterior differential system is involutive in the sense of
the Cartan-Kihler theory.

§ 3. Prolongations of Cartan Spaces
In this section we fix a complete Cartan space £ on a pointed manifold
(M, p). We let J*(M, p) denote the manifold of invertible k-jets with target 2.

For any X=j.feJ'(M, p) and any form 6 on M, we note that (f*0), is inde-
pendent of the choice of representative f. Let X*0 = (£*)..

DeriniTiON 3.1. Let B(2, M, p), written B(Q) for short, be equal to the
set of XeJ'(M, p) such that X*0w = and X*dw = do for all .

Choose a system (2, ) and a basis (wi, ..., 0s; &1, ..., dm). Let (%)
be a coordinate system on M with origin at p. We now construct a coordinate

system on J'(M, p) associated to these choices. For any X&J'(M, p), set
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%(X) =x(a(X)). Also we can uniquely define pj(X), gi(X) so that

X*wi=pHX) (0)x+ p7 (X)) (32
X*oh = gl (X) (0)x+ a7 ™ (X) (@)

where ¥ =a(X). It is clear that (x,, ], ¢}) give coordinates on J'(M, p). We
find that B(2) is defined as a subvariety of J'(M, p) by the-equations

PHX =61, pP*(X) =0
2) agi(X) = adPgi(X) =0
A (X) =%

Let °, s=1,...,8 be a basis of D(2) and let (5i") be the matrix repre-
sentation of 5° associated by the choice of Cartan basis. From (2), we know
that if X< B(2), then (g'(X)) represents an element ¢g(X) in (L) and so we
can write g(X) =b"us(X), ie, ¢i(X) = bu,( X). It is clear that (x,, u,) form
coordinates on B(f£) which is therefore a submanifold. I'(p) is taken as the
distinguished point of B(2). Note also that (B(2), M, «) is a fibered manifold,
in fact the fibration by maximal integral elements of the system dus =0

Now define Pfaffians wa+x, 1< A< m, on B(Q) by the equation (wa+))x=
X*®,. The real vector space generated by wi, ..., wa+rm is independent of
the choice of basis or system of £. This vector space is denoted by P(2).
Kuranishi and Rodrigues show that I'(P(2)) is equal to the set of homeomor-
phism elements on B{£2) which coincide locally with a Pf for some f=I(R2).
Here Pf is the homeomorphism element on J'(M, ) defined in a™*(U(f)) by
the formula

Pf(X) =Xo(f:f)"
where x=a(X). If f€L(2), then it is clear that P/ induces a homeomorphism
element, also denoted Pf, on B(Q).

Let (M, M', p) be a fibered manifold with dim M=d, dimM'=d' and
suppose we have compatible, complete Cartan spaces 2 and 2' on M and M’
respectively. Let (y:) be a system of coordinates on M’ and raise these to
coordinates (xs) on M. For any X =jif € J' (M, p), let

o Of° |
VS—— OXs |x

and similarly for any Y=jyge J{M’, p'), define w;. Then (x5, v3) and (¥,
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w}) give coordinates on J'(M, #) and J'(M', p') respectively. For any X B(Q),
define o*(X) = YeJ'(M', p') by the equations

a(Y) =pla(X))
wi(Y)=vi(X) for ¢, t=1,...,d.

A simple calculation shows that Y B(£2).
A priori it would appear that the map o” depends on the choice of coordi-
nates. However if

(3) 13(X)=0for 1<o<d and d'<s<d

then it is easy to see that p®(X) is independent of choice of coordinate. One
can show that (3) holds for all X< B(2) and so o : B(2)-B(&") is well
defined. In addition, (p")*(P(2))< P(2). This calculation also shows that for
rer(2) and x< U(f), there is a unique g=I'(2'"), defined in a neighborhood
of ¥ =p(x), such that pof = gop in a neighborhood of x. If XeB(R) is of the
form j.f where feI(2), we find that 0°(X) = j5g This makes the description
of p” particularly simple when 2 is involutive since then every element of B(2)
has this form.

