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1. Introduction

About 14 years ago A. C. Zaanen [7] published a series of papers on com-
pact symmetrisable linear operators in Hilbert space. Four years later I
was encouraged by Dr. F. Smithies to study the spectral properties of general
symmetrisable operators in Hilbert space and the resulting research formed
the basis of part of a dissertation I submitted to the University of Cambridge
in 1952 [4]. For various personal reasons I have not previously been able to,
publish these results more widely, although I believe some of them, at least,
to be of general interest.

I propose to publish my work in three parts. The first part will be intro-
ductory in the sense that it will give a complete theory of symmetrisable
operators in unitary spaces. This will be followed by a brief discussion of the
way in which these results might generalise to Hilbert Space. A summary
of the main results of the general theory will complete this part. Part II
will give a rigorous discussion of symmetrisable operators in Hilbert space
with an eye to maximum generality. Part III will discuss operators symmet-
risable by bounded operators.

2. Notation and Definitions

We use standard Hilbert space notation as was used for instance by
v. Neumann [3]. As far as possible Greek letters will be used for scalars and
lower case letters for elements of the space, upper case letters for operators,
German capitals for sets, i.e. spaces, vector subspaces etc., but the vector
subspace spanned by the vectors (ga) will be denoted by [g,] if closed, {g,}
if not necessarily so. The null operator will be denoted by 0 and the identity
operator by / . An operator H is called Hermitian if its domain is dense
in §, and H C H*. A Hermitian operator is self-adjoint if H = H*. If H
is a non-negative self-adjoint operator, H^ or \/H will denote the positive
square root, i.e. (H^)2 = H, (H^x, x) ^ 0 (cf. Nagy [2]). Two vectors x, y
are called i/-orthogonal if (Hx, y) = (x, Hy) = 0. P^ will be used to denote

* While carrying out this work the author was supported first by a C.S.I.R. Studentship
and later by the Aeronautical Research Laboratories, Melbourne.
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382 J. P. O. Silberstein [2]

the orthogonal projector onto the smallest closed vector subspace containing
W. The symbol Wl1- will be used to denote the orthogonal complement of 2K
in the whole space. If X and $ are vector subspaces of 2JI we shall call ty
a vector complement of X in2K if every element / of 9JI has a unique represen-
tation / = x + y where x e. X and y e ?) and we then write 9K = X + ?).
(The definition implies that X and ?) only have the zero vector in common.)
Some special items of notation will be introduced in the text, notably in
Remarks 3.2 and 3.3.

We shall discuss linear operators A called symmetrisable because for some
non-negative Hermitian operator H the operator HA is Hermitian. Strictly
speaking this means that A is symmetrisable to the left. The theory of
operators symmetrisable to the right is strictly analogous by virtue of
lemma 3.7 and the properties of A*. For brevity we shall largely restrict
discussion to left symmetrisability.

In order to make the discussion non-trivial it is necessary to restrict the
nullspace of H because the operator OA is Hermitian for all operators A
with dense domain. The weakest feasible assumptions for H are therefore
that its domain ®H contain 1RA the range of A and

(i) for all x e

(2.1) (Hx, x) ^ 0

(ii) the closure 31A of the nullspace of A contains the nullspace 31H of H,
i.e.

(2.2) HA

In particular if A is closed

(2.3) Hx = 0 implies Ax = 0.

DEFINITION: Let A be an operator and H be a Hermitian operator such
that %H 3 'OUA and (2.1) and (2.2) are satisfied then A is symmetrisable to
the left (or the right) if HA (or AH) are Hermitian.

It is implied by the definition that the domain of A is dense in §.
The following general result will be used on several occasions and it is

therefore convenient to state it here as

LEMMA 2.1. Let A be a linear mapping of a vector space X into a vector
space $ . Let 8 be an index set, (x() t ' « 3 b e a set of vectors in X and {yt)
the set of vectors in )̂ defined by y{ = Axi for all * c 3L

(i) If the set (yf) is linearly independent so is the set (a;,).
(ii) If all vectors of the set (xt) belong to the vector subspace 3K, and 3JI

and 31A, the nullspace of A, only share the zerovector then if the set (x()
is linearly independent so is the set (yt).
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[3] Symmetrisable operators 383

(iii) If SCR is a finite dimensional vector subspace of X and 93Z and 31A
only share the zero vector then A (23?) = 93i' has the same dimension as 931.
We give simple proofs of these familiar facts:

(i) Suppose the set (xt) is linearly dependent; then for some finite index
set %C%:^j€%«.jxj = 0, a, ̂  0. It follows that 2 ^ 3 a i ^ = A 2>^•• = °
and the set (y{) is linearly dependent also; hence the result.

(ii) Suppose the set (x() is linearly independent but for some finite index
set $C3 and a, =£ 0 : 2^3«,-2/,- = 0; then A 2 ^x, = 0 so that ^^XJC^IA

and 2 <**** ^ 0. This is impossible if 931 n 9^ = [0].
(iii) If the set (y,), i e 8 is a basis in 93T then there exists a set (a:,), i e 8,

inSJi such that yi = Axt. By (i) the set (xt) is linearly independent so that
dimP) ^ dim(3Ji'). If (gt) j eg is a basis in 2R then since 9ft n %lA = [0]
the set (Agt) j e Q is a linearly independent set in M' so that dim(931) ^ dim
(93T) and so we must have dim(93J) = dim(2K')-

3. Symtnetrisable Operators in Unitary Spaces Un

The properties established in this section are properties which, with one
exception, generalise to Hilbert space with only minor obvious modifica-
tions. The proofs of these properties are all on standard lines and very simple.
However, since they carry over to the general case many of them are given
to be used again later. The account of this subject given in Zaanen [8] is in
a different spirit, though many results will be found there.

