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DICHOTOMIES FOR SYSTEMS WITH
DISCONTINUOUS COEFFICIENTS

RAUL NAULIN

In this work we are concerned with the problem of the existence of an exponential
dichotomy for the linear singularly perturbed system ex' = A(t)x, where the
matrix A(t) is piecewise uniformly continuous, that is, A(t) admits points of
discontinuity but is uniformly continuous in any interval where it is continuous.
We shall prove that the classical result regarding the existence of an exponential
dichotomy extends to this case, when there is a constant 7 > 0 such that |ReA(t)| ^
7 > 0 for any eigenvalue \(i) of A(t). The proofs are obtained by means of the
quasidiagonalisation of a non-constant matrix: For A(t), a piecewise uniformly
continuous matrix and a > 0 there exists a bounded, piecewise constant function
L{t): J -> C x n , and a bounded matrix A(t, <r) such that L-\t)A(t)L{t) =
A(t) + A(f, a), |A(t, tr)\ ^ a, where A(t) is the diagonal matrix consisting of
eigenvalues of A(t).

1. INTRODUCTION

In our work we are concerned with the existence of an exponential dichotomy for

the singularly perturbed system

(1) ex' = A(t)x.

By this, we mean the existence of a fundamental matrix $ of (1), constants K ^ 1 and

a > 0 not depending on e, a bound £o, and a projection matrix P (PP = P) such

that the estimates:

(2) l^jpr'wi.lfWtJ-pr'wl^e-c-)/.

are valid for t ^ 3 and c 6 (0, £0] •

For the "regular" system x' = A(t)x this problem has been intensively studied.

We refer in this case to the book [4].
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136 R. Naulin [2]

The linear singularly perturbed system (1) presents many interesting features. For

example if we use the fast scale a = e~1(t — to), t ^ to, then (1) takes the form

(y = dy/da)

(3) y = A(es + to)y.

Formally putting e — 0 in (3) we may "freeze" the time to obtain the system

(4) y = A(to)y.

The system (4) does not depend on e. The function eA^*°^' is a fundamental matrix of
(4) and it is shown in [5] that for t ^ to the function e^* 0 ^"*^" gives for small e, an
excellent approximation of the fundamental matrix X(t) {X(0) = I) of system (1). No
similar treatment is possible for the regular case. Thus, it seems that the problem of the
existence of an exponential dichotomy for the singularly perturbed case allows a special
approach. We will show that the continuity of A{t), a condition which is generally
required in the theory of exponential dichotomies, can in this case be removed, so that
points of discontinuities may be allowed in the function A(t). In what follows A(t) is
a bounded, piecewise uniformly continuous, (see below for the definition of a piecewise
uniformly continuous function) n x n matrix function of t with domain J — [0, 1],
J = (—oo, oo) or J = [0, oo). In this paper we prove results only for J = R , in
order to simplify the presentation. Such discontinuous matrices have been considered
in the papers [9, 7] concerning new formulations of the shadowing lemma. The classical
proof of the theorem regarding the existence of an exponential dichotomy, as given in
[4], consists of three steps: A transformation of the matrix A(t) into a block diagonal
matrix D, the existence of exponential dichotomy for the system ey' — Dy and the use
of the roughness theorem. The second step is accomplished by obtaining an estimate
of the exponential matrix e '*'* for a ^ 0. In our treatment we avoid this estimate.
Instead, we rely on ideas presented in [8], where the quasidiagonalisation of a time
varying matrix function is accomplished by means of a piecewise continuous function:
£- 1(t)v4(t)Z(t) = A(t) + A(t ) , where A(t) is a diagonal matrix and A is small. Our
work is a further development of this idea.

The existence of exponential dichotomies has been recognised as a fact of great
importance not only from a theoretical point of view. For example in [1] this concept
is applied to the boundary value problem ex' = A(t)z + f(t), Bay{a) + Bby{b) = B,
t G [a, b], and a close relation is established between the existence of an exponential
dichotomy for the homogeneous linear system and the well conditioning of boundary
value problems.
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2. DEFINITIONS AND BASIC FACTS

In what follows |x| is an arbitrary norm on C, and \A\ is the respective operator
norm. Throughout this paper P and Q denote the following orthogonal projections

(5) P =
k : 0

, Q=I-P

L 0 : 0 .

where Ik is the k X k unit matrix.

DEFINITION 1: The function A: J -> <Cnxn is called piecewise uniformly continu-
ous if and only if the following hold:

(1) A has a countable set T> = {.. .U, U+i, U+2, • • •} of discontinuities
(U < tj if i<j).

(2) There exists n > 0 such that \tt - tj\ ^ fj, for U ^ t,, U, tj eT>.
(3) Given e > 0, there exists 6(e) > 0 such that for all U £ V, s, t G

(U, ti+1), and \s - i\ < S(e) implies that \A(t) - A(s)\ < e.

DEFINITION 2: We say that the complex number u is less than the complex number
v if and only if Re u < Re v or Re u = Re v and Im u < Im v.