It should be noted here that the operator B is actually a functor from the
category of pointed manifolds with complete Cartan spaces and compatible
fibrations to the category of pointed manifolds and ordinary maps. The following
propositions, from Kuranishi-Rodrigues, show the effect of the operator P when

2 is involutive.

Prorosition 3.1. If 2 is involutive then P(2) is a complete, involutive
Cartan space on B(Q).

Prorosition 3.2. Let (M, M', p) be a fibered manifold with complete, com-
patible Cartan spaces 2 and ' and suppose 2 is involutive. Then P(2")]o”(B(2)
is a complete Cartan space compatible with P(2) under the fibvation (B(Q),
0"(B(2)), o®). Alse each map in I'(P(Q')|0”(B(R)) is the restriction of a map
in INP(2)) and conversely.

This section concludes with a lemma needed in our main proof.

LemMma 3.3.  Suppose we have complete Cartan spaces 2 and 2' on (M, p)
and (M, p') respectively and a compatible fibered manifold (M, M', k). Assume
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that Q is involutive and S(, 2') =0. Let M equal B(2, M, p) and M, B(2',
M, ') equal the image of M by £°. Then S(P(2), P(2")|M})) =0

Proof. Let (2, I), respectively (2', II'), be a system for 2, respectively 2'.
Let 2% =«*Q' and let (2% II*) be the unique system with 7*c1. If §is a
Pfaffian on M', we let 6* = £*6. We can find bases

(w], o e ey Wn ;s (T)], PN ‘T)ﬂl) Of (.Q, H)
(0!*1 e s ey 0}1" ; 51. e ey Em') Of (Q*y U*)
(01, «eey ﬁn' H Niy o o oy .f]m') Of (.Q’, H’)

so that 7} =2, —hh0F; wi=06F, 1<i<n'; Br=£, 1 <A< m!, where the h} are
functions on M such that the matrix (k%) represents an element % in D(2') at
each point. We can assume that %i(p) =0. For simplicity, set 2 = P(2) and
Q2= P(2)|M;. Lastly, choose a coordinate system (x,) on M’ and lift this to
a coordinate system (x,, ¥s) on M.

Let a',':‘.‘, respectively @, be the structure constants of (w;; @,), respectively
(675 &) (and hence also of (6;; m)). It is easy to see that

2% —iA LI .
ar=a for i i'=1,...,n; A=1,...,m

al¥ =0 for j/<n' and either j>#' or 1>m'.
From this we see that if b = (57)eD(2), then

¢(d) = (b’;\)lﬁff'n'

1=)=m’

is in D(2') and the mapping ¢ defined in this way is a vector space homomor-
phism. Let D equal the image of D(2) by ¢ and let ¢ be an injection of D
int6 D(L) so that ¢o¢ is the identity and D(2) = ¢(D) D Ker ¢. Letd', ..., d
be a basis for Ker ¢.

An element X in B(Q) has a unique representation of the form (%, ys,
g(X)) where g(X) = (¢%.(X)) is in D(2) and any expression of this form defines
an element in B(2). Likewise any element in B(2') has a unique representation
(%, (X)) where q(X) =(g.(X)) is in D(2'). Let X be in B(2). Since @ is
involutive, there is a g in I'(2) with e, w&@=X and since £*(Q')CQ, g in a

neighborhood of (x, y) is the prolongatibn of some f in I'(2'). Then
(1) =m+ g (" (X)) 6.

Raising this equation to (x, y) by ¥ and comparing with the equation for g*@,
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we have
7h (X)) = gi(X) — By(x, »)
or
- B
q°k =¢oqg—heoa.
Now (M, My, «) is a fibered manifold so we can find coordinates (%,, #,)
on Mi. Let XeM;=B(82). Then

q(X) — ¢o (gor® + hoa)(X)
is in the kernel of ¢ and so can uniquely be written as
(X0 + - - F o ( XDV

Since (M, Mj, «") is fibered manifold, it is easy to see that (%, ¥s, %o, v<)
give coordinates on M; compatible with the fibrations.

Let o be a cross-section of (M, M/, ") passing through p, =I(p). There
exists a transformation family {g*} in I'(£,), indexed by M;, so that g*(X) =,
(although each g* need not be defined on all of M;). We construct a similar
transformation family {#*} in I'(2}) by letting f* be the local homeomorphism
induced by £ in a neighborhood of (X).

