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Abstract

Ectotherms are vulnerable to environmental changes and their parasites are biological health
indicators. Thus, parasite load in ectotherms is expected to show a marked phenology. This
study investigates temporal host–parasite dynamics in a lizard community in Eastern Spain dur-
ing an entire annual activity period. The hosts investigated were Acanthodactylus erythrurus,
Psammodromus algirus and Psammodromus edwardsianus, three lizard species coexisting in
a mixed habitat of forests and dunes, providing a range of body sizes, ecological requirements
and life history traits. Habitat and climate were considered as potential environmental predic-
tors of parasite abundance, while size, body condition and sex as intrinsic predictors. Linear
models based on robust estimates were fitted to analyse parasite abundance and prevalence.
Ectoparasitic mites and blood parasites from two haemococcidian genera were found:
Lankesterella spp. and Schellackia spp. Habitat type was the only predictor explaining the abun-
dance of all parasites, being mostly higher in the forest than in the dunes. The results suggest
that particularities in each host–parasite relationship should be accounted even when parasites
infect close-related hosts under the same environmental pressures. They also support that lizard
parasites can be biomarkers of environmental perturbation, but the relationships need to be
carefully interpreted for each host–parasite assemblage.

Introduction

Parasites thrive to the expense of other organisms and are usually part of intricate ecological
webs. The presence of high parasite diversity is considered a reliable indicator of good envir-
onmental quality because of the ecological equilibrium presumed for host–parasite relation-
ships (Marcogliese, 2005). Consequently, understanding the dynamics of host–parasite
interactions has been a major aim in evolutionary ecology, and studies at the community
scale are needed if we want to understand the influence that hosts and parasites diversity
have on each other (Vázquez et al., 2005, 2007).

The Western Mediterranean is a biodiversity hot spot of both hosts and parasites, and rep-
tiles constitute a good model of the complexity involved in such interactions (Molina-Venegas
et al., 2015; Megía-Palma et al., 2018a). Multiple factors influence the outcome of the inter-
action, one is stress, and sources of stress for hosts can be either environmental or intrinsic.
For example, individuals subjected to stressful environments can reallocate energy to body
functions other than immune defence to cope with stress (Adamo et al., 2017). This may
increase their susceptibility to parasitic infections (Oppliger et al., 1998). Thus, variation in
parasite abundance in correlation with environmental gradients of stress can be interpreted
as biomarkers of environmental costs on the hosts’ immune defences (Megía-Palma et al.,
2020a). Besides spatial covariation with environmental stress, the abundance of parasites
may vary locally with phenology (e.g. McDevitt-Galles et al., 2020). However, temporal
dynamics of parasite abundance have scarcely been studied in particular hosts such as reptiles
(Schall and Marghoob, 1995).

In the last two decades, parasitologists have been unveiling the diversity of parasites infecting
Mediterranean lizards (Galdón et al., 2006; Maia et al., 2011, 2012; Megía-Palma et al., 2014,
2018a). Blood parasites that infect lizards of this region cluster in two distinct phylogenetic
groups. The most common are haemogregarines (Roca and Galdón, 2010; Maia et al., 2014;
Álvarez-Ruiz et al., 2018; Megía-Palma et al., 2020b). They are transmitted by haematophagous
mites of the genus Ophionyssus (Reichenow, 1919; Svahn, 1975; Haklová-Kočíková et al., 2014),
and the potential drivers governing their prevalence and intensity are only starting to be under-
stood (Álvarez-Ruiz et al., 2018; Megía-Palma et al., 2020a).

A second and less common group of blood parasites of lizards in the Mediterranean region
are haemococcidians, which are highly host-specific (Megía-Palma et al., 2018a). However, the
factors governing their prevalence and distribution are even less understood compared to hae-
mogregarines. The haemococcidian genera Schellackia spp. and Lankesterella spp. (order
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Eimeriida) infect Iberian lizards (Maia et al., 2014; Megía-Palma
et al., 2014, 2018a). Parasites of the former genus undergo several
replication cycles of sexual and asexual reproduction in lizard
hosts, whereas in the gut of haematophagous mites the parasite
only becomes dormant (Telford, 2009). The cycle of
Lankesterella spp. in the Mediterranean is unknown, but dipteran
and acarine arthropods are competent vectors of American
lankesterellids (Megía-Palma et al., 2017). Hematic stages (i.e.
sporozoites) of Schellackia spp. and Lankesterella spp. in Iberian
lizards are morphologically distinguished by the differential num-
ber of refractile structures in the cytoplasm; Schellackia spp. shows
one refractile body, while sporozoites of Lankesterella spp. show
two (Megía-Palma et al., 2014, 2018a).

