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The work in this paper introduces finite mixture models that can be used to simultaneously cluster
the rows and columns of two-mode ordinal categorical response data, such as those resulting from Likert
scale responses. We use the popular proportional odds parameterisation and propose models which provide
insights into major patterns in the data. Model-fitting is performed using the EM algorithm, and a fuzzy
allocation of rows and columns to corresponding clusters is obtained. The clustering ability of the models
is evaluated in a simulation study and demonstrated using two real data sets.
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1. Introduction

Measurement data with ordinal categories occur frequently and in many fields of application.
For example inmedicine, a continuous clinical response is often categorised into ordered subtypes
based on histological or morphological terms. In a questionnaire, Likert scale responses might be
“better”, “unchanged” or “worse”. When analysing such data, it is of interest to link the ordinal
responses to a set of explanatory variables.

Despite being introducedmore than 3 decades ago, the proportional odds model (PO,McCul-
lagh, 1980) is still frequently employed in analysing ordinal response data in, for example, agricul-
ture (Lanfranchi, Giannetto, & Zirilli, 2014), medicine (Skolnick et al., 2014; Tefera & Sharma,
2015) and socioeconomic studies (Pechey, Monsivais, Ng, & Marteau, 2015).

One motivation for the PO model assumes that the ordinal response has an underlying con-
tinuous variable (Anderson & Philips, 1981), called a latent variable, that follows a logistic
distribution. The extensive use of the PO model is due to its parsimony for modelling the effect
of covariates on the response, compared to other similar models such as the baseline-category
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logit model, thanks to the use of the proportional odds property (Agresti, 2010, Sect. 3.3.1). Addi-
tionally, the model parameters are invariant to the way the categories for the ordinal response are
formed (Agresti, 2010, Sect. 3.3.3).

In the analysis of two-mode data matrices, with the modes being for example subjects and
questions and with all of the elements being ordered categorical responses, one might be inter-
ested in modelling the effect of both the rows and columns on the response. An example of
such data is an n by p matrix that summarises the responses of n individuals to p questions,
each with q possible (ordered) responses. In this case, the PO model can be fitted to identify,
for example, individuals and questions that tend to be linked with higher values of the ordinal
response.

However, the number of parameters in the PO model increases as the number of rows or
columns in the data set increases. As a result, interpretation becomes problematic for large data
sets. Identifying patterns related to the heterogeneity of the data, for example clusters of rows
or columns that have similar effect on the response, is challenging. Therefore, the formulation
of model approaches taking into account the row and column cluster structure of the data is
needed.

The work in this paper has been motivated by this need to model potential heterogene-
ity among the, assumed independent, ordinal responses in two-mode data by identifying row
and/or column clusters. As well as a single-mode clustering, our proposed model provides
a two-mode clustering, or biclustering, for fuzzy allocation of the rows and/or columns to
corresponding clusters. This way, the number of parameters can be reduced considerably as
rows and/or columns are clustered in corresponding homogeneous groups assumed to have
the same effect on the response. The results provide insights into major patterns in the data,
and row/column clusters can be compared and ranked according to their effect on the ordinal
response.

A number of model-based or distance-minimising biclustering methods exist that allocate,
probabilistically or not, the rows and columns of a data set containing continuous, binary or count
data to corresponding clusters. Examples include the double k-means method of Vichi (2001) and
Rocci and Vichi (2008) which, as the name suggests, resembles the k-means algorithm (Hartigan
& Wong, 1979), and the block mixture models of Govaert and Nadif (2003, 2010). Pledger
and Arnold (2014) have recently proposed a group of likelihood-based models fitted using the
Expectation–Maximisation algorithm (EM) (Dempster, Laird, & Rubin, 1977) for simultaneous
fuzzy clustering of the rows and columns of binary or count data.

The cluster analysis given by Pledger and Arnold (2014) can be considered as a multivariate
approach using latent modelling. For both ordered and unordered categorical variables, Desantis,
Houseman, Coull, Stemmet-Rachamimiv, and Betensky (2008) proposed a one-mode clustering
method based on latent modelling, which has been widely applied in many fields (e.g. Desantis,
Andrés Houseman, Coull, Nutt, & Betensky, 2012; Eluru, Bagheri, & Miranda-Moreno, 2012;
Molitor, Papathomas, Jerrett, & Richardson, 2010; Scharoun-Lee et al., 2011).