Supplementary forms @, for £, are obtained by spreading around the (du, ),
and (dv:)p, using {g*} (this gives us a system (@, IT})) and supplementary
forms 7. for 2| are obtained by spreading around the (du.)s. using {f*} (this
gives us a system (2], IT})). Therefore (£%)*y), is equal to @, on the image of
¢ and hence surely at p,. Let 2f = («")*2} and let (2}, ITy) be the system
with 77 IT;.  The supplementary forms ¢, for (2, 77;) will be linear com-
binations with real cefficients of forms in £; and of the @) and they can be

chosen so that &) = (¢*)*y} at p. But therefore 2. =&, ie, S(2;, 21) =0.

§4. Fibrations and equivalences
DeriniTioN 4.1,  Let I, respectively 7", be a complete pseudogroup on (A,
), respectively (M', '), and suppose (M, M’', k) is a fibered manifold. Then
(r, M, j))f—x—é(l‘ ", M', p') is called a homomorphic fibration if for each geI" and
yeU(g), there is an feI" defined in a neighborhood of «(y) so that koeg=fox
in a neighborhood of y. The fibration is called surjective, respectively injective,

if in addition it satisfies condition (S), respectively (I), below.
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(S) There is an integer k4 and for any y € M, neighborhoods U of y and Ul
of I*(x(»)) so that each transformation family in I" defined around a point x(z)
where ze U and having k-jets in U can be lifted to a covering family in I" defined
around z, provided we restrict to small enough neighborhoods of z and %(z).

(D) There is an integer & so that if geI'" prolongs an f<I" which satisfies
7%f = I*(%) for some x€U(f), then g|r~*(x) is the identity.

The isomorphic fibrations of Kuranishi [9] are those which satisfy both (S)
and ().

The kernel of a homomorphic fibration (I', M, p)—x—> (', M, p'), denoted by
Ker (), is the complete pseudogroup of elements in I" which prolong indentities
of M.

DeriniTioN 4.2. A pseudogroup (I, M, p) is called an isomorphic prolon-
gation of a pseudogroup (I, M, po) if there exists an isomorphic fibration (I,
M, p) > (I, My, $0). A homomorphic fibration (I, M, p) - (I, M, p') is called
an isomorphic prolongation of a homomorphic fibration (s, M, po) - (I, My,
py) if there exist isomorphic fibrations making the following diagram com-

mutative.

i
JW()L M,
|
Ve
0
In the following definition, J¥(M, x) denotes the Lie group of invertible k-

jets on M with source and target x and AX(I, x) the abstract subgroup of %-jets

coming from a pseudogroup 7.

DeriniTiON 4.3. A complete pseudogroup I" on a manifold (M, p) is called
a continuous transformation pseudogroup if

(1) There is a fibered manifold (M, N, p) whose fibers are the orbits of
the action of I

(2) Any x= M has a neighborhood U and a transformation family {f”*} in.
I' on U with parameter manifold equal to {(y, 2)€UxU : p(y) =p(2)} such
that />*(y) =z

(3) For large enough &, A¥(I', x) is a Lie subgroup (in the sense of Chevalley)
of JX M, x) with dimension independent of x.
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(4) If f is a homeomorphism element on M and if x is a point in U(f) so
that jif e Ak, x)' for all %, then f, restricted to some neighborhood of %, isin
I.

Condition (3) of this definition is slightly weaker than the corresponding
condition of the definition in Kuranishi [9].

In Kuranishi [9], page 78, a sequence of standard isomorphic prolongations
of a continuous transformation pseudogroup are defined. For example, the first
standard prolongation of a Cartan pseudogroup (7(2), M, p) where 2 is com-
plete and involutive is (I'(P(2)), B(£2), I(p)). It is easy to extend this defini-
tion to give a sequence of standard isomorphic prolongations of a homomorphic "

fibration of transitive continuous transformation pseudogroups.