Factors explaining parasite abundances are multiple, and intrin-
sic and extrinsic predictors, as well as particularities in the life
history traits of both hosts and parasites, may interact to shape
host–parasite dynamics (Klukowski, 2004; Illera et al., 2017;
Padilla et al., 2017). For example, previous studies found positive
relationships between body size and the abundance of haemogre-
garine infection in small to medium-sized lizards (Amo et al.,
2005; Molnár et al., 2013; Maia et al., 2014). Those studies used
body size as a proxy for age because lizards have indeterminate
growth and infection likelihood might increase with age, as older
individuals accumulate exposure to parasites over time (e.g.
Schall and Marghoob, 1995). Sex is usually an important intrinsic
factor associated with increased susceptibility to infections (Folstad
and Karter, 1992; Saino et al., 1995; Alonso-Alvarez et al., 2007). In
lizards, although the specific effect of sex on blood parasites
remains unclear, there is consensus that sexual hormones increase
the susceptibility to ectoparasites (reviewed in Roberts et al., 2004
but also see Veiga et al., 1998). Furthermore, host–parasite
dynamics may vary along the lizards’ period of activity, as both
environmental abundance of parasites and hosts’ susceptibility to
infections may show phenological variation (Klukowski, 2004;
Huyghe et al., 2010; Megía-Palma et al., 2020c).

As commented, sources of stress are positively associated with
haemogregarine abundances in lizards (Oppliger et al., 1996,
1998; Megía-Palma et al., 2020a). One important source of envir-
onmental stress in Mediterranean habitats may be an increasing
constriction in the availability of favourable thermal microhabitats
for lizards due to raising temperatures towards summer (Díaz et al.,
2006; Vickers et al., 2011). Although lizards in Mediterranean
environments may acclimate to increasing temperatures by
accommodation of their thermal preferences (Díaz et al., 2006;
Megía-Palma et al., 2020c), this thermo-physiological shift might
have costs on lizards (Vickers et al., 2011). Thermal restrictions
have immunosuppressant effects on lizards (Han et al., 2020),
with gravid females demonstrating higher thermal sensitivity influ-
enced by an additive effect of dehydration (Dupoué et al., 2020;
Megía-Palma et al., 2020a). Stressed lizards, by this or other rea-
sons, exhibit a lower ability to heal cutaneous wounds or a reduced
immune response (Lucas and French, 2012; Sprayberry et al., 2019;
Han et al., 2020). Thus, parasitic transmission and/or replication of
some parasites may be facilitated in immunosuppressed lizards
(e.g. Salvador et al., 1996; Megía-Palma et al., 2020a). Intra or
interspecific (social) interactions may also be an important source
of environmental stress, with potential influence on lizards’ suscep-
tibility to infections (Mugabo et al., 2015). Indeed, Oppliger et al.
(1998) experimentally demonstrated that the increase in the inten-
sities of haematic parasites in Zootoca (=Lacerta) vivipara
(Lichtenstein, 1823) reflected stress, being higher in environments
with higher predation pressure and intraspecific competition asso-
ciated with increased release of glucocorticoids. Similarly, Carbayo
et al. (2019) found that the Algerian sand racer, Psammodromus
algirus, has more blood parasites in poor quality habitats where
lizards also had worse body condition.

The aim of this study was to investigate the phenological host–
parasite dynamics in a community of Mediterranean lizards dur-
ing a one-year period of lizard activity (May–October; the rest of
the year they hibernate and remain inactive in burrows). The
selected hosts were three co-habiting lizard species that provide
a range of sizes, ecological requirements and life history traits:
Acanthodactylus erythrurus (Schinz, 1834), P. algirus (Linnaeus,
1758) and Psammodromus edwardsianus (P. hispanicus) (Dugès,
1829). The three species differ in their habitat preference, with
A. erythrurus preferring more open habitats with sandy substrate,
while both Psammodromus species prefer higher vegetation cover
provided by forests with dense undergrowths and leaf litter
(Escarré and Vericad, 1981; Arnold, 1987; Díaz and Carrascal,
1991). Despite all three lizard species being insectivorous, they
also present certain dietary differences: A. erythrurus is known
to show a marked preference for ants (Pollo and Pérez-Mellado,
1991), P. algirus shows the greater variety of insects in the diet
(Salvador, 2015), and P. edwardsianus consumes mainly small
and hard prey like Coleoptera or Hemiptera (Fitze, 2012).
Acanthodactylus erythrurus is the biggest [up to 8 cm snout-vent
length (SVL)] and most thermophilic species of the three (Belliure
et al., 1996; Verwaijen and Van Damme, 2007). Although little is
known about the exact life span of the species in the wild, the
results of several studies allow to order the species from shorter
to longer expected life span (Carretero and Llórente, 1991;
Drechsler and Monrós, 2019; Comas et al., 2020). Following
this statement, A. erythurus has an intermediate life span,
which is not known in detail, but the results in Drechsler and
Monrós (2019), with 80% yearly renewal indicate that it seems
to be around two years for most individuals in this population.
For P. algirus, some studies describe interannual survival rates
of 25% for juveniles and 35% for adults (Salvador, 2015), indicat-
ing that the species has the longest life span, as an important part
of individuals survive more than 2 years. Finally, P. edwardsianus
is the smallest (maximum SVL of 5–6 cm) and has the shortest
life span (with a near 100% renewal of the population every
year; Fitze, 2012).