Throughout this section (2.2) and (2.3) are of course equivalent.
The fundamental spectral properties are given in theorems 3.1, 3.2 and

3.3. They rely on the following

LEMMA 3.1. If A is symmetrisable by H so is Av for p — 2, 3, • • •.
Also for all real X : [H{A - A/)8]* = H(A - U)« for q = 1, 2, • • •.

PROOF. For any x, y in Ufl

{HA'x, y) = (A>-lx, HAy) = (HA^x, Ay).

This process can be continued until eventually one obtains

(HA*x,y) = (x.HA'y).

Since the nullspace of A" contains the nullspace of A, condition (2.3) is
also satisfied.

For any real X

(H(A - XJ)x, y) = (HAx, y) - X{Hx, y)

= (x, HAy) - (x, HXy)

== (x.H(A-U)y).
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By replacing A by (A — XI) in the first part of the proof the lemma is
established.

We can now prove

THEOREM 3.1. Any symmetrisable operator A has the following proper-
ties:

(i) all eigenvalues are real, i.e. Ax = Xx for x ^ 0 implies A = A\
(ii) all non-zero eigenvalues are of index 1, i.e. if A ^ 0 and (A — XI)vy = 0

for p > 1 then

(A - XI)y = 0.

(iii) 0 is an eigenvalue of index 2 at most, i.e. A"y = 0 for some q ^ 2
implies HAy = 0 which implies A2y = 0 which implies iL4y = 0.

(iv) Eigenvectors belonging to different eigenvalues are ^-orthogonal.
The principal vectors are /f-orthogonal to the eigenvectors with nonzero
eigenvalues.

REMARK 3.1. The fact that an eigenvalue is of index 1 does not prevent
it from being repeated.

We call y a principal vector with principal value A if (A — U)vy = 0
for some /> greater than 1 but (A — XI) y =fc 0.

PROOF. TO prove (i) we need only consider nonzero eigenvalues. Then if x
is an eigenvector corresponding to A

(HAx, x) = X{Hx, x) = •= (Hx, Ax) = •= {HAx, x).

Hence A = X, since (Hx, x) =£ 0 by (2.3).
Now let (A4) be the set of eigenvalues and (a;,) a set of corresponding

eigenvectors. Suppose part (ii) of the theorem not true, then for some A ^ 0
and y and p ^ 2

(A - Xiyy = 0

but

Hence a; is an eigenvector with eigenvalue A and A is therefore real. Without
loss of generality we can take x to be x( with eigenvalue A,. Then clearly,
using Lemma 3.1

= (H(A - Xtiy-ty, {A - XtI)xt)

= 0.

Thus VHxt = 0 and hence ifo, = 0 and therefore by (2.3) Axt = 0. Since
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A(=£ 0 this implies x( = 0, i.e. (A — XI)9~1y = 0. This argument can now
be repeated recursively for p — 1, p — 2, • • •, 2 to prove assertion (ii).

The assertion (iii) follows from the fact that for p S: 3

A*y = 0 => (HA2A»-2y, A*~*y) = 0 => y/HA*~ly = 0 => HA'^y = 0

=> {HA*A»-*y, A'-ty) = 0 => HA»-2y = 0 => A'^y = 0.

This argument can be continued until p = 3. For p = 2 the first four steps
of the argument are valid with A0 — I; they lead to

= 0 =*• -v/^-^y = 0 => /L4t/ = 0.

The proof of (iii) is completed by appeal to condition (2.3).
To prove (iv) we first suppose xlt x2 to be eigenvectors with eigenvalues

Ax and A2 respectively. Then

{HAxx, xz) = (xlt HAx2)
and hence

X1{Hx1, xt) = X2(xlt Hx2) =

and hence if Ax ^ X2 then [Hxx, x2) = 0 as required.
We have shown that A has at most 1 principal value, namely 0. Then

should a principal vector y exist we have for any eigenvector x with nonzero
eigenvalue A

(HAx, y) = X(Hx, y) = (x, HAy) = 0

by (iii). Since X =£ 0 it follows that (Hx, y) = 0. Q.E.D.
It is important to realise that the eigenvalue zero may not be of index 1.

This can be seen by considering the example

-ca
REMARK 3.2. We partition the nullspace of A into two vector subspaces

Q = WA n $tA and SB so that 9lA = 8 4- SS. Let sequences (zt) (t = 1, 2,
• • • r) and (wt) (j — 1, 2, • • •, q) be bases in Q and SB respectively. Further
let £) be a complement of SJk in 9i^t. Now clearly y e f) implies .4y e 3 s o

that A (D) C 8- Also since 8 C 9ta we have for every z c Q at least one
x e 31A* such that Ax = z. However by the unique decomposition x = y -\- y'
where y e $ and y' e 31A it follows that Ay = z so that A ($) D 8 which proves
4̂ ($) = 8- By lemma 2.1 it follows that 8 and Sf) have the same dimension

and for every basis (z{) in 8 there is a basis (y<) in ?) such that Ay( = z{.
Assertion (iii) of theorem 3.1 implies that 8 C 3?H- The following lemma

proves that for all symmetrisable operators we have symmetrising operators
with 31H = 8-
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LEMMA 3.2. (i) If A is symmetrisable by H then there exists a symmetri-
ing operator H1 whose nullspace 91H1 is 31A n 9^ .