DeriniTiON 4.4. Two continuous transformation pseudo roups are called
equivalent if there exists a continuous transformation pseudogroup which is an
isomorphic prolongation of each of them. Two homomorphic fibrations of con-
tinuous transformation pseudogroups are called equivalent if there exists a
homomorphic fibration of continuous transformation pseudogroups which is an
isomorphic prolongation of each of them.

Kuranishi [9] has shown that the first definition actually gives an equivalence
relation. A slight extension of this proof shows the same for the second.
An equivalence class of continuous transformation pseudogroups is called a
continuous pseudogroup and a homomorphism of continuous pseudogroups is an
equivalence class of fibrations.

If (I, M, p)—f—>( I, M, ') is a common ijsomorphic prolongation of (Ij,
M;, P,-)—”»(r:, i p1), i=1, 2, then Ker («) is an isomorphic prolongation of
each Ker (x;) even though none of these need be continuous. If each Ker («;)
is continuous then, though Ker (£) may still not be continuous, there will exist
some continuous common isomorphic prolongation of the Ker («;) making them
equivalent. Thus if at least one representativé of a homomorphism ¢ has a
continuous kernel, we say that Ker (¢) exists and can unambiguously define it
to be the equivalence class of the kernel of that representative.

Finally if a homomorphism ¢ has an injective representative, then Ker (¢)
exists and is trivial. The converse is not clear except in the case where ¢ has
a representative which is a fibration of transitive pseudogroups when it follows

from the calculations of the next section.
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§ 5. The kernel problem

In this section we prove our main result on the existence of kernels. Unfor-
tunately our results are restricted to the transitive case. Quite likely a generali-
zation of the theory of Cartan spaces, starting from a definition of Cartan basis
where the structure “constants” could be functions (of the invariant variables)
would overcome this restriction but we remark that the intransitive case has
shown a peculiar obstinacy in the past. Thus Kuranishi’s correspondence between
infinite Lie (F)-groups and continuous pseudogroups and the results of Kuranishi
and Rodrigues on the existence of homomorphic images of a given continuous

pseudogroup must both be restricted to the transitive case

TueoreM 5.1, Let ¢ be a homomorphism of continuous psendogroups which

has a representative (I, M, p)—i>(1‘ 1 M!', p') so that I' is transitive. Then ¢

has a kernel.

Clearly I'" will also be transitive and by the result of Kuranishi and
Rodrigues, we can assume that & is surjective. By taking a high enough standard
prolongation and using one of the main theorems of Kuranishi [9], we see that
the representative can be chosen so that I, respectively /7, is the Cartan
pseudogroup determined by the complete, involutive Cartan space 2, respectively
£'. 1t is obvious that every g in I = I'(2) leaves each element in £* ' invariant.
Hence, taking one more standard prolongation of I if necessary, we may assume
that £*2'C 2, i.e., that the Cartan spaces are compatible with the fibration. If
in addition it could be assumed that S(2, 2') =0, it turns out that the Cartan-
Kahler theory could be applied to 2(2) and 3(£') simultaneously in a very
illuminating way. Thus our first task is to construct a representative for which
this is so, starting from the representative we have at hand.

Since £ is involutive, P(2) is a complete, involutive Cartan space on B(Q)
and we can define B%(2) = B(P(2), B(2)) and P*Q) = P(P(2)). We have the
same construction for £'. Since everything is involutive, it is easy to see that
£2(B(£)) = B(£') and so we can define the map £** = («*)” from B*(2) to B*(2').
Continuing inductively, we can define the fibered manifold (B°(2), B°(2'), £**)
bearing the compatible Cartan spaces P°(2), P°(2') by the conditions

B(2) =B(PU(2), B'(Q))
B(2') = B(PS™4(%2"), BSU(Q'))
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ICSB - (K(S—I)B)B.

For simplicity, let Ms = B5(2), Mi= B(2'), 2s= P*(2), 2= P*(2') and s = £*°.
Kuranishi and Rodrigues have shown how to construct a complete Cartan space
£2° on a pointed manifold (M?*, p*) and, for all sufficiently large s, maps making
the following a commutative diagram of fibered manifolds and compatible Cartan

spaces :

\M/M'
PN

M;

The point of their construction is that S(2, 2°) =0. In addition, one can easily
show that in our situation, (I'(Q), M) - (I'(2°), M*) is a surjective homomorphic
fibration which is equivalent to (I (2), M, p) - (I'(2'), M', p') since (I'(2*), M*)
- (I'(2'), M'") is an isomorphic fibration.

