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1. I n t r o d u c t i o n . Let Mm(F) be the vector space of w-square matrices 

X = (xtj), xtj G F\ i,j = 1, . . . , m, 

where F is a field; l e t / be a function on Mm(F) to some set R. I t is of interest 
to determine the linear maps T: Mm(F) —•> Mm(F) which preserve the values 
of the func t ion / ; i . e . , / ( r ( X ) ) = f(X) for all X. For example, if we takef(X) 
to be the rank of X, we are asking for a determination of the types of linear 
operations on matrices t ha t preserve rank. Other classical invariants t ha t may 
be taken f o r / are the determinant , the set of eigenvalues, and the r th elemen­
tary symmetric function of the eigenvalues. Dieudonné (1), H u a (2), Jacobs 
(3), Marcus (4, 6, 8), Mori ta (9), and Moyls (6) have conducted extensive 
research in this area. A class of matrix functions t ha t have recently aroused 
considerable interest (4; 7) is the generalized matrix functions in the sense of I. 
Schur (10). These are defined as follows: let Sm be the full symmetric group of 
degree m and let A be a function on Sm with values in F. The matrix function 
associated with X is defined by 

m 

d\(X) = X) MOTI ***(<)• 

These functions clearly include the classical determinant , permanent (5), and 
imminent functions (11). 

Le t C be a transitive cyclic subgroup of Sm and suppose X:5W —> F is such 
t h a t X (a) = 0 if a (? C. Our main result is a characterization of all linear maps 
T:Mm(F) -> Mm(F) tha t satisfy 

(1) dx(T(X)) = dx(X) for all X £ Mn(F). 

T h e results are first established for the case when C is the group generated 
by the cycle IT given by 

7T (i) = i + 1, T\k{i) = i + k (mod m) , k integer, 

and the function X is identically equal to 1 on C. We then extend the results 
to other transitive cyclic subgroups and other functions by showing tha t it is 
possible to convert one matrix function uniformly into another by a linear 
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transformation. We assume throughout that the field F contains more than m 
elements, where m is the size of the matrices under consideration, and that 
m > 3. 

The author would like to thank Professor Marvin Marcus for suggesting 
this problem. 

2. Definitions and main results. Let T be the cycle defined before, let 
C be the cyclic subgroup of Sm generated by IT, and let A: Sm —> F be defined by 

A((j) = 1 if o Ç C, A(cr) = 0 if a g C. 

We denote the generalized matrix function associated with À by d. Clearly we 
may write 

m m 

/ f c = l 1 = 1 

Definition. If M is a subspace of Mm(F), then 
(a) M is a O-subspace if dim M = m2 - m and d(X) = 0 for all X Ç M. 
(b) M" is of type a, where a = («i, . . . , aw) is an ordered w-tuple of integers 

1 < oti; < m, if dim i l / = m2 — m and the (ak} -nk(ak)) ent ry of every X (E M 
is zero for k = 1, . . . , m. 

The following characterization of the O-subspaces of MW{F) turns out to be 
very useful in the determination of the structure of the set of linear maps of 
Mm{F) into itself satisfying (1). 

THEOREM 1. Any O-subspace M of Mm(F) is of type a for some unique 
sequence a. 

If F = (pij) is the permutation matrix corresponding to the cycle ir 
(i.e. p^ = ôi7r(j))} then X £ Mm(F) can be uniquely written 

m 

2 = 1 

where the Xt are diagonal matrices. We use this representation in defining the 
following linear maps of Mm(F) into itself. Set Xt = diag(xn , . . . , xim), and 
define three classes of maps by: 

(a) If a Ç Sm, then 

m 

T(a)(X) =J2XiP°(i). 
1 = 1 

(b) If r 6 Sm and 1 < k < m, then 

z = l 
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where X't = Xt for i ^ k and X\ = diag(xkT(1), . . , xkT{m)). 
(c) If 1 < k < m and at £ F are such t ha t 

m 

1=1 
then 

M,(a,,...,flra)(X) = S r r 
i = l 

where X"i — Xt for i ?± k and X"* = diag(ai x^i, . . . , amxkm). 
I t is clear that each of the above types of linear transformations T(o), 

Sk(a), and Mk(a,i, . . . , am) is non-singular. We let G be the (multiplicative) 
subgroup of GL(w ? ) (the group of non-singular linear maps of Mm(F) into 
itself) generated by the above three types. 