Significant predictors of the prevalence and abundances of
haematophagous mites and blood parasites were analysed in the
three lizard species at two contrasting habitats where they coexist.
Based on differences in their life history strategies, we predict that
environmental variables will affect differently host–parasite
dynamics in the three lizard species. We also predict that females
of the less thermophilic species, P. edwarsianus and P. algirus, will
have a higher parasite load during the warmer period, which coin-
cides with the critical period of clutch development (Carretero,
2006; Dupoué et al., 2020). Furthermore, we will also test whether
lizard species of intermediate longevity will have intermediate
abundances of infection. The latter hypothesis will be supported
if the abundance of parasites in P. edwardsianus < A. erythrurus
< P. algirus, according to differences in their life span expectancy.

Material and methods

Study area

The study area is situated in East Spain, about 10 km South from
Valencia City and is part of the Albufera de Valencia Natural Park
(39°20′20′′N 0°18′43′′W). It is a coastal line of sandy substrate
about 10 km long (N-S) and 1 km wide (E-W) in the Western
coast of the Mediterranean Sea, with a gradient of vegetation
cover increasing from the coastal sand dune area to the inland
pine forest (Ibor and Matarredona, 2016).

Lizards were captured in both dune and forest habitats. The
‘dunes’ are characterized by bare sand sparsely covered by herb-
aceous and bush species of plants, providing low heterogeneity
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of thermal microhabitats. The preponderant height of plants in
this habitat is less than 1 m (Ammophila arenaria, Helichrysum
stoechas, Euphorbia paralias, Medicago marina and Rhamnus
alaternus, among others). The ‘forest’ substrates are fixed sand
dunes dominated by Aleppo pines (Pinus halepensis) and a
dense undergrowth vegetation (Smilax aspera, Asparagus officina-
lis, Chamaerops humilis and Pistacia lentiscus, among others) that
provide more heterogeneity of thermal microhabitats.

Fieldwork

Field sampling was carried out in 2017 between May and October,
to cover a one-year period of activity of the three species of lizards
at the area. Lizard counting and capturing was performed by one
researcher (RD) twice per week in each habitat type (alternating
sampling areas), by randomly walking the area for two hours
beginning about three hours after sunrise. Random walks were
used instead of fixed transects because (i) this allowed to avoid
the repeated handling effect and double counting, changing the
trajectory each day; and (ii) it was more suitable, especially in
the forest habitat, given the dense undergrowth vegetation
which often blocked the way. Days with suboptimal meteoro-
logical conditions for lizard activity (rain, strong wind, important
cloud coverage, etc.) were not sampled. Lizards were captured by
hand or noosing (e.g. Guillén-Salazar et al., 2007), and put in
individual cloth bags until processing. All individuals were
measured (SVL) using a ruler, to the nearest 1 mm, and weighed
using a digital scale, with a precision of 0.01 g, and species and sex
were identified. In the case of females, the gravidity status was
assessed by palpation. Finally, the number of visible ectoparasites
on each individual was counted, blood samples were obtained
from toe-clipping and smeared on a microscope slide.
Resampling the lizards was avoided by assigning them a unique
code by toe-clipping (Bellairs and Bryant, 1968; Perry et al.,
2011; Barrientos and Megía-Palma, 2021). The lizards were
released near the corresponding capture point.

Blood sample processing

Blood smears were fixed with 100% methanol and stained them
with 1:10 solution of Giemsa for 40 min. The blood smears were
screened at ×1000 magnification in a light microscope (CX41,
Olympus, Tokyo, Japan). Blood parasites were counted in 5000
blood cells (Megía-Palma et al., 2016). The genera of parasites
found were identified by morphological characters (Megía-Palma
et al., 2014, 2018a; Álvarez-Ruiz et al., 2018). Particularly, the
presence and the number of refractile bodies were key diagnostic
characteristics (i.e. Megía-Palma et al., 2014) (Fig. S1).

Data analysis

The daily abundance of lizards was standardized dividing the num-
ber of observed lizards of each species per day by the duration of the
census (obtaining values in individuals/hour). For the statistical
analysis, recaptures and individuals with incomplete datasets
were not included. The differences in lizard abundance were
analysed fitting a Generalized Linear Model (GLM) with γ error
distribution with a log linking function, considering species, habi-
tat, month and the triple interaction species × habitat × month as
predictor variables, computing the results by a type II ANOVA.

Given the sexually asynchronous cycles in fat body develop-
ment in Mediterranean lizards (Carretero, 2006), a body condi-
tion index (i.e. BCI) was calculated as the residuals of the
relation between both log10-transformed SVL and body mass
(e.g. Drechsler et al., 2020). This was done separately for each
sex and species to remove confounding effects (Álvarez-Ruiz

et al., 2018; Megía-Palma et al., 2020a). The differences in body
condition between habitat types were analysed performing an
ANOVA for each species separately, considering the interaction
with sex. In the case of A. erythrurus, the age of each individual
was also estimated, following Drechsler and Monrós (2019). In
brief, the regression formula of the growth curve was applied
for each sex and a delay in growth due to hibernation was consid-
ered, when necessary.