(ii) 9^« = Sli.yiA = SRi*where9tJ[, 3lJ[» are the orthogonal complements
of dtA and 91A* respectively.

PROOF. Let PSR-̂  be the projector onto the orthogonal complement of IRA-

We prove that Ht = H + -P^i satisfies the requirements of the lemma.
We prove the statements in reverse order.

(ii) is well known but referred to again later and a brief demonstration
is therefore included.

For all / and g we have

(f,A*g)=(Af,g).

Hence if g is a nullvector of A*, i.e. A*g = 0 then (Af, g) = 0 for all /,
i.e. g is orthogonal to 9U so that $lA* C 9l£. Again if g is orthogonal to IRA
the RHS of the above equation vanishes so for all / we conclude (/, A*g) = 0
which implies A*g = 0 or Sft̂  C 9î « so that 31A* = S î- The second state-
ment follows analogously.

(i) Now for every w e 28 and all / € Un

0 = (/, HAw) = (HAf, w) = (/, A*Hw)

so that HWC31A* and thus by (ii) Hw e R^.
The operator Hx = H -\- Pgj-̂  is clearly Hermitian and since for all / € Un

it is non-negative and 31H 1 C 31H • Also

(JM/,/) = (HAf.f) = (/
so that / / 1 is a symmetrising operator. It therefore follows that Sftj/, 3 $•
Now suppose w is any nonzero vector of SB then Hxw = 0 would imply

0 = {Hxw, w) = (Hw, w) -\- (PAW, W)

and this would mean

since H is non-negative; this would mean w e SR̂  which is impossible if
ze> e SB. Hence i ^ / = 0 implies f e Q OT QD %IH1 which leads to Sftĵ  = 3 a s

required.
Our next aim is to use eigenvectors and principal vectors to define a

basis in Un. We start by proving the simple

LEMMA 3.3. (i) if-orthogonal vectors not in the nullspace of H are linear-
ly independent.
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(ii) If 2ft, 31 are two vector subspaces such that 2ft D 31 and 2ft n 3lH = {0}
(i.e. the zero vector is the only vector common to 2ft and 31H) then the
//-orthogonal vector complement of 31 in 2ft is unique.

Let (*!, a;2» " ' '» xm) De a s e t °f ^-orthogonal vectors such that Hx{ =£ 0
for i — 1, 2, • • •, m. Then suppose the set linearly dependent, i.e. 2«ia;< = 0
for some sequence (a4) such that not all a< vanish. Thus

{Hxt, 2 a,*,) = 0 for / = 1, 2, • • •, m.

But this means OL^HXJ , xs) = 0 for each / and hence a, = 0 for / = 1, 2, • • •,
m contrary to hypothesis.

To prove (ii) we have to show that every / e 2ft has a unique resolution
f = g -\- h where g e 9i and h is if-orthogonal to 5ft. Suppose there are two

Then

£ - & = *i - *
and

! - h), h1-h) = (H(g - gl), K ~

= 0

since g — gx e 5ft. Since hx — h e 2ft it now follows by hypothesis that h = hx

and hence g = glm Q.E.D.
It is now convenient to introduce some further notation which will be

adhered to for the rest of this paper.

REMARK 3.3. Let A be a symmetrisable operator. We associate with it
four subspaces. Let X denote the vector subspace determined by the eigen-
vectors with nonzero eigenvalues. Let, as before, 3 denote the intersection
of the range ^RA and the nullspace 31A of A and SB its orthogonal vector
complement in 31A . For $ we choose the #-orthogonal vector complement
of 38 in A~X(Q) n Q^-, i.e. the set of vectors y such that Ay e 3» and (Hy, w)
= 0, (y, z) = 0 all w e 28, z e Q. We assume here, just as we do in the sequel
without explicit reference to it that 31H = 8-

The Schmidt orthogonalisation procedure can clearly be generalised to
//-orthogonalise any bases in vector subspaces of principal vectors and
eigenvectors with equal eigenvalues.* Then let 1 ^ i' <^ p, 1 ^ / 5S q,
1 ^ k ^ r and

(#,) be an ff-orthogonal basis in X (i.e. a complete .ff-orthogonal set of
eigenvectors with eigenvalues A, other than 0.)

* The procedure would break down in 3 but any basis in 3 is automatically H-orthogonal.
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(Wj) be an //-orthogonal basis in 325 (i.e. a complete //-orthogonal set of
eigenvectors with eigenvalue 0 and orthogonal to 3}jn9}i.)

(y^) be an //-orthogonal basis in 2) (i.e. a complete //-orthogonal set of
principal vectors //-orthogonal to SB and orthogonal to Q = 3lA n 5Rx-)

(zk) be the basis in Q defined by zk = Ayk. (The zk are eigenvectors with
zero eigenvalue but in the range of A.) Then the set

( g . ) = ( * i > • • • , x P , w l l - • • , w Q , y 1 , • • • , y r , z 1 , • • •, z r )

where s = 1, 2, • • •, p + q + 2r and g, = x,(l ^ s <^p), g,= ws-v{P + 1
^ s ^ P + q), g, = y.-.-.iP + q + l ^ s ^ p + q + r), g, = z_p_^r

(P + ? + r + 1 = s ^ P + 9 + 2?") is called a complete //-orthogonal
system of eigenvectors and principal vectors. The vectors (g,) are linearly
independent for the following reasons: (1) the set (fo), (iff), (y*)) satisfies
the conditions of lemma 3.3. (2) For the set (zk) we may argue as follows:
(zk) not independent of the other (g,) if there exist sequences of complex
numbers (a*), (/?,) not all zero and such that

z = 2 «*** = 2
i i

but then since A2z = 0

0 = 2*?/*.*,
i

so that /?! = /?2 = • • • = /fj, = 0.
Also since Az = 0 it follows that

jH-J+r

K+a+1

Since zk = ^4yfc this would imply 2*=i&>+«+*y* belongs to 3t^ which is
impossible unless all j3t = 0 since 9^ and $ are vector complements in
31A*- The same argument shows that 2a*** = ^ 2 " * ^ * = ^ implies afc = 0
for all k. Hence (zk) is a linearly independent set, linearly independent of
(a;,) and (yk) and by definition also linearly independent of (w}). We con-
clude therefore that the vector subspace ©, say, spanned by the (g,) has
dimension p -{- q -\- 2r.

