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ABSOLUTE VALUES OF TOEPLITZ OPERATORS 
AND HANKEL OPERATORS 

TAKAHIKO NAKAZI 

ABSTRACT. Nehari's theorem for norms of bounded Hankel operators is revisited. 
Using it, the absolute values of Toeplitz operators are studied. This gives a theorem of 
Widom and Devinatz for invertible Toeplitz operators. 

1. Introduction. Let U be the open unit disc in the complex plane and let d U be the 
boundary of U. Iff is analytic in U and Jlw \og+\ f (re10 )\d0 is bounded for 0 ^ r < 1, 
thenf(el°), which we define to be limr_>i f(rel9), exists almost everywhere on dU. If 

lim f log+\f(rew)\d6 = f l o g + | j V " ) | ^ , 
r—A J—n J—TX 

then/ is said to be of the class N+. The set of all boundary functions in N+ is again denoted 
by N+. For 0 < p ^ oo, the Hardy space Hp is defined as N+ D LP where LP denotes 
LP(d6). PutHp

0 = { / G HP :/(0) = 0} . 
P denotes the orthogonal projection from L2 to H2. Let </> G L°°. We define the Hankel 

operator H^ on H2 by H^f = (I - P)(<f>f) and the Toeplitz operator T+ on H2 T+f = 

In Section 2 we show that if H^H^ ^ Tv then there exists a function k in H°° such 
that | <j> + k\2 ^ v a.e. If v is constant, this gives Nehari's theorem [7]. In Section 3 we 
give necessary and sufficient conditions such that there exists a nonzero function h in H°° 
such that VI7^ ^ 7^7^. If h is constant, this gives a theorem of Widom and Devinatz 
(cf. [3, p. 187]). In Section 4 we study relations between <j> and ^ when H^H^ = HIH^ 
and 7; 7V = 7 ; TV 

In this paper we also consider the above problems when the symbols <j> are unbounded. 
For <f) G L2 we denote by Afy the multiplication operator densely defined on L2. For <j> G 
L2 let H<f> denote the Hankel operator densely defined on H2 by (//</>/, g) — (M^/, g),f G 
H°° and g G H™ and 7^ denote the Toeplitz operator densely defined by (T^f, g) = 
(Mtf,g),f G H°°<mdg G//°°. 

For any <j> G L2, we define H^H^.T^T^ and r ^ p as follows: for any/,g G H°°, 
(H;Htf,g) = (Htf,H+g),(T;T4f,g) = (T^T+g), and (T^g) = ((/>/,</>g). The 
function | </> |2 is not necessarily in L2 but we can define T^ p as a densely defined operator 
on 7/2. This was pointed out by the referee. When <j> is in L°°, both Tfy and 7^ are bounded 
linear operators on H2 which were defined previously. We use the following lemmas 
several times. 
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LEMMA 1. Suppose <f> G H°°. If <j> has at least two functions in H°° which give 
7 = dist (cj), H°°), then there exists a function k in H°° such that log (7 — | <j> + k\ ) G L1. 

PROOF. By a theorem of Adamyan, Arov and Krein (cf. [5, p. 160]) we may assume 
that dist (</>,//°°) = 1 and \<j>\ = 1. By the hypothesis, there exists a nonzero k G H°° 
such that \<f> + 2fc| Û 1 a.e. Since 11/20 + k\ ^ 1/2,1/4 + Re 4>k + \k\2 ^ 1/4 
and hence 1 + 2 Re j>k+\k\2+ \k\2 ^ 1. This implies that \</> +k\2 + |fc|2 ^ 1. Thus 
s = 1 - \<t> + jfc| ^ 1 - y/l - |fc|2 ^ |£ | 2 /2 . 

LEMMA 2. For any </> in L2 H^H^ + T^ T^ = Tw. 

Lemma 2 is well known and obvious. 

2. Norms of Hankel operators. The following theorem is an extension of Nehari's 
[7] to densely defined Hankel operators. If B is a linear operator densely defined on //2, 
that is, defined on H°°9 and (Bf,f) ^ 0 for any/ in #°°, then we write B ^ 0. 

THEOREM 1. Suppose <j> G L2. Then 

{\)ForanykinH2,H^H^ ^ T^+qi. 

(2) If v is a nonnegative function in l) and H^H^ ^ Tv, then there exists a function 
k in H2 such that \ <j> + k\2 ^ v a.e. and hence H\H<$> = T^+^i ^ Tv. 

PROOF. (1) IfkeH2 and/ G H°° then for any g G 7/2 (/fy/,g) = ((</> + k)f,g). 
Letting g range over the unit ball in //Q, we get from this ||//^/||2 = \\(<t> + k)f W2 = 

yJ(T\ct>+k\2f,f). Therefore, since || Jfy/||f = (H^H^fJ), we have //* H^ S 7|0+*|2. 