However this still does not give us the representative of ¢ which we want.
The trouble is that 2° need not be involutive. To remedy this defect, consider
the fibered manifold (M, M”, £°) with the compatible Cartan spaces £ and £°
and let «{ be the natural map from B(Q) = M, into B(2*). Let M{=«i(M)
and let 27 = P(2°)|M;. Now consider the fibered manifold (M, M7, ¥i) with
the compatible Cartan spaces £ and £{ and let x; be the natural map from
B(2)) = M, into B(2{). Let the image of «j be M; and let 2 = P(27)|Mj.
We proceed inductively, constructing a sequence of fibered manifold structures
(Ms, M¢, k%) with compatible Cartan spaces 2s and Q¢ which fit into the follo-

wing commutative diagram of fibered manifolds and Cartan spaces.

M M, «—My<—- - -

(a) A |

MP«—Mi«—Mi<—:" - -.

By Lemma 3.3, we see that S(2s, 2¢)=0. Also, the lower line of (4) is a
Cartan sequence and so by Kuranisht-Rodrigues, 2¢ is involutive for large
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enough s. On the other hand, we can show by induction that for each s, we

have the following commmutative diagram of fibered manifolds and compatible
Cartan space:
M;

N

M¢
M; /

Finally, and again by induction, we see that (I(Rs), Ms)— (I'(2%), M%) is a
surjective homomorphic fibration which is equivalent to (I'(2s), Ms) - (I'(2¢), M$)
since (I'(2%), M$) - (I'(2HMs) is an isomorphic fibration.

Thus we know that we can find a representative of ¢, which we might as
well call (I'(2), M) - (I'(2'), M') so that 2, 2' are complete, involutive Cartan
spaces compatible with the fibration and S(2, 2/) =0. Let (2, IT), respectively
(2, I'), be a system for 2, respectively 2'. Let £*=£*2' and let (2% II*) be
the unique system with I*C 1. If 6 is a Pfaffian on M', we let §* =x*0. We
can find bases

((1)1, e ey Wns (7)1, oo oy (I)m) of (.Q, H)
(01*; o e sy 0:’; 517 ¢ ooy Em') Of (Q*) H*)
(01, « oo b0 my <., mm) of (2, IT")

_so that 7} =& —Ki0F; wi=0F, 1<i<n'; &r=£6, 1<A1<m' where the ki are
the usual functions on M which we assume vanish at p. Let a}*, respectively
@, be the structure constants of (w,; @), respectively (6, %) (and hence

also of (6i; m.)). As in Lemma 3.3, we have

al=afori j=1,...,%n; A=1,...,m

(5)
a =0 for »<n' and either s>#n' or u>m'

Suppose %= (w1, ..., un), respectively v= (v, ..., vs) is a vector in %",
respectively ®”. Let A(v) denote the 7 x m matrix (a/*vs) and A(%) the »n' x m'
matrix (@u;). I v=(vs, ...,vs), let 5=(v), ...,vs). From (5) we find
that

A@) 0
(©6) Aw) =| |

. ? ? -
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If we have vectors #, . . ., u% respectively ', . . ., 2% in R, respectively R,

we let
(A(u*))
A, ..., 0D =] -
A(u?))
A(oY)
A, ..., 00 =
A(vY)

We can find #' vectors in ™ and a neighborhood of these vectors so that, for
each g=1,...,n, the rank of A(¢", ..., %7 in this neighborhood is maximal.
Proceeding inductively and using (6), we can find vectors ¢%, ..., " in R" so
that for each ¢ =1, . .., n, the rank of A(¢", ..., v?) is maximal and for each
g=1,...,n, the rank of A(7", . .., 7% is also maximal. We fix these vectors.