In this paper, we generalise the Pledger and Arnold (2014) work to the case of ordinal
categorical response data, specifically using the POmodel parameterisation. The proposed model
structure is an extension of the one-mode clustering model given by Desantis et al. (2008).

Section 2 describes the model structure. The performance of several model selection criteria
in selecting the true number of clusters in the data when our proposed model is used is assessed
in Sect. 3.1. The reliability of the clustering resulting from our proposed model is evaluated,
using simulation, in Sect. 3.2. Finally, applications to two real data sets are shown in Sects. 4.1
and 4.2 and the resulting clusters are compared to those obtained by double k-means (Vichi,
2001).
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2. Materials and Methods

2.1. Background: Proportional Odds Model

Consider the data set as an n × p matrix Y with entry yi j the realisation of a categorical
distribution with q cells and θi j1, . . . , θi jq probabilities,

∑q
k=1 θi jk = 1,∀i, j . Let the set of

model parameters be denoted by φφφ.
Under the PO model, and in the case where the additive effect of rows and columns on the

response is considered

θi jk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

exp(μk−αi−β j )

1+exp(μk−αi−β j )
, k = 1

exp(μk−αi−β j )

1+exp(μk−αi−β j )
− exp(μk−1−αi−β j )

1+exp(μk−1−αi−β j )
, 1 < k < q

1 − ∑q−1
k=1 θi jk, k = q

(1)

or alternatively,

logit
[
P(Yi j ≤ k)

] =
{

μk − αi − β j , 1 ≤ k < q
+∞, k = q,

(2)

where μk is the kth cut-off point, with μ1 < μ2 < · · · < μq−1, and αi , β j are, respectively,
the effect of row i , column j on the response, with α1 = β1 = 0. The total number of model
parameters is equal to ν = (q − 1) + (n − 1) + (p − 1).

2.2. Biclustering: Simultaneous Clustering of Rows and Columns

Suppose that the rows come from a finite mixture with R components or row clusters while
the columns come from a finite mixture with C components or column clusters. Rows that belong
to the same row cluster, r , are assumed to have the same effect on the response, modelled using
parameter αr . Similarly, columns that belong to the same column cluster c have the same effect
on the response modelled by parameter βc. If cell i, j belongs to row group r and column group
c then, under the PO model and assuming an additive effect of the clusters on the response,

logit
[
P(Yi j ≤ k)

] = μk − αr − βc if 1 ≤ k < q and + ∞ otherwise. (3)

The proportion of rows in row group r is πr and the proportion of columns in column group c is
κc, with

∑R
r=1 πr = ∑C

c=1 κc = 1. As the rows and columns in the same row and column cluster,
respectively, share the same parameters, αr and βc, respectively, there are now (q − 1) + 2(R −
1) + 2(C − 1) parameters in the model, where R ≤ n and C ≤ p. Choosing R � n and C � p
ensures that the number of independent parameters in this model is lower than the number of
parameters in the proportional odds model formulated in expression (2).

However, cluster membership is typically unknown and hence the (incomplete data) likeli-
hood sums over all possible partitions of rows into R clusters and over all possible partitions of
columns into C clusters

	(φφφ,πππ,κκκ|Y) = log

⎡

⎣
C∑

c1=1

· · ·
C∑

cp=1

κc1 · · · κcp
R∑

r1=1

· · ·
R∑

rn=1

πr1 · · · πrn

n∏

i=1

p∏

j=1

q∏

k=1

θ
I (yi j=k)
ri c j k

⎤

⎦ ,

(4)
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where πri and κc j is the proportion of rows and columns, respectively, that belong to row group
r , column group c for the particular partition i, j , of rows and columns into R and C clusters,
respectively.

Here, following Pledger and Arnold (2014, Sect. 2.2.2), we adopt a finite mixture model
which, assuming row-based conditional independence, we can describe using the following
(incomplete data) log-likelihood

	(φφφ,πππ,κκκ|Y) = log

⎡

⎣
C∑

c1=1

. . .