(2) For/ G #°° and g G #g° 

r <f>fgde /2TT = | W - g)|2^(/^/, HtfXg,g) 

<(vf,f){g,g) 

because H*,H^,^ Tv. Let e > 0. Since v + e is then ^ e and in L2, there is an outer 
function ht in //2 with v + e = \h(\

2. Then, for/ G //°° and g e ffg0, we have by the 
previous relation 

f <t>h:\hj)gd0/2ir 
J—7T 

2^ll^l|2lkl|2. 

By Nehari's theorem [8] there exists a function / in H°° such that | <j> h~l + l\ ^ 1 and 
| </> +/ze /|

2 ^ v+e. By the standard limit process, we can find k G H2 such that | 0 +fc|2 ^ 
v. • 

In the proof of (2) of Theorem 1, we can use a lifting theorem of Cotlar and Sadosky 

[2]. 
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COROLLARY 1. #* 0 G L°° has at least two functions in H°° which give dist (0, H°°), 
then there exists a function i/> G H°° such that //!//</> + H^H^ ^ dist (0,//°°). 

PROOF. By hypothesis, there exists k G H°° such that ^ = (72 - | 0 + k\2)1/2 > 0 
a.e., where 7 = dist (0,//°°). Hence by (1) of Theorem 1 # * # 0 + #* ^ ^ 7 | ^ | 2 + 
r72_|^p ^ i 2 . • 

3. Left invertible Toeplitz operators. There exists a nonzero function h in H2 such 
that Tĵ p ^ 7 ^ if and only if | 0 | ^ |/i|. In general Tw 2 ̂  r£ 7^ and so the following 
theorem is interesting. 

THEOREM 2. Suppose 0 G L2. 77&en the following are equivalent 

(1) 77*ere ex/sta a nonzero outer function h in H2 such that T^T^ ^ T^Th. 

(2) log 10 | is integrable, and there exists a function I in H2 such that \<f>\ ^ | 0 + l\ 
and | 0 | ^ | 0 +1\. 

(3) 0 /*as the form: 0 = 0og, where 0o is unimodular and g is an outer function in 
H2. Moreover there exists a nonzero function k in H°° such that || 0o + fc||oo = 1-

PROOF. (1) => (2). By the hypothesis and Lemma 2, 

H^H^ ^ 7j^|2_|A |2. 

By (2) of Theorem 1 there exists a nonzero function / G H2 such that | 0 + /|2 ^ 
| 0 |2 - | h\2. Hence log | 0 \ e Ll and (2) is valid. 

(2) => (3). Since log | 0 | is integrable, 0 has the form in (3): 0 = fog. Since 101 ^ 
|0+/ | and |0 | T̂  | 0+/ | for some/ G //2 , /is nonzero and 1 è |0o+g_1/|.Put/: = g - 1 / 
then (3) follows. 

(3) => (1). By the hypothesis and Lemma 1 there exists a function e G H2 such that 
log(l -\cj)o + e\2) G L1. Hence log ( | 0 1 2 - \cf) +ge\2) G L1. Sincegeis in//2 , by (1) 
of Theorem 1//J//0 ^ r^+^2. By Lemma2 7^r0 ^ r ^ p . ^ + ^ p . Since log ( |0 | 2 -
10 +ge\2) G L1, there exists a nonzero function h £ H2 such that 10 |2—10 +ge|2 = \h\2 

and hence 7^ 7^ ^7^7},. • 

COROLLARY 2. Suppose 0 is a unimodular. Then there exists a nonzero function h 
in H2 such that TZT^ ^ 7^7/j if and only if(j> has the form : 0 — f / f for some nonzero 
function f in H2. 

PROOF. By a lemma of Koosis (cf. [5, pp. 161-163]), there exists a nonzero function 
k in H°° such that || 0 + fc||oo = 1 if and only if 0 = / / / for some nonzero function/ in 
H2. Hence Theorem 2 implies the corollary. • 

The following is a corollary of the proof of Theorem 2 and generalizes a theorem of 
Devinatz and Widom ([3, p. 187] and [2]) to unbounded symbols. 
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COROLLARY 3. Suppose <j> G L2. Then the following are equivalent. 

(1) There exists a function h in H2 such that T^T^ ^ T*hTh and hrx is in 77°°. 
(2) There exists a function I in H2 and a positive constant e such that \(j)\ ^ e + 

\<j> +/| a.e. 
(3) <j) has the form: <j) — <j>og where </>o is a unimodular function and g is an outer 

function in H2. Moreover g~x is in H°° and dist (c/>o, H°°) < 1. 

PROOF. (1) => (2). There exists a positive constant e\ such that ThTh ^ 7^ Tei. As 
in the proof of Theorem 2, there exists a function/ G H2 such that \<f> +l\2 ik |</>|2 — e2. 
This implies (2). 