Abundance of each parasite species was analysed considering
the number of parasites per host (Rózsa et al., 2000). Given the
high proportion of uninfected lizards in the sample, fitting a
model to the data that fulfilled the parametric assumptions of
residual normality and homoscedasticity was not possible. Nor
negative binomial, zero-inflated models or log10-transformation
of the data improved the residual distribution of the model.
Thus, a robust estimate GLM (GLM-rob) (Cantoni and
Ronchetti, 2001) with Poisson error distribution linked to a log
linking function was implemented, through the ‘glmrob’ function
of the ‘robustbase’ package. The prevalence of each parasite spe-
cies was analysed by fitting the percentage of infested individuals
to a GLM with binomial error distribution and logit link function,
the results were computed by a type II ANOVA.

The following predictors for parasite abundance and prevalence
were considered: host species, habitat type, climate, month, sex, SVL,
body condition and interactions of species with habitat, SVL, sex,
month and month with sex. Mite abundance was considered in
the case of blood parasites, and gravidity was tested in the case of
females. Finally, a Spearman correlation test was carried out to
test if the infection parameters (prevalence,mean andmedian inten-
sity) were correlated to climatic variables (monthly mean tempera-
ture, mean maximum and minimum temperatures, and
accumulated precipitation), which were obtained from a meteoro-
logical station situated less than 10 km from the study area (Racó
de l’Olla; https://www.avamet.org/mx-mes.php?id=c15m250e27).
In this analysis, intensity (considering only infected lizards) was
used instead of abundance (i.e. infected and uninfected lizards
considered) (sensu Rózsa et al., 2000) for three reasons: (i) this
allowed us to analyse the effect of climatic fluctuations strictly on
the host–parasite relationship, as uninfected lizards lack parasites;
(ii) the high proportion of uninfected lizards would bias the results;
and (iii) this analysis is unifactorial, allowing to use a smaller
sample size than the multifactorial approach of previous analyses.
Psammodromus edwardsianus was excluded in all analysis of
blood parasites, as only one lizard was infected. All the statistical
analyses were ran using the statistics software R v4.0.3 (R Core
Team, 2020).

Results

The dataset included 256 individuals (157 A. erythrurus, 51
P. algirus and 48 P. edwardsianus). The abundances of all lizard
species were significantly higher in the forest (Table S1); a
constant effect observed across the activity period (Fig. S2).
Body condition did not differ between habitats for the three
species (F12,104 = 1.058, P = 0.340; Table 1).

Parasite prevalence

Mites were more prevalent than blood parasites in the three host
species (Table 2). Month and sex significantly explained the
prevalence of mites (Table 3), while month differently affected
the host species (Fig. 1), the effect of sex was consistently higher
in males (59.9%) than females (52.5%) through all host species.
The relationship between the prevalence of mites and the SVL
of the lizards was significantly different among host species
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(Table 3), being mites present in smaller body sizes in P. edward-
sianus than in the other two species (Fig. 2).

None haemogregarine blood parasites were found in the study,
but two genera of haemococcidians: Lankesterella spp.
and Schellackia spp. (Fig. S1). Blood parasites of the genus
Lankesterella spp. were found almost exclusively infecting A. ery-
thrurus (35 out of the 37 lizards infected; Table 2). Significant effects
were detected of species and SVL (the correlation was positive and
consistent through species) on the prevalence of Lankesterella spp.
(Table 3, Fig. 2). The interactions of species with habitat type and
species with month were also significant (Table 3). The prevalence
of Lankesterella spp. in A. erythrurus was higher in the forest
(29.4%) than in the dunes (16.9%). None P. algirus was infected
by Lankesterella spp. in the forest and the prevalence in the dunes
was 6.9%. The maximum prevalence of Lankesterella spp. in
A. erythrurus was in August. However, no P. algirus was found
infected in this month (Fig. 1).

Schellackia spp. was the main blood parasite found in P. algirus
(12 out of the 20 lizards infected), but it also infected the other

two lizard species (7 out of 20 A. erythrurus; 1 out of 20
P. edwardsianus; Table 2). The interaction between species and
habitat significantly explained prevalence (Table 3). The same
pattern as in the case of Lankesterella spp. could be observed;
the prevalence of Schellackia spp. in A. erythrurus was higher in
the forest habitat (8.8%) than in the dunes (1.1%), while in
P. algirus, the prevalence of this parasite was higher in the
dunes (27.6%) than in the forest (18.2%).

Mites infested all ranges of body sizes of the three lizard spe-
cies. Blood parasites were only found in individuals older than
∼300 days in the case of A. erythrurus (Table S2), while they
did infect a very small (i.e. young, SVL = 39 mm) individual of
P. algirus. In the case of P. edwardsianus, only one individual
was infected by blood parasites.