If C is a transit ive cyclic subgroup of Sm and X: Sm —» ̂  is such t ha t X (a) = 0 
for o £ C, let iV = {a Ç C: X(a) = 0}. We define a linear map AN of ifcfro(/0 
into itself by 

. , , _ JO if j = <r(i) for some a Ç iV, 
^ ^ ^ ^ - ^ . otherwise, 

and extend . 4 ^ linearly, Here Etj is the m-square matrix with a 1 in the (i,j) 
position and zeros elsewhere. 

Let I be the identi ty map of Mm (F) into itself. We can now state our main 
result. 

T H E O R E M 2. Let C be a transitive cyclic subgroup of Sm and X: Sm —^ F be such 
that X (a) = 0 if a $ C. Let d\ be the generalized matrix function associated with X. 
There exists a non-singular linear transformation R of Mm(F) onto itself such 
that a linear map T of Mm (F) into itself satisfies 

dx(T(X)) = dx(X) for all X 

if and only if AN(T - I) + I G R^GR. 

A specific formula for R will be given in the next section. I t should be noted 
t ha t R is independent of the map T b u t is not unique. 

3. Proofs . Recall t ha t d is the generalized matrix function associated with the 
function X: Sm —> F defined by X(a) = 1 if a belongs to the cyclic group 
generated by TT and X(a) = 0 otherwise. Here ir is defined by 

Ti(i) = i -f 1 (mod m). 

We let P be this permutat ion matrix corresponding to TT and say a matrix K 
is a ^-diagonal matrix if K = DPk for some diagonal matrix D. We now prove 
some lemmas needed to prove Theorem 1. 

LEMMA 1. If M is a 0-subspace, then M contains a non-zero k-diagonal matrix 
for each k = 1, . . . , m. 
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Proof. I t is enough to show tha t M contains a diagonal matrix, for then we 
can apply this result to the O-subspace MPk. Suppose M does not contain a 
non-zero diagonal matrix. Let D be the subspace of diagonal matrices and Mk 

the subspace formed by adjoining Pk to M. I t is easy to check t h a t d(Pk) = 1 ; 
therefore Pk g M and dim Mk = m2 - m + 1. T h e n D C\ Mk ^ 0, for 
dim D = m and a simple dimension a rgument yields the result. Let Dk be a 
non-zero element of D H Mk. We may assume (by multiplying by a suitable 
constant ) t h a t Dk = Mk - Pk where Mk G M. Le t Dk = d i a g ( 4 i , • • • , dkm). 
Then 

m 

d(Mk) = d{Dk + Pk) = n dki + 1 for k * m. 
1 = 1 

Recall t ha t M is a O-subspace, so we mus t have 

m 

i = i 

Hence no d ^ is equal to zero for k ^ m. Le t 71 be the subspace generated by 
adjoining the matrix Enl to D. Then dim T = m + 1 and a dimension argu­
ment again shows t ha t T r\ M ^ 0. Let 

m 

B = X) &*£** + c£„i 
t = i 

be a non-zero matrix in T O M. Then M i + 2 ^ G ¥ for all s Ç F since M i 
and 2? belong to the subspace M. Now 

m 

d(Mt + zB) = I l (du + aft*) + 1 

and it is evident t ha t this is equal to zero if and only if bt = 0 for all i. Hence 
B — cEnl. Since B and Mm-\ belong to If, M w - i + zB belongs to M for all 
z G F. Now 

dCfl^- i + s/3) = n dm-i,i + (1 + «0 = cz. 
1 = 1 

This, however, implies t ha t 6 = 0, for Mm_i + zBM. Hence B = 0, a con­
tradiction. 

LEMMA 2. //" M w a Q-subspace and X £ M, //ze^ /or mc/z & = 1, . . . , m there 
exists a unique integer j k , independent of X, such that the (jkj irk(jk)) entry of X 
is zero. 