C∑

cp=1

κc1 . . . κcp

n∏

i=1

⎧
⎨

⎩

R∑

r=1

πr

p∏

j=1

q∏

k=1

θ
I (yi j=k)
rc j k

⎫
⎬

⎭

⎤

⎦ , (5)

which sums over the possible column cluster partitions only. Equation (5) is obtained from Eq.
(4) by taking terms of the i product through the r sums.

The additivemodel shown inEq. (3) canbe extended to amodelwhich allows for an interaction
between the row and column cluster effects, denoted by parameters γ , by modelling the logits of
the cumulative probabilities as

logit
[
P(Yi j ≤ k)

] = μk − αr − βc − γrc if 1 ≤ k < q and + ∞ otherwise, (6)

and, assuming constraints
∑

r γrc = 0 ∀c and ∑
c γrc = 0 ∀r , increasing the number of parame-

ters by (R − 1)(C − 1) compared to the additive case.
Themodel can also be altered to consider one-mode clustering, and the set of different models

that can be fitted are shown in Table 1 with details given in Appendix A. The first two columns
in Table 1, labelled as “R” and “C”, denote, respectively, the number of row and column clusters
assumed in themodelwhen R = 1 andC = 1 all rows/columns are homogeneous forming a single
row/column cluster, when R = n and C = p all rows/columns are heterogeneous, each forming
its own row/column cluster, when R = r and C = c there are r and c homogeneous row/column
clusters, respectively. Additionally, models incorporating an interaction term are indicated by the
associated parameters γlk with l indexing the row clusters and k the column clusters.

We denote by Zir and X jc the indicator random variables for group membership of row i in
row group r and column j in column group c, respectively. We use the EM algorithm (Dempster
et al., 1977) by treating clustermembership as themissing data and derive estimates of the posterior
probability of allocation of row i to row cluster r and of column j to column cluster c, given
respectively by E(Zi j ) = ẑir and E(X jc) = x̂ jc, for i = 1, . . . , n, j = 1, . . . , p, r = 1, . . . , R
and c = 1, . . . ,C with

∑R
r=1 ẑir = ∑C

c=1 x̂ jc = 1, ∀i, j .
The lack of a posteriori independence of the Zir and X jc makes the evaluation of the expected

value of their product computationally expensive as it requires a sum either over all possible
allocations of rows to row groups, or over all possible allocations of columns to column groups.
The variational approximation (Govaert & Nadif, 2005) which we employ (see Appendix A.3.1.
for details) is a solution to this problem.

We give details of the EM algorithm steps in Appendix A for all models listed in Table 1.
All the computer code is written in R (R Core Team, 2014), and the (complete data) log-

likelihood (given in Appendix A) is maximised using the Newton–Raphson algorithm provided
as an option in optim to estimate parameters μ1, . . . , μq−1 and the effects of row and column
clusters, as well as their interaction, if these exist in the model being fitted. Since the likelihood
surface is multimodal, the EM algorithm is started from a number of different points and the
iteration with the highest obtained likelihood value is retained (Everitt, Landau, Leese, & Stahl,
2011). The R code to fit the models is available upon request from the first author.
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Table 1.
Model set with corresponding number of parameters ν.

R C Logit
[
P(Yi j ≤ k)

]
, 1 ≤ k < q ν

r 1 μk − αr (q − 1) + 2R − 2
r p μk − αr − β j (q − 1) + 2R + p − 3
r p μk − αr − β j − γr j (q − 1) + Rp + R − 2
1 c μk − βc (q − 1) + 2C − 2
n c μk − αi − βc (q − 1) + 2C + n − 3
n c μk − αi − βc − γic (q − 1) + Cn + C − 2
r c μk − αr − βc (q − 1) + 2R + 2C − 4
r c μk − αr − βc − γrc (q − 1) + RC + R + C − 3

The following constraints are placed, where appropriate: α1 = 0, β1 = 0,
∑

k γkl = 0, ∀l, ∑
l γkl =

0, ∀k, ∑R
r=1 πr = 1,

∑C
c=1 κc = 1. R = 1: a single row cluster, R = r : r row clusters, R = n: each

row is in its own cluster. Similarly, C = 1: a single column cluster, C = c: c column clusters and C = p:
each column is in its own cluster. For example, when R = 1, C = c, the rows form one cluster, while the
columns form c clusters and the logits of the cumulative probabilities in the PO model for column cluster
c and 1 ≤ k < q are logit

[
P(Yi j ≤ k)

] = μk − βc, for all rows. If on the other hand R = n, C = c, the
cumulative probabilities for row i , column cluster c are, assuming an interaction between row and column
effects and 1 ≤ k < q , logit

[
P(Yi j ≤ k)

] = μk − αi − βc − γic.

