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Abstract

Functional languages provide an excellent framework for formulating biological algorithms

in a naive form and then transforming them into an efficient form. This helps biologists

understand what matters about programming and brings functional programming into the

realm of the practical. In this column, we present an example from our MSc course on

bioinformatics and report on our experiences teaching functional programming in this context.

1 Introduction

Many bioinformatics textbooks say relatively little about programming, and so

many bioinformatics students do relatively little of it (Attwood & Parry-Smith,

1999; Krane & Raymer, 2002; Lesk, 2002). Indeed, Lesk even goes as far as to

quote Bismarck: “Those who love sausages or the law should not watch either being

made,” and to suggest that computer programs should be added to this list. This is

a pity because clear programs are often the best way to explain and experiment with

algorithms such as those used in bioinformatics. Here, we illustrate this principle

by developing some textbook algorithms for gauging biological sequence similarity

using the functional language Haskell (Peyton Jones, 2003).

This paper is organised as follows. Section 2 sets out the background and goal

of our work. Section 3 describes a representation of sequences. Section 4 presents

a simple algorithm for gauging global sequence similarity, and Section 5 a more

sophisticated one. Section 6 outlines some laboratory exercises. Section 7 reports on

our early teaching experience. Section 8 concludes.

2 Background and goal

The Exeter University Bioinformatics MSc is a joint programme between the School

of Biological and Chemical Sciences, and the School of Engineering, Computer

Science and Mathematics. It was established in 1999 in response to a joint initiative

by the UK Biotechnology and Biological Sciences Research Council (BBSRC) and

Engineering and Physical Sciences Research Council (EPSRC) identifying the need

for more trained researchers in bioinformatics.
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2 D. Wakeling

In the academic year 2003/04, there were 25 students. Of these, 14 were from

countries within the European union, and 11 were from elsewhere. All have at least

a 2(i) first degree, in subjects that can be categorised as either “biology” (56%),

“computer science” (16%), “medicine” (8%) or “other science and engineering”

(20%).

The programme of study consists of six course modules run consecutively, followed

by a supervised research project. Two of the course modules last for three weeks,

two for four weeks, and two for six weeks. The supervised research project lasts for

six months, and can be undertaken in an academic or an industrial environment.

It is also possible to take the course by distance learning over two years instead of

one. Half of the available credits are awarded for the course modules, and half for

the research project. From the outset, the programme has been research led – staff

are encouraged to link their teaching to their research wherever possible.

Two of the course modules are Bioinformatics: Tools and Techniques , lasting for

four weeks, and Biological Sequence Analysis and Structural Bioinformatics , lasting

for six weeks. The first module covers the relevant aspects of molecular and

cellular biology, and the basics of Java (Arnold et al., 2000) programming (example

textbooks: Lodish et al. (1999), Deitel & Deitel (2001)). The second module covers the

algorithms used in bioinformatics software, and the use of Perl (Wall et al., 2000) to

connect together such software to build larger applications (example textbooks: Lesk

(2002), Tisdall (2001)). Both courses follow a similar teaching pattern: classroom

sessions in the morning are complemented by laboratory sessions in the afternoon.

Although this arrangement works well enough, and gets the students programming

as we would like, experience has shown that there are two problems.

1. There is a large “semantic gap” between the algorithms seen in the classroom

and their implementations seen later in the laboratory. Students find bridging

this gap to be an uncertain and frustrating business – if the results are not

as expected, has the algorithm been misunderstood, or is the implementation

incorrect?

2. There is an abrupt change of both programming and execution model between

modules. On the one hand, Java is an object-oriented, strongly-typed language,

and programs are usually compiled before being executed by an interpreter.

On the other hand, Perl is a procedural1, weakly-typed language, and programs

are usually executed directly by an interpreter. Students are confused when

ideas from one language do not carry over to the other.

Observing these problems, we argued that switching languages from Java and Perl

to Haskell might reduce the size of the semantic gap, and avoid the abrupt change

when moving from “programming” to “scripting”. As part of this argument, we

prepared a pilot lecture and laboratory session on sequence similarity. The goal was

to establish that a functional programming language would be a suitable vehicle for

explaining and experimenting with the standard algorithms used in bioinformatics.