Parasite abundance

Nearly all predictors significantly explained mite abundance
(Table 4). In A. erythrurus, mites were more abundant in the

Table 1. Mean ± S.E. of lizard body condition (×100) of each species in both considered habitat types, with the corresponding sample size (n, in lizards) and the
results of the statistical analysis in each case

Habitat ANOVA

Species Forest Dunes D.F.|n F P

A. erythrurus 0.47 ± 1.09 (n = 68) −0.36 ± 0.82 (n = 89) 1 | 157 0.382 0.538

P. algirus 0.26 ± 1.97 (n = 22) −0.20 ± 1.81 (n = 29) 1 | 51 0.028 0.868

P. edwardsianus 0.46 ± 3.12 (n = 29) −0.71 ± 3.02 (n = 19) 1 | 48 0.063 0.803

Table 2. Mean ± S.E. infection abundance of each parasite and prevalence (in brackets) for each host species

A. erythrurus P. algirus P. edwardsianus

Mites 4.21 ± 0.58 (59%) 1.47 ± 0.33 (49%) 3.33 ± 0.77 (58%)

Lankesterella spp. 4.66 ± 1.09 (22%) 0.12 ± 0.09 (4%) 0.00 (0%)

Schellackia spp. 0.34 ± 0.19 (4%) 5.02 ± 2.21 (24%) 0.02 ± 0.02 (2%)

Table 3. Results of the general linear models for the parasite prevalence of the different parasites: residual deviance (Dev), residual degrees of freedom (D.F.) and F
and P statistics

Mites Lankesterella spp. Schellackia spp.

Factor Dev D.F. F P Dev D.F. F P Dev D.F. F P

Species 0.207 254 0.207 0.650 11.278 206 11.278 <0.001 14.268 206 14.268 <0.001

Habitat 2.624 253 2.624 0.105 2.196 205 2.196 0.138 0.817 205 0.817 0.366

Month 40.735 252 40.736 <0.001 0.222 204 0.223 0.637 0.011 204 0.011 0.916

Sex 5.674 251 5.674 0.017 2.347 203 2.347 0.126 0.688 203 0.688 0.407

SVL 0.282 250 0.282 0.595 25.598 202 25.958 <0.001 2.869 202 2.870 0.090

BCI 0.272 249 0.272 0.602 1.878 201 1.878 0.171 0.529 201 0.529 0.467

Mite abundance – – – – 0.168 200 0.168 0.682 1.370 200 1.371 0.242

Species × habitat 2.559 248 2.555 0.110 3.940 199 3.940 0.047 7.103 199 7.103 0.008

Species × SVL 4.673 247 4.673 0.031 3.034 198 3.035 0.081 0.010 198 0.010 0.919

Species × sex 0.116 246 0.116 0.733 1.715 197 1.713 0.191 0.007 197 0.007 0.933

Month × sex 1.077 245 1.077 0.299 3.033 196 3.033 0.082 0.324 196 0.324 0.569

Species × month 0.035 244 0.035 0.851 4.145 195 4.146 0.042 2.767 195 2.767 0.096

Significant results (P < 0.05) are shown in bold.
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forest than in the dunes; in P. algirus, it was the opposite; and in
P. edwardsinaus, the mite abundances were similar between habi-
tats (Fig. 4). Males of A. erythrurus had higher infestation rates
by mites [4.9 ± 0.71 (S.E.)] than females [2.94 ± 0.97], but females

were more intensely infested in both species of the genus
Psammodromus: males 1.30 ± 0.46 (in P. algirus) and 2.39 ± 0.53
(in P. edwardsianus) and females 1.57 ± 0.47 (in P. algirus) and
5.40 ± 2.13 (in P. edwardsianus). In all host species, mites were

Fig. 1. Representation of the seasonal variation of infection parameters of each parasite (A: mites, B: Lankesterella spp. and C: Schellackia spp.) and each host
species: A. erythrurus (solid line), P. algirus (dotted line) and P. edwardsianus (dashed line). From left to right: the prevalence, expressed as a percentage of infected
individuals; the comparison between species of mean ± S.E. of infection abundance and the comparison between males (black) and females (gray) of mean ± S.E.
infection abundance.

Fig. 2. Distribution of infected individuals among the snout-vent length (SVL) range of each host species: mites (A), Lankesterella spp. (B), and Schellackia spp. (C).
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more abundant in spring and early summer, with a higher peak in
P. edwardsianus (Table 4, Fig. 1). The SVL showed a positive cor-
relation with mite infestation in all species, especially in
P. edwardsianus (Fig. 4). However, it was only significant for
A. erythrurus (Spearman correlation test, rho = 0.368, P < 0.001
for A. erythrurus; rho = 0.011, P = 0.938 for P. algirus; and
rho = 0.252, P = 0.085 for P. edwardsianus). The phenology of
mite infestation did not differ significantly between sexes, males
presenting slightly higher mite abundances in June (Table 4,
Fig. 1). All the interactions of the predictors with species signifi-
cantly explained mite abundance (Table 4).