It is a fact well known for finite dimensional vector spaces that p + q +
2r = n (n the dimension of ttn). Since it is our aim to use geometrical con-
cepts wherever possible we shall give an independent proof of

LEMMA 3.4. The set (g,) forms a basis in ltB.
We prove this by showing that if (g,) is not a basis in Un then Un is infinite

dimensional.
Suppose (g,) not a basis so that p + q + 2r < n. Then there exists a
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vector / / 0 orthogonal to 'JRH and //-orthogonal to ® the subspace spanned
by the (gs). Further for some vector ht which can be taken as orthogonal to
%IH and //-orthogonal to the vectors g, and / and for certain numbers

Y\i>

o r r

+1 Yuwi + 2 <W* + 2= M + K +

But since {HAf, xt) = *<(#/, *,) = 0, (HAf, w,) = 0 and (HAf, yk) = 0
and {Hxu xt) ^ 0, {Hwit w,) ^ 0, (Hyk, yk) / O w e must have /9H = 0,
7u = 0. *i* = Ofor* = 1, 2, • • •, ^, / = 1, 2, • • •, q, k = 1, 2, • • •, r. There-
fore we either have

and
A*f =

or /3X / 0 in which case we put

(3-1) /i =

and then

2 ^
*=i Pi

In either case if hx were the zero vector fx or / would be an eigenvector or
principal vector contrary to assumption that (g,) a complete system of
eigenvectors and principal vectors. We must conclude that hx / 0. We put
f1 = fiff}1 = 0 and otherwise use the definition (3.1). Again there will
exist an h2 //-orthogonal to the set (g,) and fx and hx and orthogonal to 91H
such that

Aht = pj*x + h2 + a21/x + 2*72***

where a 2 1 = {Hh1,hl)l{Hf,f)> 0. We now put / , = *i + 55(Wi9i)** i f

/S8^ 0 and /2 = Ax if /S2 = 0 so that for some z<2> e 3 = 9fo

where of course z(2) = 0 unless /?2 = 0.
Now we have that if h2 = 0

so that if we choose for a one of the roots of

a2a21 + a(& - /32) - 1 = 0

we obtain writing X = (lx + aa21
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A {k + a/,) = X{h + a/,) + 2(1) + «<«.

Clearly if A = 0 then fx + a/2 is a principal vector or an eigenvector and if
A ^ 0, f1 + a/2 + A-1(.z(1) + az(2)) is an eigenvector contrary to hypothesis.
We conclude that h2 ^ 0. Again for some h3 which is //-orthogonal to
lg,>fi.h>h2] a n d orthogonal to 9lH

(3.2) Ah, = ptht + hs + ctaafa + 2,y»k*k-

We note that {HAh2, fx) == (ffA2, ft^ + AJ = 0 by the definition of h2

and hence ft does not appear on the RHS of (3.2); also a32 = (Hh2, A2)/
(if/a, /2) > 0. Again when /S3 not zero we remove the term in 91H by putting
f3 = A2 + ^fl3klP3zk'> otherwise /3 = A2. It is now clear that we are recursi-
vely defining an /f-orthogonal set of vectors f1, f2, • • •, ft, • • • in a vector
complement of 31H for which

(3-3) Aft = ptft + a , ,^ /^ + ft+1 + z<"

where a10 = 0, at_ t_x > 0 for t > 1 and z{t) is some vector in 31H and possibly
the zero vector. If ft+1 = 0 for some t then for the vector/ = '%=1&rfT with

« r = [ ( ^ — / 3 r - l ) « r - l — « r - 2 ] / a r , r - l f = 3 , 4 , • • • , * ,

where A is a solution of the polynomial equation

(ft - A)ocf + «,_! = 0

it is easy to verify that

Af=Xf+z
where z is an element of 9ZH. It follows that either A # 0 and / + A"1 z is an
eigenvector, or / i s an eigenvector or principal vector depending on whether z
is the zero vector or not. Neither of these possibilities is consistent with
the hypothesis regarding the set (g,). Hence ft+x =£ 0 however large t which
is only possible if ltn is infinite dimensional.

REMARK. The above construction can, of course, be used to determine the
eigenvalues and eigenvectors of A starting not with the set (gs) but with
an arbitrary vector. (Cf. Silberstein [5]).

The properties of A * are closely related to the properties of A as can be
seen from the following lemmas

LEMMA 3.5

(i) If A is an eigenvalue of A it is an eigenvalue of A*.
(ii) The range of A* contains the vector subspace
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[Hxx, Ha*, • • •, Hxv, Hylt---, Hyr] i.e. H(3L + ?)).