3. Simulation Studies

We have performed two simulation studies: one to evaluate the performance of 10 model
selection criteria in recovering the true number of clusters when our proposed models are used
(Sect. 3.1) and one to evaluate the reliability of our proposed models (Sect. 3.2).

3.1. Model Selection

Since these are likelihood-based models, likelihood-based model selection criteria, such as
AIC (Akaike, 1973), its small-sample modification (AICc, Akaike, 1973; Burnham & Anderson,
2002; Hurvich & Tsai, 1989), BIC (Schwarz, 1978) and its Integrated Classification Likelihood
version (ICL-BIC, Biernacki, Celeux, & Govaert, 2000), can be used to select amongst them.

Following Fernández, Arnold, and Pledger (2014), we set up a simulation study to empirically
establish a relationship between our likelihood-based models for ordinal data, specifically using
the PO model, and the performance of 10 information criteria (Table 2) in recovering the true
number of cluster components.

We set n = 150, p = 15, q = 4, R = 3 and C = 2. We specified five scenarios by varying
the row and columnmixing proportions: a data set with similar dimensions (n = 150 and p = 15)
to the data analysed in the example in Sect. 4.2 (Scenario 1), balanced row and column mixing
proportions (Scenario 2), balanced column mixing proportions but unbalanced row proportions
(Scenario 3), unbalanced row and column mixing proportions (Scenario 4) and one of the row
mixing proportions close to zero (Scenario 5).

For each scenario, we simulated 100 data sets and noted the selected model using each of the
10 criteria out of models with R = 1, 2, 3, 4, 5 and C = 1, 2, 3, 4, 5. For each simulated data set,
the EM algorithm was repeated 10 times with random starting points and the best ML estimates
(those that led to highest log–likelihood value) were kept.

Figure 1 displays the percentage of cases in which each information criterion correctly recov-
ered the true number of row and column clusters, i.e. the true model that generated the data,
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Table 2.
Information criteria summary table.

Criteria Definition Proposed for Depending on

AIC (Akaike, 1973) −2	 + 2ν Regression ν

AICc (Akaike, 1973) AIC + 2ν(ν+1)
np−ν−1 ν and np

AICu (McQuarrie, Shumway, & Tsai, 1997) AICc + np log
(

np
np−ν−1

)

CAIC (Bozdogan, 1987) −2	 + ν(1 + log(np))
BIC (Schwarz, 1978) −2	 + ν log(np)
AIC3 (Bozdogan, 1994) −2	 + 3ν Clustering ν

CLC (Biernacki & Govaert, 1997) −2	 + 2EN EN
NEC(R) (Biernacki, Celeux, & Govaert, 1999) EN

	−	(1)
ICL-BIC (Biernacki et al., 2000) −2	c + ν log(np) ν, np and EN

AWE (Banfield & Raftery, 1993) −2	c + 2ν
(
3
2 + log(np)

)

	 is the maximised incomplete-data log-likelihood (see Eq. 5); 	(1) is the maximised incomplete-data log-
likelihood 	 without clustering structure; and 	c is the maximised complete-data log-likelihood given in
Appendix A. The third column categorises the criteria according to whether they were proposed for model
selection in a regression setting or for clustering. The last column indicates whether the penalty depends on
the number of parameters, ν, the total sample size which is the number of elements in the response matrix
Y , np, and/or the entropy function, EN(·) = 	 − 	c.

Figure 1.
Simulation study to assess the performance of model selection criteria in recovering the true number of clusters for our
proposed biclustering finite mixture PO (POFM) model. Bars depict the percentage of cases when the true model is
correctly identified by each criterion, averaged across the five scenarios.

averaged across the five scenarios. AIC3 has the best performance (selecting the correct model in
78 % of cases), followed by BIC (75 %), AIC, AICc, AICu and CAIC (73 %).