Proof. We first show tha t for any X £ M the ordered set 

D(X, k) = {X1MD, . . . , xmt(r(w):a == 7i*} 

(i.e., the kt\\ diagonal of X) contains a t least one zero. For some X £ M and 
some k assume t h a t 0 (Z D(X, k). By Lemma 1, let K 6 M be a non-zero 
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^-diagonal matrix. LetK = DPk where D = diag(di, . . . , dm) and suppose that 
dt ^ 0. Then Z — X — xt)7r k(t)/dtK belongs to AT and since Ktj = dt dii7r &0), 

m m m 

d(z) = z n Xi,*jd) = - n <̂,T̂ (i). 
Hence d(Z) ^ 0 since 0 (? -£>(X, fe), a contradiction. 

We now show that the position of the zero in the set D(X, k) is independent 
of X. Suppose that this is not the case. Then for some integer k, 1 < k < m, 
there exist m matrices X(1), . . . , X{m) belonging to M such that 

Xi,T{i)k(i) ^ 0 for i = 1, . . . , m. 

A standard argument shows that we can choose ct £ F (i = 1, . . , m) such 
that 

m 

di = J2 CtXtJ^kii) 3^ 0, i = 1, • . . , m. 
*=i 

Define 

m 

t=l 

Then Y G M and 0 g £>(F, &) = { î, . . . , dm}. This, however, contradicts 
the fact that 0 G D(Y, k) if F G M. 

To see that the integer jk is unique, note that the above shows that the sub-
space M consists of matrices that have zeros in at least m fixed positions, with 
at least one in each diagonal. It is not hard to see that if there was more than 
one zero in some diagonal, then dim M would be less than m2 — m, a con­
tradiction. 

We now prove Theorem 1 by simply taking the sequence a to be (ju . . . , j m ) . 
Let T be a linear transformation of Mm{F) into itself satisfying (1) where C 

is the group generated by the permutation defined by m(i) = i + 1 (mod m) 
and the function X is identically equal to 1 on C and 0 off C. Let d be the 
generalized matrix function associated with C and X. 

LEMMA 3. The linear transformation T is non-singular. 

Proof. Suppose T is singular. Then T{A) = 0 for some A 9e 0 Therefore 

d(X - A) = d(T(X - A)) = d(T(X) - T(A)) = d(T(X)) = d(X) 

for all X. If A = (a i ;), then atj ^ 0 for some i, j . The group C is transitive, so 
there exists an integer k such that irk(i) = j . Set 

m m 

B = X) I I at*rit). 
T=l t = l 

Then 
m 

d(A) =I\at*kU)+B = 0, 

since 0 = d(0) = d{T(A)) = d(A). 
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We consider two cases: 

m 

(1) YlatrkU)= -B = 0. 
t=l 

Let X = atjP
k; then d(X) = atj

m j* 0. On the other hand, 

m 

d(X - A) = n ("«h» -atj) +B = 0 

since ailrka) = atj. 
m 

(2) n«^(«) = - 5 ^ 0 . 
z = l 

Let X = dijEij] then d(X) = 0. However, we also have 
m 

diX -A) = n (à^kfoaii-atrk^+B = 0 + 13 ^0 
t=i 

since ôj7rka) atj — aiirka) = 0. Hence we have d(X) ^ d(X — A), a con­
tradiction. 

Let Mi(Mj) be the subspace of MW(F) consisting of all matrices with row i 
(column j) zero. Clearly Mt and Mj are 0-subspaces. Let Ri = T(Mt) and 
i^' = T(Mj). Then Rt and Rj are 0-subspaces; for, by Lemma 3, T is non-
singular and so preserves dimension and T preserves the values of the matrix 
function d by assumption. Applying Theorem 1, we may conclude that Rt is 
of type 0U) = {fia, . . . , f}im) and Rj is of type 0 ( ; ) = (/V, • • • , / V ) for some 
unique sequences fi{i) and /3(J°. 