Habitat type, sex, body condition, mite abundance and the
interaction of species with SVL significantly explained the abun-
dance of Lankesterella spp. (Table 4). Lankesterella spp. was more
abundant in the forest than in the dunes (Fig. 3). The abundance
of Lankesterella spp. showed a negative relationship with body
condition (Table 4). Similarly, there was a negative relationship
between the abundances of mites and Lankesterella spp.

(Table 4). Furthermore, the correlation with SVL was positive
in both host species, but this was stronger in A. erythrurus
(Fig. 4). Both sexes of the two host species presented an abun-
dance peak of Lankesterella spp. in August, which was higher in
females. Females presented higher abundances of Lankesterella
spp. overall (Fig. 1).

The interaction between habitat type and species significantly
explained the abundance of Schellackia spp. (Table 4). The infec-
tion abundance of Schellackia spp. in A. erythrurus was low
in both habitats (Fig. 3). In P. algirus, the abundance of
Schellackia spp. in the forest was considerably higher than that
of A. erythrurus in the same habitat, and also significantly higher
than for P. algirus in the dunes (Fig. 3, Table 2).

Gravidity of females and parasites

Gravidity of females did not have a significant effect on the preva-
lence of mites and blood parasites of any of the three studied spe-
cies (Table 5). Abundance of mites and blood parasites was not
affected by gravidity in the case of A. erythrurus, while gravid
females of P. algirus and P. edwardsianus showed higher abun-
dances of mites than non-gravid females of the same species
(Table 5).

Climatic variables and parasites

Environmental temperature, but not precipitation, positively cor-
related with the infection parameters analysed (Tables S3 and S4).
This relationship was generally stronger in females than in males
(Tables S3 and S4). In the males of the three host lizards, the
mean and median infection intensity of Schellackia spp. (i.e. con-
sidering only infected individuals sensu Rózsa et al., 2000) were
positively correlated with all the temperature parameters calcu-
lated. In females of A. erythrurus and P. algirus, the mean envir-
onmental temperature was positively correlated with the
prevalence and the mean intensities of Lankesterella spp. and
Schellackia spp., respectively. In females of P. algirus, the mean
maximum temperature was positively correlated with the preva-
lence and intensity of Schellackia spp. (Table S4). In addition,
the mean minimum temperature was positively correlated with
the prevalence of Schellackia spp. in P. algirus.

Discussion

The results show that coexisting lizard species neither share the
same parasites nor a common host–parasite dynamics pattern.
In the case of blood parasites, the species P. edwardsianus showed
a nearly null affection. The genus Lankesterella spp. infected
almost exclusively A. erythrurus, while the genus Schellackia
spp. infected the three lizard species studied. Lankesterella spp.
was previously reported infecting A. erythrurus (Megía-Palma
et al., 2014), and consistently with our results, it rarely infects
other lizards in the Iberian Peninsula (Maia et al., 2014).

The almost null prevalence of blood parasites found in
P. edwardsianus provided only partial support for the hypothesis
that connects age with time of exposure to infection (Maia et al.,
2014). Nonetheless, the presence of Schellackia spp. in P. edward-
sianus represents the first infection record for lizards of this
species. The more frequent infection of A. erythrurus, which
has an intermediate life span as compared to the two species of
Psammodromus, supports host–parasite compatibility as the
stronger explanation (or partial explanation) for infection patterns
in this lizard community (e.g. Megía-Palma et al., 2018a).

Body size and age are closely related traits in lizards (e.g.
Olsson and Shine, 1996). However, Watkins and Blouin-Demers
(2019) found that body size, but not age indirectly estimated by

Fig. 3. Mean ± SE of the abundance of mites (A), Lankesterella spp. (B) and
Schellackia spp. (C) in both habitats for each host species: A. erythrurus (black), P.
algirus (dark grey) and P. edwardsianus (light grey). Significant differences between
habitats are indicated by asteriscs.
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skeletochronology, predicted mite load in Sceloporus clarkii. In
our study, A. erythrurus was infected by blood parasites only
in individuals with an estimated age older than 300 days.
Interestingly, 300 days is the age when the lizards reach sexual
maturity (Drechsler and Monrós, 2019). This suggests that the
likelihood of acquiring this infection increases at maturation. A
potential explanation is that, at maturity, the energy budget ini-
tially allocated to immunity is reallocated to reproduction (e.g.
French et al., 2007; Huyghe et al., 2010). However, hormonal
levels alone, also associated with sexual maturity, may not be
determinant of blood parasite infection because sex, and gravidity
status, had no significant effects on the prevalence or the abun-
dance of this parasite. This result contrasts with New World
Lankesterella occidentalis, which was almost exclusively infecting
males of Sceloporus occidentalis (Megía-Palma et al., 2018b).
Body length was a significant predictor of mites and
Lankesterella spp., while body condition was negatively correlated
with the abundance of Lankesterella spp., indicating that longer
but thinner lizards are often infected by this parasite. However,
without an experimental approach, we cannot distinguish
between potential negative effects of Lankesterella spp. on the
body condition of A. erythrurus, or that weaker lizards were
more susceptible to the infection.