1 Although object-oriented programming is possible in Perl, at heart the language is procedural.
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data AminoAcid

= Alanine | Arginine

| Asparagine | Aspartate

| Cystine | Glutamine

| Glutamate | Glycine

| Histidine | Isoleucine

| Leucine | Lysine

| Methionine | Phenylalanine

| Proline | Serine

| Threonine | Tryptophan

| Tryosine | Valine

deriving Eq

Fig. 1. The AminoAcid type.

Our experience of developing and delivering this pilot lecture and laboratory session

is the subject of this paper.

3 Sequence representation

Much work in bioinformatics is based on biological sequence data . A deoxyribonucleic

acid (DNA) sequence is one whose elements are nucleic acids , whereas a protein

sequence is one whose elements are amino acids . For the sake of simplicity, we

consider only the representation of protein sequences here; DNA sequences can be

dealt with in much the same way.

Protein sequences are traditionally written as strings in which each amino acid is

written as a character according to a standard encoding (Cornish-Bowden, 1985).

However, although amino acids may be written as characters, they should not be

represented by a character type because then the responsibility for checking that

they are used correctly falls on the programmer and the run-time system, rather

than on the compiler.

The AminoAcid type shown in Figure 1 provides a better representation of

amino acids. A protein can then be represented by a list of AminoAcids. Deriving

Eq allows AminoAcids to be compared for equality. Deriving Read and Show as

well would allow them to be input and output using their full names. However,

what biologists expect is the standard encoding, and to produce this we must

give explicit instance declarations. Figure 2 shows the Read and Show instance

declarations that can be used to input and output single AminoAcids and sequences of

them.

4 Simple sequence similarity

Two DNA or protein sequences are similar if some suitable measure, such as the

percentage identity of their corresponding elements, says that they are; they are

homologous if they share a common ancestor. Searching large databases for similar

sequences often leads to the discovery of homologous ones. These homologous
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instance Read AminoAcid where

readsPrec p (c:cs)

= case c of

{ ’A’ -> [ (Alanine, cs) ]; ’R’ -> [ (Arginine, cs) ]

; ’N’ -> [ (Asparagine, cs) ]; ’D’ -> [ (Aspartate, cs) ]

; ’C’ -> [ (Cystine, cs) ]; ’Q’ -> [ (Glutamine, cs) ]

; ’E’ -> [ (Glutamate, cs) ]; ’G’ -> [ (Glycine, cs) ]

; ’H’ -> [ (Histidine, cs) ]; ’I’ -> [ (Isoleucine, cs) ]

; ’L’ -> [ (Leucine, cs) ]; ’K’ -> [ (Lysine, cs) ]

; ’M’ -> [ (Methionine, cs) ]; ’F’ -> [ (Phenylalanine, cs) ]

; ’P’ -> [ (Proline, cs) ]; ’S’ -> [ (Serine, cs) ]

; ’T’ -> [ (Threonine, cs) ]; ’W’ -> [ (Tryptophan, cs) ]

; ’Y’ -> [ (Tryosine, cs) ]; ’V’ -> [ (Valine, cs) ]

}

readList []

= [ ([], []) ]

readList cs

= [ (x:xs, cs2) | (x, cs1) <- reads cs, (xs, cs2) <- reads cs1 ]

instance Show AminoAcid where

showsPrec p a

= case a of

{ Alanine -> showChar ’A’ ; Arginine -> showChar ’R’

; Asparagine -> showChar ’N’ ; Aspartate -> showChar ’D’

; Cystine -> showChar ’C’ ; Glutamine -> showChar ’Q’

; Glutamate -> showChar ’E’ ; Glycine -> showChar ’G’

; Histidine -> showChar ’H’ ; Isoleucine -> showChar ’I’

; Leucine -> showChar ’L’ ; Lysine -> showChar ’K’

; Methionine -> showChar ’M’ ; Phenylalanine -> showChar ’F’

; Proline -> showChar ’P’ ; Serine -> showChar ’S’

; Threonine -> showChar ’T’ ; Tryptophan -> showChar ’W’

; Tryosine -> showChar ’Y’ ; Valine -> showChar ’V’

}

showList []

= id

showList (x:xs)

= shows x . showList xs

Fig. 2. The Read and Show instances for the AminoAcid type.

sequences can reveal evolutionary relationships among genes, proteins or even entire

species, as well as providing a basis for predicting the structure and function of

proteins. All bioinformatics textbooks cover sequence similarity (Attwood & Parry-

Smith, 1999; Krane & Raymer, 2002; Lesk, 2002).