In order to determine the structure of T, it is convenient to let X = (x0) 
be a matrix of m2 indeterminates. If we do this, we can consider T(X) as a 
matrix of m2 linear forms, L(i,j), where 

m m 

L(i,j) = 2 Z) Will r> s)xrs, t(i,j, r, s) e F. 
7 = 1 S = l 

We now use the fact that Ri(Rj) is of type /3(z)(/3
(i)) to determine the coeffi­

cients t(i,j, r, s) in each linear form L(i,j). Clearly once we have done this, 
the structure of the linear map T will be known. 

LEMMA 4. Each linear form L(i,j) involves only one indeterminate (i.e. 
L{i,j) — cTS xrs for some r, s) and different linear forms involve different 
indeterminates. 

Proof. Consider L(fiihJ irk((3ik)). If xn = . . . = xim = 0, then L(/3ik, 
Trk(Pik))=0 because Rt is of type (pn, . . . , pim). Hence t(/3ik, Ttk((3ik), 
r, s) = 0 if r ^ i. A similar argument shows that L(/3k, -nk(fik)) = 0 if 
Jv 1 j . . . ^"in j -̂' • 

Now notice that if i j£ j , then j3it ^ pjt for any t. To see this, suppose that 
Pit = fijt for some / and some i ^ j . The argument above shows that L(pit, 
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nk(Pit)) involves only the indeterminates xa, . . . , xim. But we have assumed 
that L{fiiu «'(fin)) = LiPjHTt'iPjt)); hence L(fiiu **(£„)) involves only the 
indeterminates Xji, . . . , xjm. Hence L(fiit, 7rl(pit)) = 0 since 

\XHf . . . , Ximj l \ [Xji, . . . , Xjm\ Y). 

This, however, implies that T is singular, contradicting Lemma 3. We may now 
conclude that for each i, t = 1, . . . , m there exists an integer r such that 
firt = i; for we have shown that prt 9e fist for r ^ s and 1 < /3UV < m by 
définition. The group C is transitive; hence, we can choose an integer t such 
that 7rl(i) = j . Then the above arguments show that L(i,j) = L(firu 7il(l3rt)) 
involves only the indeterminates xri, . . . , xrm. Similarly L(i}j) involves only 
the indeterminates x\s, . . . , xn,s for some integer 5. Now 

Xri, . . . , Xrm] I 1 (vVis, • • • J ^ms\ %rsj 

so L(i,j) involves only the indeterminate xrs. 
If two different linear forms involved the same indeterminate, then, since 

there are m2 linear forms and m2 indeterminates, some indeterminate, say xuv, 
would not appear in any linear form. Then T is singular for T(EUV) = 0, a 
contradiction. 

Let G be the subgroup of GL(m2) defined in §2. We now prove a special case 
of Theorem 2. 

LEMMA 5. A linear transformation T of Mm(F) into itself satisfies d(T(X)) = 
d(X) for all X if and only if T £ G. 

Proof. First note that if 

X = (Xij) Ç Mm(F) and Xt = diag (#1,^(1), . . . , xm,ri(m)) 

then 
m 

and this representation is unique. 
If Xi, . . . , xm are indeterminates and X — diag(xi, . . . , xm)Pk, then, by 

Lemma 4, T(X) has precisely m non-zero entries. Further, 

m 

d(X) =Uxi = d(TÇX)); 
1=1 

hence the non-zero entries in T(X) must lie in a ^-diagonal for some k so T(X) 
is a ^-diagonal matrix. Let T(X) = diag(Lb . . . , Lm)Pk where the Lt are 
linear forms in the indeterminates xi, . . . , x„t. By Lemma 4, Lt — a^x^a) for 
some permutation a £ Sm. Hence 

m m m m 

d(T(x))=n atxtUi=n a«n *«=n *« = w 
i = l i = l z'=l 2—1 
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and we must have 

m 

If Di and D2 are diagonal matrices and i ^ j , then we have shown that 
T(D1 Pl) = D'.P" and T(D2 Pj) = £>'2 P

s for diagonal matrices D'j and D'i. 
In addition, we can conclude from the non-singularity of T that r ^ 5. There­
fore, using the linearity of T, if 