Let D=MxM, D'=M'xM', po=kxr; (D, D', p) is a fibered manifold.
Associated to 2 and £2', there are the exterior differential system (2, ®) and
(2", @) on and D’ respectively. Let 4, respectively 4', denote the diagonal of
Mx M, respectively M'x M'. Note that wr, @, wr—2,, @.— II., respectively
0, m, 0; — 0;, 7n— H), are a basis of Pfaffians of D, respectively D', over func-
tions and that o, @, respectively 6;, 7., generate @, respectively 6. We use
a “partial derivative” notation to denote the tangent vector fields on D and D’
dual to these bases of Pfaffians.

Define tangent vectors K, ... ,K” in D' at p'xp' and L',...,L"in D
at pxp by

K= ”'15%“ summation from j=1to j=n'
J

L = vZ—a~ summation from s=1 to s=n
ows
where the " = (9], ..., v}) are the vectors chosen previously. Define contact

elements at p’' xp' by

Fi={K,...,K'),1<i<n

wir_ | 9 > o )
B am""'am}’
0<i<m!
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The double definitions of F” and E” are consistent. Now it is clear that E™*™,
respectively F**™, is an integral element of (2, 6), respectively (J’, &), and
is in fact just equal to the tangent space to 4, respectively 4', at p X p, respectively
D' xp'. Since £ and £’ are involutive, it is easy to check that

7 {pxp)CE'CE*c---CE™™

(7) {p'Xp'tCF'CFcC---CcF""™

are regular flags with respect to (2, 0), (¥, ). Direct calculation shows that

0*E1 =‘F1, e e ey D*En"—‘Fn’

p*En'H.: e =p*E"=F"'
(8) p*EnH=FnIH, ., p*Eer' =Fn'+m’
p*En+m’+1= P — p*En+m= Fn'+m’.
We have E""" = H(E"™) =+ - + = H(E") and likewise F"*"™ = H(F"*™) =

-« +H=(F"). If g<n-1, then H(E?) is equal to the set of vectors L at px p
of the form

5} )
+ GG, —11,)

Dy

o
fr?a: +gp.a

for which aj*9iG,. =0 for 1<7r<mn, 1<t<gq. If g=»' and we apply o« to such
an L, we obtain the vector
o o o
Tigt; T &% YO 5 —Hy
“and by (5) we have Zz{:*vf=0 for 1<i<n', 1<k<#'. Since the number of
linearly independent equations in this system is just »', we have G;= ¢+ =
Gm =0. It follows that p(H(E?)) =F"*™ for ¢=n'. Similar arguments show

us that corresponding to the sequences

(9) EM™ = HE™™) =+ -« = H(E") C H(E™™)
C.++-CH(E)CH@pxp)
Fn’+m’ = H(Fn’+m’) — ... =H(Fn’) CH(Fn'—l)
(9)’

[ CH(FI)CH(plpr)
we have the relations
ox(H(E™™)) =+« « = o (H(E™)) = F"*™
(10) px(H(E™ ™)) = H(F™™), . . ., ox(H(E"))
= H(F), ox(H(pX D)) = H(p' x D).

https://doi.org/10.1017/5S0027763000011508 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011508

160 JOSEPH E. D'ATRI

It is in order to be able to construct regular flags satisfying conditions (8) and
(10) that we needed the assumption S(2, 2') =0.

Now let si, ..., Ss+m, respectively 51, ..., Ss+m, denote the system of
characters of I, respectively 3, at E,+m, respectively Fp+m. Note that spem= "
c+r=8Spr1=0and Spim =+ =Sws1=0. Let (%, ..., xas) be a coordinate
system on D' compatible with the flag (7)’: i.e. the origin of the coordinate
system should be at p’'xp’ and

2 > s of F” S
{ax’ 9 eeas ax,} should form a basis of F” for 1<r<#n'+m
J_©

} should form a basis of H(F") for

0r<n'+m—-1

la—xl’ « e o axh,.

where /i, = dim H(F”). Because of (8) and (10), these coordinates can be raised
to a coordinate system (y;, ...,%y4) on D compatible with the flag (7). The
correspondence between the two coordinates is of a rather complicated form

which is perhaps best expressed diagramatically as

n m Sn Snriy. Sn St S=n
—N — N —r=—N— —A
(1, - .y ya)
N —— —— —— e
nt m' Sn 5, So=n'