(2)=> (3). Since |g| ^ |c | ,g _ 1 belongs to 77°° and 1 ^ |^ - ! | + |</>0 + g~ll\. This 
implies dist (</>o,//°°) < 1. 

(3) => (1). There exists a function e E H2 and a positive constant e such that e +10 + 
eg |2 ^ | </> |2. Hence T\T^ ^ 7^Te and this implies (1). 

By a theorem of Douglas [4, Theorem 1], when </> G L°°, range [T*A D range [T£] 
if and only if T^T^ ^ T*XhT\h for some A > 0. Hence Theorem 2 gives necessary and 
sufficient conditions for that range [7^] contains range [7^] for some nonzero function 
Ain//00. 

If T^Tj) ^ T^Th for some outer function /i in 772, then 7^ 7^ ^ Tu where w = |h\ 2 . 
From this view point, we wish to generalize Theorem 2. 

THEOREM 3. Suppose <f> G L2. There exists a nonnegative, nonzero function u in 
Ll such that TlT^ ^ Tu if and only if there exists a nonzero function h in H2 such that 

nn^ rhn. 
PROOF. By the remark above, it is sufficient to show the part of 'only if. If T£ 7^ ^ 

Tu, by Lemma 2 7"ĵ j2_M ^ H^H<f>. By (2) of Theorem 1 there exists a function g in 
H2 such that \cj)\2 — u ^ | </> + g|2. Since u is nonzero, the g is nonzero and 2|</> 11g| ^ 
2Re<j> (—g) ^ | g |2. Hence log | </> | is integrable and so <j> — <j>$k where (/>o is a unimodular 
and /: is an outer function in H2. This implies 1 ^ || 4>Q+k~xg\\OQ. Now Theorem 2 proves 
the 'only if part. • 

4. Absolute values of H^ and 7̂ >. In this section we are interested in the converse 
inequality: 7^ T<f> ^ T^Th where <t> E L2 and h E H2. Then we will consider when two 
Toeplitz operators have the same absolute values. 

THEOREM 4. Let </> be a function in L2. There exists a nonzero function h in H2 such 
thatT^T^ ^ rhThifandonlyif\(t>\ ^ \h\. 

PROOF. If\<j>\ ^ \h\ then Tw ^ ThTh and hence 7^70 ^ 7 ^ by Lemma 2. 
Conversely suppose 7^7^ Û T^Th. For any e > 0, there exists an outer function he G 
772 such that |/ze|

2 = \h\2 + e. Then for any/ G fl°° ||P(<£/)||2 ^ H ^ l b - If g = Kxf 
then g G 77~ and hence l l T ^ / ç 1 / ) ^ | | / | | 2 . Thus sup { | J <j>h-xfgdQ/2v\', f G 
H°°,g G 7/°°, II/H2 ^ l a n d | | g | | 2 S 1} S l.PutA = { / £ / G 7/°°, g G 77°°, 
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H/II2 ^ l a n d | | g | | 2 ^ 1} mdB= {s e L°° ; (|̂ r|| 1 ^ 1 and log \s\ G L ^ . I f w e 

show that A is dense in B and then A is dense in the unit ball of L1, || cf> h~l ||oo = 1 and 

I </> I ^ I /*e I. As e —• 0 I (j) I ^ I h\. If 5 G B then there exists an outer function g G //°° 

such that s — sogg, | $01 = 1 and || g||2 = 1 • ^0 can be uniformly approximated by the set 

of quotients of inner functions [5, p. 217]. This implies that A is dense in B. • 

THEOREM 5. Suppose <j> and -0 are in L2. 

(\)lfT;T^=T;T^then\<j>\^\^\. 
(2) Suppose log \<j> I is integrable. IfTfT^ = T1T^9 then (j) = <j>oh and ij; = ipoK 

where h is an outer function in H2, and both (j>o and ipo are unimodular. Moreover 
1(f>o1<l>o — ̂ Vo V°* 

(3) Suppose <j> and i/> are unimodular. If TIT^ = TIT^ then for any g in H°° there 

exists a function f in H°° such that \<j> + g\ ^ \xjj + / 1 . 

PROOF. (1) For any e > 0 there exists an outer function he G H2 such that | V> I + 

e = \he\. By Theorem 4 7 ^ ^ T£The and so TfTj ^ T£TK. Again by Theorem 4 

| 0 | ^ | / i £ | = | ^ | + e and | </> | ^ | -01 because e is arbitrary. Thus | </> \ = \I/J\. 

(2) If log \</>\ G Ll, by (1) (j) and I/J have the forms: </> = foh and V> = t/>o/*. Hence 

^ ( ^ 0 T<t>o ~ T$0
 T^o)Th = 0. Since Th has the dense range, T*oT^ = T*oT^. (3) Since </> 

and ip are unimodular, by Lemma 2 7^*7^ = T^T^ implies H^H^ = H^H^. Theorem 

1 implies (3). • 

The author thanks the referee for pointing out several mistakes and errors. 
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