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EMBEDDING THE HOPF AUTOMORPHISM GROUP
INTO THE BRAUER GROUP

FRED VAN OY STAEYEN AND YINHUO ZHANG

ABSTRACT. Let H beafaithfully projective Hopf algebra over a commutative ring
k. In[8, 9] we defined the Brauer group BQ(k, H) of H and an homomorphism = from
Hopf automorphism group Autyapt (H) to BQ(k, H). In this paper, we show that the
morphism 7 can be embedded into an exact sequence.

Introduction. In this paper k is a commutative ring with unit. Let H be a Hopf
k-algebra having a bijective antipode. It is possible to introduce a “ Quantum-Brauer”
group of H which can be obtained by taking isomorphism classesof H-Azumayaalgebras
in the category of Yetter-Drinfel’d H-modules modulo H-Morita equivalence and use
the braided product to define multiplication. This group, denoted by BQ(k. H), was
introduced in [8, 9]. Since then we dream of calculating it, or specific parts of it, for
some popular quantum groups. When H is commutative and cocommutative and a
faithfully projective Hopf algebra, the group BQ(k, H) turns out to be the Brauer-Long
group BD(k. H) introduced by F. W. Long in [12, 13]. In fact, even for the Brauer-Long
group no good (cohomological) cal cul ative methods were known before the more recent
results of [5, 6, 7]. Various subgroups of the Brauer-Long group could more easily be
studied cf.[1, 2, 3,5, 6, 7, 10]. For example, Deegan’ssubgroup introduced in [10] which
in fact turns out to be isomorphic to the Hopf algebra automorphism group Aut(H) (cf.
[10, 6]). The connection between Aut(H) and BD(k, H) for special commutative and
cocommutative H was probably first studied by M. Beattie in [1] where she established
the existence of an exact sequence (x):

1 — BC(k. G)/ Br(K) x BM(k. G)/ Br(k) — B(k. G)/ Br(k) —— Aut(G) — 1

whereGisafinite abelian group and kisaconnected ring. Based on Beattie’'sconstruction
of the map 3, Deegan constructed his subgroup BT(k, G) which is then isomorphic to
Aut(G); the resulting embedding of Aut(G) in the Brauer-Long group (group case) is
known as Deegan’'s embedding theorem. In [6], S. Caenepeel looked at 3 by means
of the Picard group of a Hopf algebra, and so extended Deegan’s embedding theorem
from abelian groups to commutative and cocommutative Hopf algebras. But if H is a
guantum group (i.e. (co-)quasi-triangular Hopf algebra) or just any non-commutative
non-cocommutative Hopf algebra then it seems that the map 8 can not be extended to
a map from some subgroup of BQ(k, H) to the automorphism group Aut(H). In fact,
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Aut(H) can no longer be embedded in BQ(k, H). On the other hand, we do have the map
m: Aut(H) — BQ(k, H) constructed in [9]. This map essentially deals with the actions
and coactions of H on itself and this inspired us to pass to the action of the Drinfel’d
double D(H). In this way the kernel of = may be related to the group-like elements of
D(H) and D(H)*. More precisely, we obtain an exact sequence:

() 1— G(D(H)") — G(D(H)) — Aut(H) —— BQ(k. H)

The group G(D(H)*) is an abelian group cf. [16]. In case D(H) is commutative, then
7 is injective and this is then the variant of Deegan-Caenepeel’s embedding result
for the Brauer-Long group. The meaning of the exact sequence (x*) goes beyond this
becausein our opinion it indicates a crucial difference between the Brauer-L ong group
and the quantum Brauer group. The reader may find this more obvious after looking
at Examples 7, 8. Of course when k is a field of characteristic 0 and H is a finite
dimensional commutative and cocommutative Hopf algebra, then Aut(H) is a finite
group. This indicates that the Brauer-Long group of afinite dimensional Hopf algebra
might be a torsion group as for usual Brauer groups. However, in the quantum group
case, even when H isasmall Hopf algebra, Aut(H) may be an infinite non-torsion group!
Example 8 learns that, while Br(C) istrivial BQ(C, H) is hot even torsion for Radford’'s
Hopf algebraH as GL,(C) modulo somefinite subgroup embedsin it ! Now with Aut(H)
out of the way we hope to find nice properties for Coker(r).