One way to gauge the similarity of two sequences is to consider the series

of edit operations required to convert from one to the other. An edit operation

may either insert an element (I a), delete an element (D a) or change one

element to another (C a b). There are usually many series of edit operations that
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data Op e = Insert e | Delete e | Change e e

edits :: Eq e => [e] -> [e] -> [[Op e]]

edits aseq@(a:as) bseq@(b:bs)

= [ Change a b : ops | ops <- edits as bs ] ++

[ Delete a : ops | ops <- edits as bseq ] ++

[ Insert b : ops | ops <- edits aseq bs ]

edits aseq []

= [ [ Delete a | a <- aseq ] ]

edits [] bseq

= [ [ Insert b | b <- bseq ] ]

Fig. 3. The Op type and edits function.

convert from one sequence to another. For example, five series that convert from

Q to PQ are:

1. C Q P, I Q;
2. D Q, I P, I Q;
3. I P, C Q Q;
4. I P, D Q, I Q;
5. I P, I Q, D Q.

Figure 3 shows the Op type for edit operations and the function edits that

computes the many series of edit operations that convert from one sequence to

another.

The constructors are parameterised by the type of sequence elements. Of course,

we expect sequence elements to be nucleic or amino acids. However, similar problems

arise in other areas where they are either the lines of files (Miller & Myers, 1985),

the characters on the screen of a display editor (Myers & Miller, 1989) or those

making up a program (Wagner & Fischer, 1974). By parameterising the type and

the functions that work on it, we can use them in these other areas too. One of the

strengths of the Haskell type system is that it makes this so easy to do.

In general, the conversion from one sequence to another can be done in three

ways: by changing the head of the first sequence to that of the second, followed by

any of the possible ways of converting from the tail of the first sequence to that of

the second; by deleting the head of the first sequence, followed by any of the possible

ways of converting the tail of the first sequence to the second; or by inserting the

head of the second sequence, followed by any of the possible ways of converting the

first sequence to the tail of the second. In the case where one or other sequence is

empty, insertions or deletions must be made as appropriate.

In bioinformatics, a series of edit operations is traditionally displayed as an

alignment that should be read column-wise. The five series given above, for example,

are displayed as the alignments:

Q- Q-- -Q -Q- --Q

PQ -PQ PQ P-Q PQ-.

It should be clear why, in this context, insertions and deletions are known as gaps .

Figure 4 shows the function alignment for displaying alignments.
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alignment :: [Op AminoAcid] -> String

alignment ops

= concat row1s ++ "\n" ++ concat row2s

where

(row1s, row2s) = unzip (map column ops)

column (Insert a)

= ("-", show a)

column (Delete a)

= (show a, "-")

column (Change a b)

= (show a, show b)

Fig. 4. The alignment function.

score :: Eq e => Op e -> Int

score (Change a b)

| a == b = 1

score other

= -1

Fig. 5. The score function.

Clearly, some series of edit operations are better than others. In order to choose

between them, we can give each a score. A simple model defines the score for an

operation to be

score(op) =

{
+1, if op = C a b and a = b

−1, otherwise

and that for a series to be the sum of its operation scores. Figure 5 shows the score

function that computes the score for an operation. Using it, the score for a series is

computed by sum . map score :: Eq e => [Op e] -> Int.

Figure 6 shows a main program function that reads two sequences and shows

the alignment with the maximum score. The auxiliary function maxBy picks the

maximum of a list of values according to some comparison function.

5 Global sequence similarity

So far, what we have shown is a nice example of how a lazy functional program

can be conveniently developed as separate pieces that are then glued together: the

function edits produces the many series of edit operations that convert from one

sequence to another; the function maxBy consumes them and picks the one with

the maximum score; and lazy evaluation ensures that the producer and consumer

behave as coroutines. Hughes develops this idea more fully in Hughes (1989).