(iii) A complete set of eigenvectors and principal vectors of A* is given by
{Hx{, Huij, Hyk) and (uk) respectively where * = 1, 2, • • • ,p, j = 1, 2, • • •,
q, k = 1, 2, • • •, r and uk = A*~1Hyk, A*-1 being a "minimal inverse"
defined in the proof (Equations (3.6) and (3.7)).

(iv) The eigenvalues corresponding to Hxit Hwjt Hyk are A,-, 0, 0 respec-
tively. A*iuk = A*Hyk = 0, i.e. uk is a principal vector of index 2 with
principal value 0.

PROOF.

(i) follows from the fact that A is real and the eigenvalues of A* are, of
course, A. (A simple "geometrical" proof of the relationship between eigen-
values of A and A* is as follows:

For all / e Un and any eigenvector g with eigenvalue A

0 = {(A - XI)g, f) = {g, {A* - Xl)f)

hence g is orthogonal to the range of A * — XI. Hence this range has dimen-
sion (n — 1) at most. Then if (f{) (i = 1, 2, • • •, n) be a basis in ttB the set of
n vectors (̂ 4* — A7)/j must be linearly dependent, i.e. for some non-null
sequence (at): 2a<(^* ~^)f< = -̂ This however means J a ^ is a n eigen-
vector with eigenvalue I.)

(ii) By statement (ii) of lemma 3.2 ^RA* is the orthogonal complement of
VIA. By Remark (3.3) X, $ are if-orthogonal to MA which means Hxit Hyk

are orthogonal to 31A for all i, k as required. To prove (iii) and (iv) we note
first that for all / e Un and with A, denoting the eigenvalue or principal
value of the eigenvector or principal vector ga

0 = (H(A - XJ)gt, f) = g., (H(A - A,/) /) = ((A*- XJ)Hgt, f)

and hence Hgs is an eigenvector unless it is a zero vector, which means
g, e Q. Again the set (Hga) where 1-^.s^p + q + ris linearly independent
since 2r f * f r a f #g i = 0 implies H 2 «sg, = 0 or Jt*TOLsgs e Q which by
the linear independence of the ga means a, = 0 for all s.

The set (Hyk) is linearly independent and by (ii) every Hyk is in the range
of A* so that for k = 1, 2, • • •, r there exists at least one uk for each Hyk

such that

(3.4) A*uk = Hyk.

Since for all /« Un(A**uk, f) = (A*Hyk, /) = {yk,HAf) = (HAyk, f) = 0,
uk is a principal vector with index 2. The uk are so far only defined to
within an arbitrary vector in the nullspace of A*. However, A* is single-
valued and {Hyk) is linearly independent so that if (uk) is a set of vectors
satisfying (3.4) then by Lemma 2.1 they form a linearly independent set.
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We proceed to prove that the set (Hg,; uk) (s = 1, • • •, p + q + r,
k = 1, • • •, r) is linearly independent. Suppose

p+a+r r

i i

for some (a,), (/?*) not all zero. Then

(3.5) A*(£x,Hg, + 2/?*«*) = 2 «.A*Hg, + 2fikHyk = 0

but this means

(3.6) 2*,l,Hx, + 2P*Hyk = 0
I . l

which is impossible since the Hx( and Hyk are linearly independent. Hence
the set (Hg,, uk) is a set of n linearly independent vectors and therefore a
basis in UB. Furthermore (3.5) and (3.6) then implies that 31A* , the null-
space of A*, is spanned by the (Hws, Hyk). It follows that IRA, has p + r
dimensions so that H(£ + $) = &i«. We define A*'1 as a mapping of
91,4. into Un as follows. Consider the restriction of A* to H(£) + II where U
is the r-dimensional orthogonal complement of X + ?) + SB- Then A*
maps H(£) onto H(X) and U onto H(^) ih a one-one manner because clearly
H(£) reduces A* since A*(Hxt) = XiHxi and for any u e XL there exists some
r e S , ye?) such that

A*u = «Hx

and

but by Remark 3.3 (Hy, x) = 0 and (A*u, x) = (u, Ax) = 0 since Ax e X
so that a = 0, A*ue #(?)). Explicitly ^4*-1 is defined on its domain
MA. by

^-Mff*,) = X?Hxt (i = 1, 2, • • -, £)

where if «J is any solution of ̂ 4*«J = Hyk then

i=i {HWj.Wf) m (Hym,ym)

We introduce further notation

REMARK 3.4. The eigenvectors and principal vectors of A* as described
in lemma 3.5 will be denoted by

xf = Hxit wf = Hwjt y% — Hyk, zj = uk (thus A*z% = yt)
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and collectively they will be referred to as (g*), i.e. (g*) is a complete system
of eigenvectors and principal vectors of A*.

LEMMA 3.6. If (g,) is any complete //-orthogonal system of eigenvectors
and principal vectors of A and (g*) the set of vectors defined in Remark 3.4
then (g,) and (g*) are bi-orthogonal sets. By choosing a suitably normalised
set (gs) the (g,) and (g*) are complete bi-orthonormal systems in UB.

By Remark 3.3 x* = Hxt is orthogonal to all g, ^ x( since (g,) an H-
orthogonal set; similarly w* is orthogonal to all g, ^ wt and y* is orthogonal
to all g, ^ yk. By the definition of uk (equation (3.7)) we have since z* — uk

Also

(z*. xt) = tf{z*, Axt) = tf(A*z*, xt) = KHyt, xt) = 0.
Finally

(3.8) (*•, zn) = (z*. Aym) = (A*z*. ym) = (j/*( ym).

Hence by the orthogonality properties of y* and yk we have

(z*, zm) = 0 unless k = m.