1. Preliminaries. Throughout kisacommutativering with unit and H isafaithfully
projective Hopf algebraover k. A Yetter-Drinfel’d H-module (simply, Y D H-module) M
isacrossed H-bimodule [18]. That is, M is ak-module which is at once aleft H-module
and aright H-comodul e satisfying the foll owing equivalent compatihbility conditions[11,
5.1.1]:

(i) hay - mo @ hgma = Z(he) - Mg @ (he - Mahe

(i) x(h-m) = Z(he - M) @ hgmeyS™(hy).

A Yetter-Drinfel’d H-module algebra is a YD H-module A such that A is a left
H-module algebra and a right H°°-comodule algebra. For detail on H-(co)module and
H-(co)algebras we refer to the standard book [17].

In [8] we defined the Brauer group of a Hopf algebraH by considering isomorphism
classes of H-Azumaya algebras. A YD H-module algebraAis called H-Azumaya if it is
faithfully projective as ak-module and if the following YD H-module algebra maps are
isomorphisms:

F:A#A — End(A). F(a#b)(c) =S acg(cy - b).
G:A#A — EndA®. G@#b)c) = > ap(agy - c)b.

where A isthe H-opposite YD H-module algebra of A cf. [8]. For afaithfully projective
YD H-module M the endomorphism ring Endx(M) ais a YD H-module algebra with
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H-structures given by

ey (h-F)(m) =3 " hq) - f(She) - m),
@) XM =3 f(Me)o @ S HMw)f (Mo)w-
Two H-Azumayaal gebrasA and B are Brauer equivalent (denoted by A ~ B) if thereexist
two faithfully projective YD H-modules M and N such that A # End(M) =~ B # End(N).
A ~ Bif and only if A is H-Morita equivalent to B cf. [9, Theorem 2.10]. The Brauer
group of the Hopf algebraH is denoted by BQ(k, H). The trivial element 1 in BQ(k. H)
is represented by the endomorphism algebra of afaithfully projective YD H-module.
Let H beafaithfully projective Hopf algebra. The Drinfel’d double D(H) = (H%)* i<
H ((H%®)* = H**P) is a quasitriangular-Hopf algebra. If {h;. hi} is the dual basis of H,
then R = 35i(h >a 1) ® (1 < hy) is the canonical quasi-triangular structure of D(H) cf.
[14, 15]. It is well-known that a k-module M is a D(H)-module if and only if M is a
YD-H-module cf. [14]. It follows from this fact that an algebra A is aleft D(H)-module
algebras if and only if it is an Yetter-Drinfel’d H-module algebras. Since the Brauer
equivalence is exactly the H-Morita eguivalence, we obtain BQ(k, H) = BM(k, D(H)),
where BM (k. D(H)) isasubgroup of BQ(k, D(H)) represented by those D(H)-Azumaya
algebras whose comodul e structures stemming from the module structures by means of
the quasi-triangular structure on D(H). cf. [9].

2. The exact sequence. Let H be a faithfully projective Hopf algebra over k. In
[9] we constructed an anti-homomorphism from Aut(H) to BQ(k, H), whose image
in BQ(k, H) determines the action of Aut(H) on BQ(k, H) cf. [9, Theorem 4.11] We
know that if M is a faithfully projective Yetter-Drinfel’d H-module, then Endg(M) is
an H-Azumaya Y D H-module algebra which representsthe trivial element in BQ(k, H).
However, if M isaaleft H-module and aright H-comodule, but not a’Y D H-module, it
may still happen that Endg(M) isa YD H-module algebra.