To denote that u is less than v we write u < v.

DEFINITION 3: We call the diagonal matrix A = diag{Ai, A2, . . . , An} lexico-
graphically ordered if and only if t < j implies Aj < A;- or Aj = A;-.

In the following we require the next result [2]:

THEOREM 4 . (quasidiagonalisation of a constant matrix). Let A be a. constant

matrix with complex elements. Then for any a > 0 there exists a non-singular matrix
Q, depending on <r, such that Q~1AQ = A + V, where A = diag{Ai, A2) . . . , An} is
the diagonal matrix of eigenvalues of A, lexicographically ordered, and \T\ ^ a.

3. QUASIDIAGONALISATION OF NON-CONSTANT MATRICES

We begin this section with a technical lemma:

LEMMA 5 . Let {/<, t £ £ } be a collection of finite closed intervals such that for
a fixed number a one has 1{U) ^ a (1{I) is the length of the interval I) for all i € C.
Then, given h with 0 < h < a, for any /,• there exists a number a,-, a number hi, and
an integer fc,- such that h/2 ^ hi ^ h, J< = [so, ai] U [«i, 82] U . . . U [jjb,--i, «!:,•] and
8i = Oi + i h i for i = 0 , 1 , ..., k , .

PROOF: Let /,• = [a*, &,], /(*) = *,-(fc/2) + fc, 0 < 0{ < h/2. Then /(/<) =
ki((h/2) + 6i/ki). Let us define hi := h/2+0i/ki a n d 3t = at+ihi, i = 0 , 1, . . . , * , - . D
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THEOREM 6 . If A(t) is piecewise uniformly continuous, \A(t)\ ^ M on J, then

for a number a > 0 there exists an h(a) > 0, a countable set U = {..., s,-, Sj+i, ^i+2 • • •}
C R and a finite collection T of non-singular matrices such that:

(1) V, the set of discontinuities of A, is contained in U;
(2) h/2^si+1 -Si ^h;

(3) for any interval (si, «i+i) there exists L G T such that Lj4(t)i~1 =
A(t) + A(t, tr), where A(t) is the diagonal matrix of eigenvalues of A(t),
lexicographically ordered, and |A(t, <r)\ ^ <r, for all t £ (s, s,-+i).

PROOF: Let us denote by B the set of nxn square matrices C such that \C\ ^ M.
B is a compact subset of C1*71. Let a > 0 be given. Then, according to Theorem 4, for
any C G B we can define a non-singular matrix L such that L~XCL = Ac + A, where
Ac is the diagonal matrix with the eigenvalues of C, lexicographically ordered, and A
is such that |A| < a/2. Therefore for D G B we can write: L~XDL - AD + Ac - AD +

L~X(D — C)L+A. This last identity shows, by virtue of the continuity of the eigenvalue
functions, that we can fix a real number r(a) > 0 such that L~1CL = Ap + A, with
|A| ^ a if \C — D\ ^ H"")- This means that every matrix D in the closed ball
B[C, r(a)) is (r-quasi diagonalisable by the same non-singular matrix L as in C. Now
using the compactness of B we can define a finite collection of matrices Cj, non-
singular matrices Lj, and radii Tj, j - 1, 2, . . . , such that B = U*=1(5[C;-, r,-]nS)
and L^CLj = AD + A, with |A| < a for any D G B[Cj, r,-]. We will denote by £ the
Lebesgue number of this covering, that is, for any subset AC. B with diameter d(A) =

Sup{|A - B\ : A, B 6 A} < £, there exists a ball B[Cj, rj] containing A. Finally we
let T = {Li, Li, ... Lk} • Let X> = { . . U, U+i, t<+2, . . .} be the set of discontinuities of
A(t) and /i > 0 the number which appears in the definition of the piecewise uniformly
continuous function A(t). Let /i be a number such that \t — a\ < h < ft implies
\A(t) — A(s)\ ^ £ for s, t G {ti, U+i) an interval of continuity of A(t). Now, if A(t) is
continuous on (-co, tj) then we define the numbers a,- = tj — i(h/2), i — 0, 1, 2 . . . ,
and we form the set IA by adding these points to the set V. We define an analogous
collection of points if A(t) is continuous on the interval (ti, oo) and add these to the
set U as well. For the set of finite intervals [U, tj+i] we add to U all the partitions of
these intervals indicated in Lemma 5. D

The above theorem proves that there exists a function L: J/U —* O*Xn which is
constant on (a;, «t+i) such that for all t G (««, «i+i), <i, a«+i G U, L~l(t)A(i)L(t) =

A(t) + A(f), |A(t)| ^ a, with a small.

4. EXPONENTIAL DICHOTOMIES FOR A LINEAR SINGULARLY

PERTURBED SYSTEM WITH NO DISCONTINUOUS COEFFICIENTS

Let us consider the singularly perturbed system (1) under the following conditions:
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(Cl) A(t): R - ^ C* x n is a piecewise uniformly continuous function and
\A(t)\ ^M, for all t e R .