The normalisation of the systems is best carried out by modifying the
set (g,). Since (Hg,, g,) ^ 0 for 1 £S s ^ £ + q -\- r we can replace g, by

and then (gi*, ĝ ) = (flg£, gi) = 1 for s = 1, -• -,p + q + r. On defining
4 = ^ i . z** = ztlViHVu. Vk) it follows from (3.8) that (z'k*, z'k) = 1 also.
Hence the sets (g,) and (g*) can, without loss of generality, be taken to be
bi-orthonormal.

We have given a complete account of the spectral properties of operators
that are symmetrisable to the left and of their adjoints. Provided right
symmetrisability is defined with a suitable restriction on the nullspace of H,
the operators symmetrisable to the right are seen to have analogous proper-
ties to operators symmetrisable to the left by virtue of the following

LEMMA 3.7 (i) If A is symmetrisable to the left (right) by a positive
Hermitian operator H then A* is symmetrisable to the right (left) by the
same operator.

(ii) If A is symmetrisable to the left with 9fo = 3lA n VtA then A*H is
Hermitian and 91H = 31%+ n Sti,, and conversely.

(iii) If A is such that AH is Hermitian and 3lH C 3lA then we can take
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fflH = [0] and A is symmetrisable to the right and A* is symmetrisable to
the left.

PROOF. In the first place we have that if for all /, g in

(3.9) (HAf,g) = (f,HAg) then {f,A*Hg) = {A*Hf,g)

or if

(3.10) (AHf, g) = (/, AHg) then (/, HA*g) = (HA*f, g)

and conversely. Hence it is merely a matter of discussing SSIH-

(i) Since 9lH = [0] the result is immediate.
(ii) This is the standard case dealt with previously and the definition of

%IH in terms of 31A* and 3 ^ . follows from lemma 3.2.
(iii) By hypothesis we have for all /, g

If we replace H by Hx = H + P3lH which is clearly positive then since
31H C 31A we have AH = AHX\ thus AH1 is Hermitian and (3.10) gives the
required result.

To complete this section we investigate the following question: given that
an operator A has only real eigenvalues, that all nonzero eigenvalues are of
index 1 and that zero eigenvalues are of index 2 at most, is A always sym-
metrisable by an H satisfying (2.1) and (2.3)? The answer is in the affirma-
tive and relies on the following

LEMMA 3.8. Let K be the transformation which transforms every / =
into /* = ^fyji* • Then if (h,), (h*) are any complete bi-orthonormal systems,
K is a Hermitian positive definite linear transformation. If some of the h*
in the definition of K are replaced by the zero vector, K will be Hermitian
non-negative.

The reader will very easily verify the statements in this lemma. We show
that the K described above symmetrises A for particular sets (h8), (h*).
Let (g,) (g*) denote a complete bi-orthonormal system of eigenvectors and
principal vectors of A and A* as described for instance in lemma 3.6.
Then for any / e Un

Hence for K defined as in lemma 3.8 with h, = g, and h* = gf for s = 1, 2
• • •, n and any f,g in un
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(KAf, g) = X Xt(x*. g) (/, x*) + i (z*. g) (/, y*)

Hence if the subspace $ = M is empty then K symmetrises A. If on the
other hand r ^ 0 then the symmetrisation is achieved by the non-negative
operator H which maps gs on g* except for the elements of the set (zk) which
are mapped on the zero element.

Finally we consider the positive Hermitian operator K1(= K~x) which
maps ^ysg* on 2y ,g , . We find

(AKJ, g) = (AKt 2 (/, gs)g*, g) = (A2(f, g,)gs, g)

V

/, AKlg) = 2 (/, *,)A,(g. *,) + 2 (A **)te. y*)-
i i

Again we see that symmetrisation is achieved if we modify Kx by requiring
that y* be mapped on 0 for all k, but for all other g* the map is still gs.
We shall call the non-negative Hermitian operator so defined H1. Also
using lemma (3.7) Hx symmetrises A* to the left. In the above argument we
have only used the spectral properties of A (and ^4*), not its symmetrisabi-
lity. Hence we have proved

THEOREM 3.2. Let A be a linear operator in Un whose non-zero eigen-
values (Aj), if any, are real and of index 1, and for which 0 is an eigenvalue
of index 2 at most. Let a complete set of principal vectors be (yk) (k = 1,
• • •, r) and a complete set of eigenvectors be the sets (*<) (with A4 # 0,
* = 1, • • •, p), (wt) (with X, = 0, / = 1, • • -, q), (zt) (Xk = 0, k = 1, • • -, r)
where zk = Ayk. Then tere exist non-negative Hermitian linear operators
H, H^ such that the nullspace of H is [z(] and that of H1 is \Hy^\; H symme-
trises A to the left and Hx symmetrises A* to the left.

REMARK 3.5. The symmetrising operator H in the above argument is
defined by means of the bi-orthonormal sets (gt) and (g*). Since the normali-
sation of these can be done in infinitely many ways we see that for any
symmetrisable A the symmetrising H is not unique.

It is clear that if we restricted ourselves to operators symmetrisable by
positive Hermitian H the spectral theorems would be simpler. However,
at least for operators in UB it is worthwhile to summarise the more general
case. This can be done in the following

THEOREM 3.3. The symmetrisable operators in Un are those and only
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those whose eigenvalues are real, whose non-zero eigenvalues are of index 1
and whose zero eigenvalues are of index 2 at most. If and only if all eigen-
values are of index 1 the symmetrising operator H can be taken as positive
definite. An operator is Hermitian (self-adjoint) if and only if it is symmetri-
sable by a positive H and it has a complete orthogonal system of eigenvectors,
i.e. if it is symmetrisable by / .