The advantage (for the programmer) is that it is easier to produce the two

functions separately, thinking about just one thing at a time. The disadvantage

(for the machine) is that a list is needed to glue the functions together, and even

with lazy evaluation, each value in this list must still be allocated, examined and

deallocated.
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main :: IO ()

main

= do { putStr "Enter first sequence > "

; aseq <- readLn

; putStr "Enter second sequence > "

; bseq <- readLn

; putStr (alignment (maxBy (sum . map score) (edits aseq bseq)))

}

maxBy :: Ord b => (a -> b) -> [a] -> a

maxBy f (x:xs)

= loop x xs

where

loop u []

= u

loop u (v:vs)

| f u >= f v = loop u vs

| otherwise = loop v vs

Fig. 6. A main program function.

edit :: Eq e => [e] -> [e] -> [Op e]

edit aseq@(a:as) bseq@(b:bs)

= maxBy3 (sum . map score)

(Change a b : edit as bs )

(Delete a : edit as bseq)

(Insert b : edit aseq bs)

edit aseq []

= [ Delete a | a <- aseq ]

edit [] bseq

= [ Insert b | b <- bseq ]

maxBy3 :: Ord b => (a -> b) -> a -> a -> a -> a

maxBy3 f x y z

| fx >= fy && fx >= fz = x

| fy >= fx && fy >= fz = y

| otherwise = z

where

fx = f x

fy = f y

fz = f z

Fig. 7. The edit function.

5.1 Version 1

In this case, it is possible to dispense with the intermediate list by bringing

the producer and consumer together. Figure 7 shows the function edit. This

transformation has been called deforestation (Wadler, 1990). The auxiliary function

maxBy3 picks the maximum of three values according to some comparison function.
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tabulate :: Eq a => [a] -> [a] -> [Op a]

tabulate aseq bseq

= edit aseq bseq n m

where

n = length aseq

m = length bseq

table = array ((0,0), (n,m)) entries

entries =

[ ((i,j), edit as bs i j)

| as <- tails aseq, let i = length as

, bs <- tails bseq, let j = length bs ]

edit aseq@(a:as) bseq@(b:bs) i j

= maxBy3 (sum . map score)

(Change a b : table ! (i-1, j-1))

(Delete a : table ! (i-1, j ))

(Insert b : table ! (i, j-1))

edit aseq [] i j

= [ Delete a | a <- aseq ]

edit [] bseq i j

= [ Insert b | b <- bseq ]

Fig. 8. The tabulate function.

5.2 Version 2

Sadly, the edit function is still inefficient. In computing the series of operations to

convert from one sequence to another, it may recompute the series of operations to

convert from one subsequence to another many times. The usual way to overcome

this inefficiency is by tabulation . A table mapping from function argument values

to previously computed result values is introduced. This table is consulted before

each call. If the arguments are in the table, then the call is skipped and the result

is returned. Otherwise, the call is performed, the arguments and result are added to

the table, and the result is returned.

A number of general strategies for the tabulation of recursive programs have

been examined by Bird (1980). In this case, the one we want is overtabulation . The

table can simply be organised as a two-dimensional array, with the lengths i and j

of the (sub)sequence arguments giving the location in the table where the result is

to be found. Figure 8 shows the tabulate function that uses tabulation. Many will

recognise it as an implementation of the dynamic programming algorithm (Cormen

et al., 2001). In a traditional programming language, one has to worry about order

of initialisation and computation of the values in the array. In a functional language,

however, one simply describes the table entries.

5.3 Version 3

Although the tabulate function is considerably more efficient than version 2, it

still computes the same series many times. The problem is that in computing the

score for the series of operations that converts from one sequence to another, it may
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-4 -4 -4 -3 -1 1 0 -1
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←
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↖

↖

↖
←

Fig. 9. Global traceback.

recompute the score for the series of operations that converts from one subsequence

to another many times.

One way to overcome this inefficiency would be to make each entry in the table

a pair of values consisting of the score for a series and the series itself. In textbook

accounts, this is known as “storing a back pointer”. Recomputation is avoided

because a score always accompanies a series. Another way would be to make each

entry in the table only a score, and to obtain the series by tracing back a route

through the table, following maximum scores. In textbook accounts, this is known

as “traceback”. Recomputation is avoided because entries are scores rather than

series from which they must be (re)computed.

To gauge the global similarity of two sequences, then, we shall create a table of

scores and obtain a series of operations from this table by tracing back a route from

the bottom-right corner of the table to the top-left corner, following maximum scores

and recording operations on the way. Figure 9 shows a traceback when gauging the

similarity of the sequences DPRSE and HIPRSKL. A diagonal move corresponds to a

change operation, a horizontal move to an insert operation, and a vertical move to

a delete operation. The global alignment is thus

D-PRSE-

HIPRSKL.