(C2) There exists an integer Jb, 0 ^ Jb ̂  n , such that fc eigenvalues of A(t)

satisfy ReA(t) ^ —7, and n — k eigenvalues of A(t) satisfy ReA(<) ^
7 > 0, where 7 is a constant.

(C3) A(t) is almost everywhere differentiable on J, and |j4'(i)| is bounded on
J .

We will consider the solutions of the system ex' = A(t)x in a generalised sense,
that is, the solutions of this linear system must be absolutely continuous functions [6].
The following theorem can be proven just as in the case when A is a C 1 function (see
the proof of Proposition 1 of Chapter 6 in [4]).

THEOREM 7 . Let A(t) satisfy (Cl), (C2) and (C3). Then there exists an abso-
lutely continuous function matrix T(t) such that:

(1) T'1^) exists for all t € R;
(2) Ir
(3) \T
(4) the change of variable x — T{t)y reduces the system (1) to

(6) ey' = [D(t)-eT-\t)T'{t)]y

where D(t) = diag(Di(t), D2(t)), all the eigenvalues of Di(t) have neg-
ative real parts, and all eigenvalues of J?2(<) have positive real parts.

Given the system (6) we will prove that the system

(7) ez' = D(t)z

has an exponential dichotomy. We remark that (7) can be written as a decoupled system

(8) eu' = Di(*)u

(9) ev' = D2{t)v.

We denote by $1 and $2 the fundamental matrices of systems (8) and (9), with the

initial condition $i(0) = Ik, $2(0) = In-k-

THEOREM 8 . Let A(t) satisfy the conditions of Theorem 7. Then there exist an
Co > 0, and a constant H ^ 1 such that:

I S i W V W l , |*2(^)*2"1(<)| ^ He-**-"*', t > s.

PROOF: We shall prove this only for the system (8). According to Theorem 6
we define a function L(t), which is equal to a constant matrix £j+i on each interval

https://doi.org/10.1017/S0004972700037072 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037072


140 R. Naulin [6]

[si, Si+i]> •s,-, 8i+i (z U, where it quasidiagonalises the matrix Di(t). Let s < t,

a < so < JSI < . . . < sm ^ t, 30, 8!, ...smeU.

On the interval [s, so] we make the change of variable u = Loy, and the system

(8) takes the form

(10) ey' = (A(t) + A(t,<r))y.

In this case, the matrix solution Y(t) of this system with the condition Y(s) = I

satisfies: |y(ao)y-1(«)| < e'^-^'o-'i/' . This means that for the matrix solution *
of (8) with $(a) = J we have the estimate

Taking into account that the range of the function L(t) is finite, we can determine a
number K such that |£(t)| | i - 1 (<) | ^ K for any t. So we have

Let us make the change of variable u = L\y in the system (7) on the interval [so, *i].
Again we obtain a system of the form (9), and we solve it with the initial condition
y(a0) = i^"1$(s0)^~1('S)- In this case we obtain the estimate |Y"(a2)y~1(ao)| ^

e-(7-»)(*i-*o)/«_ For the matrix solution $ of system (8), with initial condition
$(so)^~1('S) we have the estimate:

l * ^ ! ) * - 1 ^ ) ! < \Li\ \L^\ e-^-'K'i—o>/« < ii-e-(T-"K'i-'o)A.

From these estimates we obtain |*(«i)*-1(«)| ^ K'e-^-"^'^-^/'. Repeating this
argument we find that

|*(0*~a(«)|

Now we observe that

^ K2 exp{(sm - so)(2/h)LnK} ^ K2 exp{{t - s){2/h)Ln K).

From this it follows that | $ ( t ) $ - » | ^ K2e-(y-*+'(.2/h)lnK)(t-.)/eP

This last inequality shows that if <r ̂  7/4, then for eo(2/h)LnK < 7/4, 0 < e < Co
and H = K2 , we obtain:

(11) ^ ( t ) * - 1 ^ ) ! ^ JT2
e-^*-)/4 e, t > 3.

Finally we note that (11) does not depend upon the fact that 3>(s) = I. D
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NOTE 1. Essentially, for a bounded, uniformly continuous coefficient matrix A(t) this

theorem is proved in [4].

NOTE 2. The above proof shows that the constants M, e0 are independent of the

jumps in the function A(t) at the points of discontinuity.

From Theorem 8 we obtain, relying on the roughness theorem for an exponential

dichotomy (see [4], Chapter 5), the following

THEOREM 9 . If 4e0M2 < f/36Ks then the system (6) has the exponential di-

chotomy:

^s)], \X{s)QX~l{t)\ < 12JJS exp{-(7 - 48JJ3M2e0)(< - s)/4e}

for 0 < e < Co and t ^ s.

From the second estimate given in Theorem 7, it follows that the existence of an

exponential dichotomy for (6) implies the existence of an exponential dichotomy for the

system (1).
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