The only statement in the above theorem that requires any comment is
that all eigenvalues of A are of index 1 if and only if there exists a positive
symmetrising operator. If H is positive then by statement (iii) of Theorem
(3.1) A%y = 0 implies HAy = 0 implies Ay = 0. On the other hand if all
eigenvalues of A are of index 1 then 3 = [z<] = [0] and the nullspace of the
symmetrising H of Theorem (3.2) is [0].

4. The relationship between symmetrisable operators in ttB, and
certain Hermitian operators

Theorem (3.3) shows that the main difference between Hermitian and
symmetrisable operators is the orthogonality of the eigenvectors. This
suggests that it might be possible to a,rrive at symmetrisable operators in llB

by projection from Hermitian operators defined in a space of 2» dimensions;
the projective relationship sought projects eigenvectors of one operator onto
eigenvectors of the other operator, the eigenvalues being the same for both.
It will be shown that this relationship exists even in the case when the
symmetrising operator is not positive definite. However, the positive case
is much simpler and will be dealt with more fully to explain the procedure.

Let U2B be a 2w-dimensional unitary space containing Un. The orthogonal
complement of ltn in U2n is denoted by UB. 11 is an w-dimensional subspace
which contains a complete orthonormal set (g"). (The Hermitian operators
we are looking for are defined on II). U is the range of an isometric operator
Vx with domain UB; U only has the zero element in common with UB and is
defined in terms of a symmetrising H and independently of A. A schematic
representation of the subspaces of U2n is given in the figure.

We can prove the following

THEOREM 4.1. If A is a symmetrisable operator in tln and the symmetris-
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ing operator H is strictly positive then without loss of generality we can
take 1 as the lower bound for H. Further we can define an isometric operator
V1 with domain Un and range U and extend it to a unitary operator V such
that F(Un) = U. Then in U we can define a Hermitian operator Ho such
that for any / e II,

(4.1) Ax = PHof = PH0P^x

where Pf = x, P is the projector onto UB, Px is the contraction of P to
domain U and incidentally VH* = P? so that A = PH0VH* = PH0P^\
Conversely if Ho is a Hermitian operator in II the relationship (4.1) defines
an operator A which is symmetrisable by H = H^V*P^X. A*, the adjoint
of A, is related to Ho by

A*x =

where / = P^x, Pu is the projector onto U and P2 its contraction to domain
lln; also P^1 = #*F? so that A* = H*V*H0P\i. A* is symmetrisable to
the right by H and to the left by H'1 which is bounded above by 1.

Since A** = A the roles of A and A* are interchanged if H is bounded
above by 1.

REMARK: The operators VH^ and H^V* are seen to be "inverse projectors".

PROOF: We construct the H with desired lower bound by renormalising
the bi-orthonormal set (g,, g*) defined in the previous section. Let (es) be
a complete orthonormal set of eigenvectors of H and (/i,) the corresponding
eigenvalues. Suppose fin is the smallest eigenvalue. We put g, = Viang's-
Then the bi-orthonormal set (g'*) is defined by g'* = (llx//An)g* so that
H'g, = (ll\/f*n)g? where H' is a new symmetrising operator. Since

e, = 2 (e» sttet = 2 -7— («t. sf)s't
t t Vi"n

Hence 1 is the lowest eigenvalue of H' and thus its "greatest" lower bound.
Without loss of generality therefore we can assume H to have lower bound

1 and we proceed to define all the operators required. Let (es) be a complete
orthonormal set of eigenvectors and (fis) the corresponding set of eigenvalues
of H, let (e,) be any orthonormal set in Vi'n then we define a unitary operator
V by
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(4-1) ,-

Ve' = e'" = - lA

The sets (< '̂) and {e',") are complete orthonormal sets in U. and its orthogonal
complement U' respectively. By Vx we denote the contraction of V to do-
main Un. Clearly also V* = V'1 is defined by

F*e, = «, = V- e, +~=e,

(4.2)

Now since (g,) is a complete set of eigenvectors of A, (H^gs) is a complete
orthonormal set in Un. Hence (Fx^*g,) is a complete orthonormal set in tl.
Hence if (A,) are the eigenvalues of A, we define as Ho the operator in U
with (A,) and {V^H^g,) as eigenvalues and eigenvectors respectively. This
operator is Hermitian by Theorem 3.3. If we can show that iyxH^)~l is the
contraction of a projector to domain II with range Un then #0-and A are
related in the required manner. Let P be the projector onto UB — i.e. the
Hermitian operator which maps 2 « / , + 2^»ci onto J a,«,. Hence any
element in U, i.e.

is mapped on

Now from the definition of Vx and H we have V^12 a*e«' = 2 a»e«

as required, i.e. Px = ( F ^ * ) - 1 = # -*F* .
The converse problem is also solved because for given subspaces U and

ltB in U2n the projector P is always defined and F^1 can be defined analogous-
ly to the definition of V given in (4.1) or (4.2). This defines H = ( F ^ 1 ^ 1 ) 2

and hence it is immaterial whether we start with given subspaces or given
operators F and H. Now it is immediate that every Hermitian operator
will give rise to a symmetrisable operator because
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(4.3) A = PH0VHi = H-iV*H0VHK

Hence

HA = H*V*H0VHt

is Hermitian as required.
The statements about the adjoints are proved as follows. Let P\x be the

orthogonal projector onto U and P2 its contraction to domain Un. Then

shows that the "inverse projection" P^1 is defined by H^V* with the
property P%1P2 = I (where / is the identity in lln). Correspondingly
P2 = VH-*. The operator B in UB is defined by

(4.4) Bx = P~xH0P2x all x e Un.