m m 

X = Z Xi P\ then T(X) = £ X't P ' (" 
1 = 1 1 = 1 

where cr G 5OT; and if Xt — diag(x2-i, • • • > #*«»)> then 

X'i = diag(aax,;T(i), . . . , aim xir{m)) 

for a permutation r = TL G 5W, and the a2; satisfy 

m 

n ^ = i-
Now notice that if MA(^i> • • • > #w) and 5A(r) are the linear transformations 

defined in §2 and D is a diagonal matrix, then Sk{r){DPi) = DP1 and 
Mk(aly . . . , dnuiDP1) = DP1 if i ^ j . This is an immediate consequence of 
the fact that these two transformations only affect the ^-diagonal of the matrix 
on which they operate. 

Finally, let 
m 

S = Ti^YlMMn atm)St(rt). 
i = l 

Then 5 G G and a straightforward computation shows that S(X) = T(X) 
for all X. 

Now let C be any transitive cyclic subgroup of Sm. It is well known that C 
consists of all powers of a cycle a of length m, and we call a a generator of C. 
We use this fact in the following preliminary version of Theorem 2. 

LEMMA 6. Let C be any transitive cyclic subgroup of Sm, a a generator of C, and 
X a function on Sm to F such that X (r) = 0 if r G C and X(r) ^ 0 if r G C. Let 
d\ be the generalized matrix function associated with X. There exists a non-
singular linear transformation R of Mm{F) onto itself such that a linear trans­
formation T satisfies 

(2) dx(T(X)) = dx(X) for all X 

if and only if R~1TR G G. 

Proof. It is well known that if two permutations a, fi G Sn have the same 
cycle structure, then there exists a permutation /x G Sm such that fj,ajjL~l = ft. 
By the above remarks the permutations T and o have the same cycle structure. 
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Let 0 G Sm be such that <j>o<t>~1 = 7r. Define the map R by 

R(X) = P(4>-i)M(X)P(4>) 

where P(<£) and P{<t>~1) are the permutation matrices corresponding to </> and 
4>~l and 

M = n ^((x^*))-1, i i). 

A straightforward computation shows that 

dx(R(X)) = d(X) for all Z 

and 

d(R-i(X)) = dx(X) for all X. 

The map R is clearly linear and non-singular. 
If T is a linear transformation of Mm(F) into itself satisfying (2), then 

d(R-iTR(X)) = 4 ( r i ? ( X ) ) = dx(R(X)) = d(X). 

Hence, by Lemma 5, R~lTR G G. 
We now remove the restriction that the values of the function X must be 

non-zero on the group C. Recall that N — {o G C: X(a) = 0} and 

A (-R \ _ i 0 if j = cr(̂ *) for some a G iV, 
AN^ij) - ^Efj o t h e r w i s e -

It is easy to check that if X = (x{j) G Mm (F), then as r runs over C, the ordered 
sets (the diagonals), 

D(X, T) = {Xi,T(i), . . . , Xm,T(mV- T Ç C] 

form a partition of the elements of the matrix X. We define X: 5—» F by 
X(r) = 1 if r G iVand X(r) = X(r) otherwise. Let d\ be the generalized matrix 
function associated with X. 

LEMMA 7. L ^ T:Mm (F) —> M"OT (F) be a linear map satisfying d(T{X)) = d(X) 
for all X and let S = AN(T — I) + 7 where I is the identity transformation. 
Then dx(S(X)) = dx(X) for all X. 

Proof. For any matrix X G Mm (F) we have 

m m m 

d\(X) = X) X(o - )n ^Mi) + S X(<r)IÏ *M0 = E I 1 «MO + ^x(X). 

Hence 

(AN T(X) -AN(X)+X) Ml) - | ^ } ^ !f * | ^ 

4(5(X)) = E II *MO + 4(?X^)) = &(*). 
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I t is clear that the function d\ and the map o — AH {T - I) + I satisfy 
the hypotheses of Lemma 6, so there exists a non-singular linear transformation 
R of Mm{F) into itself, independent of T, such that AN(T - I) + I G R'lGR. 
This completes the proof of Theorem 2. 
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