Take anon-trivial Hopf algebraisomorphism o € Aut(H). We define aleft H-module
and right H-comodule H,, as follows. As a k-module H,, = H; we give H,, the obvious
H-comodule structure A, and an H-module structure as follows:

(3) h-x= Z O((h(g))Xgl(h(l))

forh € H, x € H,. Since « is nhontrivial H, isnot aYD H-module. Let A, = End(H,,)
with the induced H-structures given by (1) and (2).

LEMMA 1 [9, 4.6, 4.7]. If H is a faithfully projective Hopf algebra and « is a
Hopf algebra automor phism of H, then A, is an Azumaya Y D-module algebra and the
following map defines a group homomor phism:

T AUt(H) — BQ(.H), o+ [A,].

In the sequel, we will compute the kernel of the map 7. Let D(H) denotethe Drinfel’d
double of Hopf algebra H. Let A be an H-module algebra. Recall from [4] that the
H-action on Ais said to be strongly inner if thereis an algebramap f: H — A such that

h-a=> f(hy)af(Shp). acA heH.

https://doi.org/10.4153/CMB-1998-048-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-048-8

362 F. VAN OYSTAEYEN AND Y. ZHANG

LEMMA 2. Let M bea faithfully projective k-module. Supposethat End(M) isa D(H)-
Azumaya algebra. Then [End(M)] = 1in BM (k. D(H)) if and only if the D(H)-action on
Aisstrongly inner.

PROOF. Suppose that the D(H)-action on A is strongly inner. There is algebra map
f:D(H) — Asuchthatt-a= Zf(t(l))af(S(t(z))), t € D(H),a € A. This inner action
yields a D(H)-module structure on M given by

t—m=f(t)(m). teD(H). meM.

Since f is an algebra map the above action does define a module structure. Now it is
a straightforward check that the D(H)-module structure on A is exactly induced by the
D(H)-modulestructureon M defined above. By definition[End(M)] = 1inBM (k, D(H)).
Conversdly, if [A = End(M)] = 1, then there exists a faithfully projective D(H)-
module N such that A =~ End(N) as D(H)-module algebras by [9, 2.11]. Now D(H) acts
strongly innerly on End(N). Let u: D(H) — End(N) be the algebra map. Now one may
easily verify that the strongly inner action induced by the composite algebra map:

: D(H) —— End(N) ~ A

exactly definesthe D(H)-module structure on A. ]

LEMMA 3. For afaithfully projective k-module M, let u, w: H — End(M) define H-
module structureson M, call them M, and M,,. If End(M,) = End(M,,) asleft H-modules
via (1), then (w o §) * uis an algebra map from H to k, i.e. a grouplike element in H*.
Smilarly, if M admits two H-comodul e structures p, x such that the induced H-comodule
structureson End(M) via (2) are same, then thereis a grouplike element g € G(H) such
that y = (1 ® g)p.

ProOF. Foranyme M, h e H, ¢ € End(M,) = End(M,,),

> u(hay) [é[u(s(h@)))(m)]] =" wlh) [dﬁ w(Sthe)) (m)H-
or equivalently,

> w(Shw)) [U(h(Z))(¢[U(S(h(3)))(m)})] = ¢(w(5(h))(m))-

Let ) = (woS)*u: H — End(M) with convolutioninverse (uoS)+w. Letting m = u(h))(X)
for any x € H in the equation above, we obtain A(h) € Z(End(M)) = k for all h € H.
Since u, w are algebramaps, it is easy to seethat A is an algebramap from H to k. ]

Given a group-like element g € G(H), g induces an inner Hopf automorphism of H
denoted by g, i.e., g(h) = g~*hg, h € H. Similarly, if A isagroup-likeelement of H*, then
) induces a Hopf automorphism of H, denoted by A where A(h) = > A(ha)h A~ (hg),
h € H. Since G(D(H)) = G(H*) x G(H) (cf. [15, Proposition 9]) and g commutes with
A in Aut(H), we have a homomorphism 6:

G(D(H)) — Aut(H). A x g— 9.
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Let K(H) denote the subgroup of G(D(H)) consisting of elements
{A x g| g~ i(h) = A(h).Vh € H}.
LEMMA 4. Let H beafaithfully projective Hopf algebra. Then K(H) = G(D(H)").
PROOF. By [15, Proposition 10], an element g @ X is in G(D(H)*) if and only if
g € G(H), A € G(H*) and g, A satisfy the identity:
gA—hy=(h—2xg,. VYheH,
where, A — h=3% h(l))\(h(z)) andh— =% h(z))\(h(l)). Letg € G(H), A € G(H*), for
any h € H, we have
2= 9hA(he) = 30 AMha)heg <= - hyA(he)
= 3 Mha)g g <= > A (ha)heA(he) = > g 'hg.
Thismeansg @ A isin G(D(H)*) iff g x A € K(H). ThereforeK(H) = G(D(H)*). =
Now we are able to prove the main theorem.
THEOREM 5. Let H be a faithfully projective Hopf algebra over k. The following
seguenceis exact:

4 1 — G(D(H)") — G(D(H)) —— Aut(H) —— BQ(k. H).

where (o) = A, = End(H,-1).

PrROCF. It is aroutine verification that Ker(d) = K(H). Suppose that [A,] = 1. By
Lemma 2, the D(H)-action on A,, induced by the H-structures of H,, is strongly inner.
Denote by 1, the algebramap from D(H) into A, which givesthe strongly inner action on
A,. Taking into account the restriction to H of 1, we have an algebramap py: H — A,.
We may use iy to define an H-module structure on H,, given by

h— x=pug(h)(X), x€HyheH.

It is obvious that the induced (strongly inner) H-actions on A, by — and - (see (3))
coincide. By Lemma 3, there exists a group-like element A € H* such that

(5) h—x= Z )\(h(z))h(l) X, heH, xeH,.

Similarly, let uy-» be the algebramap . restricted to H*“® and denote the H**P-action
onH, by
p— X= ppen(p)(). P EHP. xeH,.

Then there exists a group-like element g € H such that

(6) P—X= pw(@)Pe - X= Y POX2)X)-
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Since A, is a D(H)-module algebra and the D(H)-action is strongly inner, by Lemma 2
the algebramap i givesH,, a D(H)-module structure. Let p € H*, h € H. We have

pah =" (e b hi) (P > 1)(p)- b)) (PE- S (hw))-

Let both sides of the above equality act on element x € H,, then we obtain the identity:

p— (h—X) =Y hg — (P — X)(Pw- he)(Pe, S (hy)-

Now applying relations (5), (6), we obtain

@) p— (h—x) =3 (pw.9Pa - (AMh)hw - X)

® = 2 Mh@) (P 9P - (a(h2)xS (hw))-
On the other hand,

©) > he — (P — ¥ (Pw- he)(PE- S (hy)

(10) =3 Mha)(P@). 9)(Pw- he) (Pay: S (ha)) (P X2)
(11) a(h@)XnS (he)

(12) =3 Mh@)(p. hydx2S (hw))he - X

Now let € act on (8) and (12), then we obtain:

>-(p. gah@)A(h)xS H(hw)) = 25(P. Alha)hmgxSH(hw))-
for h € H, p € H*. Sincep is arbitrary, we get:
(13) Zgoc(h(z)))\(h(g))xs_l(h(l)) => A(h(g))h(g)gxgl(h(l)). h e H.
Letx =1in (13). We obtain
> ga(ha)A(he) = Y galhe)A(hw)S (he)ha

= 3" Ah)heaS *(ha)ha
= > Mhw)heg

Thus we have

a(h) = > g A H(hg)gMhe)a(h)
= zgflxl(h(s))k(h(l))h(Z)g
= gA(h) .

As a consequence of the theorem, we obtain the Deegan-Caenepeel’s embedding
theorem for a commutative and cocommutative Hopf algebracf. [6, 10].
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COROLLARY 6. Let H be a faithfully projective Hopf algebra such that G(H) and
G(H*) are contained in the centersof H and H* respectively. Then the map 7 in sequence
(4) isamonomorphism. In particular, if H isa commutative and cocommutativefaithfully
projective Hopf algebra over k, then Aut(H) can be embedded into BQ(k. H).