=do

e e T s

(o xg)

Lastly, we can assume that (y;, . .., Yu+m), respectively (%, . . ., Xp+m-) come
from coordinates on M, respectively M', which have been raised by a«, and
which are fibering coordinates on (M, M', ).
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Let @ denote a system of

s» functions ¢(n+1), ..., ¢(n+ss) of y1, . . ., ¥n
Sn-1 functions ¢(n+s,+1), . .. y P(n 4 Sp+Sn-1) Of y1, <« oy Yu-1

s; functions ¢(n+sp+ -+« +5+1), ..., 9B+ sn+ - . +52451) of y
so constants @(n+sp+ - - - +s+1), ..., 0n+sp+ - +51+50)

all these functions being defined in some neighborhood of the origin. By the
norm of such a system, we mean the maximum of the absolute values of the
functions ¢ and their first partials at the origin. The Cartan-Kihler theory
tells us that there is a one-one correspondence between systems ¢ with small
enough norm and solution manifolds of (X, ®) which pass through a point of
the form pxq in Mx M and whose tangent space at pxgq is sufficiently near
E™™ ie. in one-one correspondence with germs of transformations in ()
defined at p whose /-jet at p is near enough to I'(p»). This correspondence is
“analytic” in a sense which can be made precise and has the property that if

the system @ corresponds to the transformation f, then
0,...,0,0n+1)0,...,0),...,9n+m)0,...,0)=(, f(p))

Naturally, similar statements can be made for the system (', 6'). Let 0' = {¢'}
be the unique system of fnnctions which corresponds to the solution manifold
4" of 3, ®). Then it is clear that the systems @ ={¢} which correspond to

" transformations in the kernel of
(I(2), M, p)—>(I'(2), M', p")
are precisely those such that
On+mtsp+ - Fswa+1), .o, Pntmtsat o+ Swrrt Sar)
are equal respectively to ¢'(n'+m'+1), . .., ¢(n' +m' +3,)
On+mtsa+ - +sw+1), ..., 0n+m+sn+  FSn+Sni1)
are equal respectively to

M +m+Sn+1), ..., B+ +5n+Sp-1)

on+m+sp+ - +s54+1),...,0n+m+sp+ - +s+50)
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are equal respectively to
e +m + St +514+1), ..., (A M+ S+ 5150

Under these circumstances, we say that @ contains @'.

It is now easy to see that the orbit of p under the action of Ker (x) will
just be the points g& M such that x(g) = x(p), at least if we stay in some small
enough neighborhood of p. Since this entire discussion can be carried out for
any point in M, we see that (M, M, ¢) is actually the fibration of M by orbits
of Ker (¢). It is also easy to construct explicitly a transformation family in
Ker () which satisfies condition (2) of Definition 4.3 at p by explicitly constru-
cting the corresponding family of systems #. Again this argument works for
any point in M.

Now let G denote the manifold of k-jets of systems ® such that ¢(n+7)
(0,...,0)=0. We have an obvious one-to-one bianalytic map L : GZ—»] f,(M,
») (the manifold of invertible %-jets on M with source and target p) and there
is a neighborhood 115 of I*( ») so that the image of L is 1N A%, p). Restricting
ourselves to k-jets of Goursat systems which contain ®; determines a submanifold
G of G whose image by L is just 115N A%(Ker(x), p) which is therefore a con-
nected submanifold of U%.  Again this argument works for any point in M.
It is now easy to verify condition (3) of Definition 4.3 for Ker(x).

Finally let g be a homeomorphism element on M and suppose there is a
point y in U(g) such that g(y) =y and jige A¥(Ker(x), y) for all k. Certainly
then there is an element in I'(2) which coincides with g in a neighborhood of
y. Also g in a neighborhood of y is the prolongation of some element f in
I'(2"). Since jkg= A%(Ker(x), ») for all %, the partial derivaties cf f of all orders
at x(y) must agree with the partials of the identity and so f must itself be the
identity in a neighborhood of x(y). Hence g must agree with some member of
Ker(x) in a neighborhood of y. This shows that Ker(x) is a continuous trans-

formation pseudogroup and thus guarantees the existence of Ker(¢).
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