Our results are in accordance with Fonseca and Cardoso (2007) for the categorical case. ICL–
BIC is underestimating the number of clusters (selecting a smaller number of clusters in 32 % of
cases) andCLC is overestimating the number of clusters in 29%of cases.A very poor performance
is obtained by AWE and NEC (selecting the correct model in 46 and 24 % of cases, respectively).

It is important to highlight that these results are simply evaluating the ability ofmodel selection
criteria in selecting the right number of clusters in the mixture, but not necessarily in providing
the best clustering structure for the data.
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3.2. Model Evaluation

In this section, we evaluate the performance of our proposed method in (i) biclustering,
varying the cluster sizes and the sample size and (ii) one-dimensional row clustering, compared
to that of double k-means (Vichi, 2001) and standard k-means, respectively.

(i) We set R = 3, C = 2 and q = 3 or 5. The cutpoint values are obtained such that the
response categories have equal probabilities for the baseline row and column cluster. That is,
P(Yi j = 1) = P(Yi j = 2) = · · · = P(Yi j = q) when row i belongs to the first row cluster
and column j belongs to the first column cluster. The cutpoint values are {μ1 = log(1/2), μ2 =
log(2)} when q = 3, and {μ1 = log(1/4), μ2 = log(2/3), μ3 = log(3/2), μ4 = log(4)} when
q = 5. We consider (α1, α2, α3) = (0, 1, 2), (β1, β2) = (0, −1) and π1 = π2 = π3 = 1/3.
We vary n, p, q and (κ1, κ2) as n = (9, 30, 99), p = (10, 20, 100), q = (3, 5) and (κ1, κ2) =
(0.5, 0.5), (0.4, 0.6), (0.3, 0.7), (0.2, 0.8). The case with balanced column clusters assumes
(κ1, κ2) = (0.5, 0.5). For an unbalanced case, the scenarios are from (0.4, 0.6) to (0.2, 0.8).

The response {Yi j } values are generated from a categorical distribution with size 1 and
probabilities constrained as in expression (1). We assign the first 1/3 of rows to row cluster 1, the
second 1/3 to row cluster 2 and the last 1/3 to row cluster 3. Similarly, the first 1/κ1 of columns
are assigned to column cluster 1, and the rest of the columns to column cluster 2. We simulate
100 data sets for each scenario.

Table 3 shows themean of parameter estimates obtained for α2, α3 and β2 from 100 simulated
data sets.We are aware of the bias in the estimated parameters when n or p are small. This is due to
the fact that the clusters are not fixed and hence their effect on the response is not fixed either. For
example, a group of subjects who belong to a certain cluster in the true model might be allocated
into a different cluster for a simulated data set. Or, they might be separated into different clusters.
However, when both n and p are large, the means are close to the true parameters, because it
is less likely to allocate a large number of subjects to a wrong cluster and, hence, the clusters
themselves are more similar to the true clusters.

Regardless of the bias, the overall result shows that for balanced cases with (κ1, κ2) =
(0.5, 0.5), the estimates of the column effects are closer to the truth than for highly unbalanced
cases (κ1, κ2) = (0.2, 0.8) when n is small. The unbalanced column clusters do not affect the
quality of the row cluster effect estimates. In general, when both n and p increase, the quality of
row cluster effect estimates improves. The standard errors are between 0.05 to 0.5 for the cases
of p = 10. For the other cases, they range from 0.001 to 0.08.

To evaluate the clustering ability of our proposedmethod, we calculate the average proportion
of times that the pairwise grouping is correct (Rand index, Rand, 1971) over 100 simulated data
sets. For example, if two rows are in the same cluster for the true model, but the proposed
method allocates them to different clusters, then this pair is mis-clustered and vice-versa. We
report the average Rand index for all row/column pairs in Table 4 when (κ1, κ2) = (0.5, 0.5)
and (0.2, 0.8) for both our proposed approach and the double k-means algorithm (Vichi, 2001).
The two approaches have similar performance which improves as n and p increase and when the
column clusters are balanced. For our approach, the largest standard error is 0.03 for the highly
unbalanced cases and most standard errors are between 0.001 to 0.01.