At some point in the traceback two, or even three moves/operations might be

possible, each being part of a different, but equally good route/series. Notice that

in textbooks, the sequences are in order and traceback produces the series of

operations in reverse, whereas with our implementation, the sequences are in reverse

and traceback produces the series of operations in order. Figure 10 shows the global

and traceback functions that together implement this classic algorithm for gauging

global sequence similarity due to (Needleman & Wunsch, 1970). The auxiliary max3

function picks the maximum of three values.
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global :: Eq e => [e] -> [e] -> [Op e]

global aseq bseq

= traceback table aseq bseq n m

where

n = length aseq

m = length bseq

table = array ((0,0), (n,m)) entries

entries =

[ ((i, j), loop as bs i j)

| as <- tails aseq, let i = length as

, bs <- tails bseq, let j = length bs ]

loop aseq@(a:as) bseq@(b:bs) i j

= max3

(score (Change a b) + table ! (i-1, j-1))

(score (Delete a ) + table ! (i-1, j ))

(score (Insert b ) + table ! (i, j-1))

loop aseq [] i j

= sum [ score (Delete a) | a <- aseq ]

loop [] bseq i j

= sum [ score (Insert b) | b <- bseq ]

traceback :: Eq e => Array (Int,Int) Int -> [e] -> [e] -> Int -> Int

-> [Op e]

traceback table aseq bseq n m

= loop aseq bseq n m

where

loop aseq@(a:as) bseq@(b:bs) i j

| v == p = Change a b : loop as bs (i-1) (j-1)

| v == q = Delete a : loop as bseq (i-1) j

| v == r = Insert b : loop aseq bs i (j-1)

where

v = table ! (i, j)

p = score (Change a b) + table ! (i-1, j-1)

q = score (Delete a ) + table ! (i-1, j )

r = score (Insert b ) + table ! (i, j-1)

loop aseq [] i j

= [ Delete a | a <- aseq ]

loop [] bseq i j

= [ Insert b | b <- bseq ]

max3 :: Ord a => a -> a -> a -> a

max3 x y z

| x >= y && x >= z = x

| y >= x && y >= z = y

| otherwise = z

Fig. 10. The global and traceback functions.

6 Exercises

The material presented here forms the foundation of a one hour classroom session

followed by a one hour laboratory session. The laboratory session has three phases.
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1. Familiarisation . The exercises in this phase involve going through the full edit-

compile-test cycle with the Hugs Haskell interpreter by trying out some small

example sequences and modifying the function for scoring.

2. Experimentation . The exercises in this phase involve playing some bioinformat-

ics “parlour games” inspired by examples in Lesk (2002). For example, based on

the sequences of pancreatic ribonuclease from horse (Equus Caballus), minke

whale (Balaenoptera acutorostrada), and red kangaroo (Macropus rufus), which

of these species are most closely related? To answer this question, the sequences

must be retrieved from an online database and input by hand; their similarity

must then be gauged by inspecting alignments or comparing scores.

3. Extension . The exercise in this phase is to implement the textbook algorithm

for local alignment by modifying the code for global alignment.

7 Experience

The pilot lecture and laboratory session described here have been given as part of a

seminar series on research topics associated with the MSc programme. Of necessity,

we took the approach of Abelson et al. (1985) – not formally teaching the language,

but explaining as went along. This was possible because the students had already

seen the algorithms in Java, adapted from a nice pedagogical implementation by

Peter Sestoft of the Royal Veterinary and Agricultural University in Denmark. About

half of the students managed to complete the (admittedly, highly directed) exercises

in the laboratory, and all found it to be a positive experience.

Some of the staff who attended the lecture, though, were less convinced that

a switch should be made from Java and Perl to Haskell. Broadly speaking, the

computer scientists were concerned that students would no longer do any “real”

programming; the biologists feared that they would be unable to undertake projects

that involved interfacing with existing software packages; and both that there might

be problems with student recruitment and subsequent employment. These, of course,

are all part of the reason why no one uses functional languages (Wadler, 1998).

8 Conclusions

In this paper, we have developed some textbook algorithms for gauging biological

sequence similarity in Haskell. Our early experience teaching bioinformatics students,

albeit only as part of a research seminar series, has been positive. Some staff, however,

have still to be convinced, and to do so we now plan to run a number of student

research projects using a functional language.
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