Mites are the potential transmitters of Lankesterella spp. (e.g.
Lainson, 1960), but the fact that mites were found infesting lizards
at younger states of the host (the age of youngest infested lizard was
estimated in 22 days) than blood parasites, suggests that vectors
other than mites might transmit Lankesterella spp. to lizards in
the studied area. Supporting this hypothesis, lizards captured in
the forest held mites and Lankesterella spp. opposing abundances
in the case of P. algirus, although the abundances of mites and
Lankesterella spp. were both higher in this habitat for A. erythrurus.
Thus, potential vectors of Lankesterella spp., such as sand flies
(Diptera: Psychodidae; Telford, 2009), could find more heterogen-
eity of available microhabitats to thrive in the forest (Neal et al.,
2016; Megía-Palma et al., 2017). Beside sand flies, other haema-
tophagous dipterans feeding on lizards exist in the Mediterranean
region, and thus, are potential vectors of haemococcidians. A previ-
ous meta-barcoding analysed the presence of reptile DNA in blood
meals of mosquitoes and found Culex hortensis and Culex pipiens
(Diptera: Culicidae) feeding on the lizards Podarcis muralis and

Lacerta sp. (Martínez-de la Puente et al., 2015). Culex pipiens
more commonly feeds on humans and other mammals, and is
widely present in the Albufera de Valencia; C. hortensis is more spe-
cialized in reptiles (Martínez-de la Puente et al., 2015). An analysis
of their vectorial competence to transmit blood parasites to lizards
would be illuminating.

The absence of haemogregarines (e.g. genera Hepatozoon or
Karyolysus) in the studied area despite these being common para-
sites of lizards (Haklová-Kočíková et al., 2014; Megía-Palma et al.,
2020a, 2020b), including P. algirus (Álvarez-Ruiz et al., 2018) sug-
gests that environmental conditions in the Albufera de Valencia
favour the transmission of haemococcidians, but, for some reason,
not other common parasites of lizards. This highlights questions
on vectorial competence as well as vector diversity (O’Donoghue,
2017). For example, the significant difference in seasonal variation
in mite abundance across lizard species suggested that the suscep-
tibility to the infestation by mites is host-specific. In this sense,
the spatial segregation of the three lizard species in this ecosystem
might influence their susceptibility to the acquisition of questing
mites (e.g. Toyama et al., 2019). Our results are consistent
with previous studies in bird communities, where difference in
life history traits of hosts rather than nest composition (i.e. envir-
onment) was proposed as an explanation to the observed differ-
ences in the abundance of haematophagous mites between host
species (Moreno et al., 2009; Cantarero et al., 2013; Arce et al.,
2018). However, at this stage, we cannot rule out that the observed
significant difference in mite phenology on the different hosts
investigated could also reflect that different species of mites infest
different host species in this lizard community. We recommend
future research in the Albufera de Valencia directed to identify
the haematophagous mites on the lizards and, eventually, the
description of likely new mite taxa that increased the biodiversity
value of this singular ecosystem.

The forest habitat, where Lankesterella spp. was more abun-
dant, presented higher abundances of lizards as well, especially
P. algirus. This might be explained by an increased transmission
favoured by host density (e.g. Lloyd-Smith et al., 2005) and/or a
higher degree of intra- and interspecific social interactions
increasing stress levels in lizards, which might negatively affect
their anti-parasitic defences (May and Anderson, 1979; Oppliger
et al., 1998; Downes and Bauwens, 2002). The negative effects

Table 4. Robust estimates of parasite abundance for the different parasites: estimate (Est), standard error (S.E.) and z and P statistics

Mites Lankesterella spp. Schellackia spp.

Factor Est S.E. z P Est S.E. z P Est S.E. z P

Species 4.166 0.484 8.596 <0.001 44.910 16.919 2.654 0.008 −0.553 5.519 −0.100 0.920

Habitat −0.719 0.195 −3.690 <0.001 −1.833 0.202 −9.070 <0.001 −5.464 2.448 −2.232 0.026

Month −0.682 0.252 −2.703 0.007 1.974 1.513 1.305 0.192 0.453 0.980 0.463 0.644

Sex 1.651 0.310 5.321 <0.001 −8.152 2.489 −3.274 0.001 −1.152 2.482 −0.464 0.642

SVL 0.105 0.015 6.920 <0.001 1.322 0.235 5.605 <0.001 0.080 0.121 0.667 0.505

BCI 0.488 0.450 1.085 0.278 −6.526 0.893 −7.301 <0.001 −1.008 2.256 −0.447 0.655

Mite abundance – – – – −0.066 0.031 −2.104 0.035 −0.048 0.089 −0.543 0.587

Species × habitat 0.588 0.119 4.938 <0.001 – – – – 3.393 1.361 2.492 0.013

Species × SVL −0.056 0.008 −6.675 <0.001 −0.764 0.225 −3.391 <0.001 −0.018 0.069 −0.270 0.787