PROOF. Inthis case, G(D(H)*) = G(D(H)). It follows that the morphism ¢ is trivial,
and hence the morphism 7 is a monomorphism. n

Now an interesting question arises: Is H commutative and cocommutative if G(H)
and G(H*) arein the centers of H and H* respectively?

In the following, we present two examples of the exact sequence (4). It will follow
that the Brauer group of a Hopf algebra need not be a torsion group like the classical
Brauer group.

ExAMPLE 7. Let H be the Sweedler Hopf algebra over a field k. That is, H =
k(g.x)/(g? = 1,x2 = 0,gx = —xg) with comultiplication given by

Ag=9g®9 AX)=x@g+lox

H is a self-dual Hopf algebra, i.e,, H ~ H* as Hopf algebras. It is straightforward to
show that the Hopf automorphism group Aut(H) isisomorphic to k* = k\ Ovia

f e Aut(H), f(@ =g f(X=2zx, zek'.
Considering the group G(D(H)) of group-like elements, it is easy to see that
G(DH)) ={1xe.1xA\gXe.gx A} 27, X7,

where A = p; — pg, and p1, pg is the dual basis of 1, g. One may calculate that the kernel
of the map 6 isgiven by:

KH)={1xe,gx A} 2,

The image of 9 is {1.3} which corresponds to the subgroup {1.—1} of k*. Thus by
Theorem 5 we have an exact sequence:

1— 7, — 7y x 73 — K — BQ(k, H),

It follows that k* /Z, can be embedded into the Brauer group BQ(H). In particular, if
k = R, the real number field, then Br(R) = Z, ¢ BQ(R. H), and R*/Z; is anon-torsion
subgroup of BQ(R, H).

In the previous example, the subgroup k* / Z of the Brauer group BQ(k, H) is still an
abelian group. The next example showsthe general linear group GL (k) for any positive
number n may be embedded into the Brauer group BQ(k, H) of some finite dimensional
Hopf algebraH by modulo some finite group of roots of unit.
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ExAMPLE 8. Let m > 2, n be any positive numbers. Let H be the Radford’s Hopf
algebra of dimension m2™* over C (complex field) generated by g.x.1 < i < n such
that

g"=1, x%=0, X =-X0 XX =—XX.

The coalgebra structure A and the counit ¢ are given by
Ag=g®0, A=X%®09g+1®X, €@ =1 ¢€x)=0 1<i<n

By [16, Proposition 11], the Hopf automorphism group of H isGL (C). Now we compute
thegroup G(D(H)) and G(D(H)"). Itiseasy to seethat G(H) = (g) (seealso[16, p. 353])
isacyclic group of order 2m. Let wi, 1 <i < mbethe m-th roots of 1, and let ¢ be the
m-th roots of —1. Define the algebra mapsfrom H to C by

n(@) =wg. ni(x)=0, 1<i j<m
and
Ai(@) =¢g. M) =0, 1<i, j<m

One may check that {;. \i }[, is the group G(H*). It follows that G(D(H)) = G(H) x
G(H*) = (g) x U, where U isthe group of 2mth roots of 1. To compute G(D(H)") itis
enough to calculate K(H). Since

— _[id ifiiseven
" lo¢ ifiisodd
where ¢(g) = g, (%) = —x. 1 <j <n, and
(9 =9 M) =wix, 1<ij<n,
M@ =0 Nx)=¢x., 1<ij<n
one may easily obtain that
K(H) = {92i % 6_92i71 x . 1<i< m}
where ¢ isis given by
(@) =—9g. ¥(x)=0.

It follows that G(D(H)*) = U, Since the basefield is C, (g) = U, and we have an exact
sequence
1—U—UxU— GLy(C) — BQ(C, H).

The above two examples highlight the interest of the study of the Brauer group of a
Hopf algebra. In Example 8, even though the classic Brauer group Br(C) is trivial, the
Brauer group BQ(C, H) is still large enough.
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