By substituting explicit expressions for P2 and P^1 it follows that

B = H*V*H0VH-i.

On comparing this with (4.3) it is seen that B = A*.
I t is worth observing that since A * is symmetrisable by H*1 the relation

(4.4) defines a one-one correspondence between operators in UB symmetris-
able by positive operators with upper bound 1 and Hermitian operators in U.

We now drop the restriction that the symmetrising operator be strictly
positive.

THEOREM 4.2. To every symmetrisable operator A in tln there corresponds
an Hermitian operator Ho in U2n such that if P is the orthogonal projector
onto UB

(4.5) Ax = PHof where Pf = x.

The proof of this theorem is given in full in [4] and will only be sketched
here. It is based on the construction of HQ. It is done by first extending the
definition of the unitary operators V and V* given in (4.1) and (4.2) by
using the same formulae except that the sets (/x,.) and (e{) are now the eigen-
values and eigenvectors of K the operator which maps the set (g.) on (g*).
Without loss of generality the lower bound of K is 1.

It is fairly easy to see that Ho must now be defined on U' as well as U
since principal vectors could not be coped with by any HQ only defined on U.
We proceed by first subdividing It into subspaces 2), £r, $» £ in the same way
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as Un is subdivided into X, SB, 9), Q in Remark 3.3. Explicitly we define
bases spanning these spaces as follows:

Pd^Xi (* = 1 , 2 , • • - , } )

Pfi = u>, ( / = 1 . 2 , • • • , ? )

Pk* = V* {k = l,2,---,r)

thus 2) = [rf<] etc. Further if P ! is the contraction of P to domain U we
now have P^1 = VK^ so that for instance d{ = PZlxt = VK^xt. By virtue
of the fact that (gs) and (g*) are bi-orthonormal and Kg3 = g* it follows that
{^g,, P^gt) = (VKlgs, VK*gt) = {g.,Kgt) = dstl* i.e. the vectors (d{,
f,< kk, lk) form an orthonormal basis in U. Further we define the operator
Ho on II by

Hgdf = X{dt (i' = ! , • • • , / > )

where />̂  is a vector in U' such tha t Pv> = — yk so that PHokk = zk as
required; explicitly we have ^ = ]£»(**> e»')e',"IV{/*» ~ l)-

We now extend the definition of i / 0 to the whole of U' + U. Let S' denote
the subspace of U' spanned by the p'k and [k'k) be an orthonormal basis in ft',
then we put

#0*4 = 1 *ksk, + 1 *k.K where a.k, = (k'k, p'y)

and for all / ' in the orthogonal complement of W in U' we put

Hof = 0.

It can be easily verified that Ho is Hermitian and its definition has made
certain that it satisfies the requirements of the theorem.

5. Symmetrisable operators in Hilbert space
(Summary of results of Parts II and III)

As is usual when the product of two not necessarily bounded operators is
involved, we must start with a discussion of domains of definition. Since
we are interested in deducing properties of A from properties of HA it is
clearly necessary to require DH 3 RA i.e. DA C DHA • Now if HA is symmetric

* d,t here is the Kronecker delta.
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with possible symmetric extension, we immediately face the problem of
possible extensions of A or even of H in the case when it is not self-adjoint.

The conditions (2.1) and (2.2) are critically examined and the following
facts are revealed: 31A 3 31H is not in general strong enough to avoid patholo-
gical cases and 31A 3 31H is necessary. However it can be proved that for a
wide class of operators, i.e. all /-operators as defined by Dixmier [1], all
symmetrisable operators have closed nullspaces.

Lemma (3.2) will be generalised to prove that the symmetrising operator
H can be assumed to have a nullspace contained in SUjnSR^. The fact that
HA is a closed operator is in particular cases responsible for a number of
consequences including the following: Let A be the operator whose graph is
the closure of the graph of A then if A~x is compact any symmetrising H has
a bounded inverse, a case which is shown to be easy to deal with.

The question whether extensions of HA throw light on extensions of A
is discussed and the following facts are revealed: If H(DA) is dense then A
has a closed extension A. If D^ and i ? | are contained in DH then HA is
symmetric. If A is symmetrised by a strictly positive H and H(DA) is dense
(e.g. if H is bounded) then A is closed.

The following results will be proved for the spectrum of symmetrisable
operators A:

Eigenvalues are real and eigenvectors with different eigenvalues are
ff-orthogonal. If H is non-negative, eigenvalues of A other than 0 are of
index 1, 0 of index 2 at most. When H is strictly positive all eigenvalues of A
are of index 1. When H has a bounded inverse the whole spectrum of A is
real. Under fairly general conditions it is shown that the residual spectrum
of A is real or void. An example is constructed to show that the continuous
spectrum of A may be complex. It is proved, however, that if A — BH
where B, H self-adjoint, H positive, then the continuous spectrum of A is
real and the residual spectrum empty.

The construction relating symmetrisable operators and symmetric opera-
tors defined in a larger space is shown to generalise in the case when the
symmetrising operator is bounded. This can be used to prove, for instance,
that the residual spectrum of A must be real in this case. The construction
can also be used to prove sufficient conditions for the continuous spectrum
to be real and the residual spectrum empty.

Part III will conclude with a discussion of symmetrisable operators in an
extended Hilbert space in which they are symmetric.
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