Species × sex −0.817 0.155 −5.260 <0.001 3.703 2.355 1.573 0.116 −0.086 1.184 −0.073 0.942

Month × sex 0.160 0.110 1.454 0.146 0.192 0.131 1.463 0.143 0.234 0.370 0.632 0.527

Species × month −0.174 0.065 −2.674 0.007 −1.894 1.496 −1.267 0.205 −0.458 0.403 −1.136 0.256

Significant results (P < 0.05) are shown in bold.
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of crowded populations on lizards can be contingent on the habi-
tat quality and resource availability (Oppliger et al., 1998). In this
sense, the higher proportion of individuals with broken or regen-
erated tails (Table S4) suggested a higher competition in the for-
est, where lizards were more abundant (Itescu et al., 2017). Our
data suggest that haemococcidians, similarly to haemogregarines,
can be also biomarkers of competitive stress in lizards because
Schellackia spp. was more abundant in P. algirus captured in
the habitat with the higher abundance of lizards and these had

a higher proportion of broken tails (Table S4) (Oppliger et al.,
1998; Lazić et al., 2017; Megía-Palma et al., 2020a). However,
this result needs to be taken cautiously, as an increased proportion
of broken tails could also mirror a higher predator abundance,
which is another source of stress. Further research to clarify this
point is needed.

Previous studies reported higher abundances of mites in male
P. algirus consistently along an environmental gradient
(Álvarez-Ruiz et al., 2018). Higher levels of steroids in males may

Fig. 4. Correlation of parasite abundance (A: mites, B: Lankesterella spp. and C: Schellackia spp.) with snout-vent length (SVL) for each host species: A. erythrurus
(black), P. algirus (dark grey) and P. edwardsianus (light grey). Line of best fit included to show relationship.
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provoke immunosuppression and increased susceptibility to para-
sites (Folstad and Karter, 1992; Belliure et al., 2004). However, this
expectation does not conform to our results because females in the
two species of the genus Psammodromus had more mites during
the summer, and this effect was stronger in gravid females.
Sex-reverse patterns of parasite infection in lizards have been asso-
ciated before with stressful environments (Megía-Palma et al.,
2020a). Energy allocated to anti-parasitic defences can be reallo-
cated to egg production in gravid females, suggesting that higher
mite abundances in females during the summer might reflect
this trade-off. This effect was less evident in A. erythrurus, a species
achieving field body temperatures of 38.8°C (Belliure, 2015), com-
pared to the lower 31.4°C of Psammodromus spp. (Carretero and
Llorente, 1995) and, hence, conforming to the higher thermal
tolerance expected for the former species. Despite the remarkable
differences in thermal tolerance of both genera of lizards, the abun-
dances of the three species, particularly during the warmest
months, were similar. This suggested that none of the three
lizard species ceased their activity during the most adverse season
(summer) despite the costs imposed by a thermally restrictive
environment due to high temperatures.

In support of the thermal sensitivity hypothesis, P. algirus also
had stronger infestation by mites in the dunes. This habitat, with
low vegetation cover and high abundance of mites, likely repre-
sents a habitat of poorer thermal quality for P. algirus, a species
that demonstrates preferences for habitats with more thermal het-
erogeneity (Carrascal et al., 1989). Furthermore, the results show
also sexual differences in the relationship between temperature
and Schellackia spp. abundance and prevalence. In line with the
thermal sensitivity hypothesis, the positive relationship between

haemococcidian infection and temperature scores supports the
idea that the intensity of infection by Schellackia spp. can reflect
the higher sensitivity of the females of Psammodromus to envir-
onmental stress associated with the hot temperatures during the
summer.

In conclusion, a combination of intrinsic (species, sex, body
size) and extrinsic (season, habitat, temperature) factors were
important predictors of parasite abundance, intensity and
prevalence. Significant predictors were mostly not generalizable.
Nonetheless, although with opposing trends in some species, envir-
onmental effects of habitat and temperature supported mites and
haemococcidians as biomarkers of environmental quality.
Remarkably, the lack of haemogregarines in the lizard community
of the Albufera de Valencia suggests that ecological particularities
of this place may favour the presence of haemococcidians over
other blood parasites. Future studies should investigate the diver-
sity of vectors and their competence to transmit haemococcidians
for an integral understanding of the host–parasite webs of this eco-
system. A growing body of evidence supports the potential use of
parasites of lizards as biomarkers of environmental perturbation.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182021000858
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Abundance

Host Parasite Est S.E. z P

A. erythrurus Mites 0.532 0.280 1.895 0.058

Lankesterella spp. 0.688 0.440 1.564 0.118

Schellackia spp. 1.020 1.324 0.771 0.441
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P. edwardsianus Mites 2.066 0.396 5.209 <0.001
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Prevalence

Host Parasite Dev D.F. F P
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Schellackia spp. – – – –

Significant results (P > 0.05) are highlighted in bold.
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