(ii) We set R = 3 and C = 1, i.e. logit
[
P(Yi j ≤ k)

] = μk − αr if 1 ≤ k < q and +
∞ otherwise. The cutpoint values are calculated as in simulation setting (i) above. We vary n
and p as n = (9, 30, 99), p = (10, 20, 100) and π1 = π2 = π3 = 1/3 with (α1, α2, α3) =
(0, 1, 2), (0, 2, 4), (0, 1, 4) and q = (3, 5, 7).

When p is large, there are more data points for each row. When q is large, the ordered
categorical response has a finer scale. For the row cluster effects {αr , r = 1, 2, 3}, the last setting
(0, 1, 4) gives an unbalanced effect where the difference between the first two clusters is small,
but the first two clusters are quite different from the third cluster.
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Table 3.
The average estimate obtained for each parameter over 100 simulations.

n p True (κ1, κ2)

(0.5, 0.5) (0.4, 0.6) (0.3, 0.7) (0.2, 0.8)

q = 3 5 q = 3 5 3 5 3 5

9 10 α2 = 1 1.40 1.46 1.43 1.58 1.43 1.56 1.46 1.49
10 α3 = 2 3.03 1.99 2.30 2.22 2.40 1.95 2.37 1.99
10 −β2 = 1 1.33 1.02 0.98 0.90 0.76 0.86 0.73 0.71
20 α2 = 1 1.42 1.38 1.42 1.43 1.41 1.38 1.45 1.40
20 α3 = 2 1.88 1.91 1.95 1.90 2.07 1.84 2.00 1.92
20 −β2 = 1 0.95 0.91 1.43 0.84 1.14 0.93 0.71 0.69
100 α2 = 1 1.31 1.42 1.34 1.43 1.38 1.44 1.37 1.44
100 α3 = 2 1.88 1.97 1.90 2.00 1.92 1.99 1.92 2.00
100 −β2 = 1 1.07 0.88 0.93 0.81 1.24 1.02 0.98 0.88

30 10 α2 = 1 1.41 1.44 1.43 1.37 1.38 1.45 1.40 1.38
10 α3 = 2 2.47 2.23 2.70 2.30 2.54 2.09 2.90 1.94
10 −β2 = 1 1.01 0.96 1.07 0.93 0.96 0.92 0.94 0.78
20 α2 = 1 1.26 1.18 1.15 1.19 1.19 1.22 1.19 1.23
20 α3 = 2 1.96 1.98 2.02 2.05 2.06 1.96 2.08 2.04
20 −β2 = 1 0.95 0.96 1.02 1.00 1.02 1.02 0.91 1.00
100 α2 = 1 1.11 1.30 1.16 1.34 1.16 1.34 1.17 1.32
100 α3 = 2 1.96 1.98 1.92 1.98 1.93 1.99 1.95 1.99
100 −β2 = 1 0.97 0.95 0.96 0.95 0.98 0.97 0.97 0.96

99 10 α2 = 1 1.22 1.24 1.42 1.31 1.22 1.22 1.39 1.19
10 α3 = 2 2.28 2.16 2.32 2.22 2.33 2.21 2.47 2.16
10 −β2 = 1 1.00 0.97 1.01 0.99 1.01 1.00 0.96 0.98
20 α2 = 1 1.05 1.02 1.03 1.03 1.06 1.01 1.06 1.06
20 α3 = 2 2.04 1.99 2.04 2.04 2.05 1.97 2.06 2.01
20 −β2 = 1 1.01 0.99 1.00 1.00 0.98 0.99 0.99 0.98
100 α2 = 1 1.03 1.13 1.04 1.14 1.05 1.19 1.04 1.17
100 α3 = 2 1.99 1.99 1.99 2.00 1.97 2.00 1.99 1.99
100 −β2 = 1 0.99 1.00 1.00 0.99 1.00 0.99 1.00 0.99

Table 5 shows the average Rand index for 1000 simulated data sets for each of the scenarios,
comparing the proposed method (POFM) with k-means. All standard errors for the index are
less than 0.0026. Most of them are around 0.001. POFM performs better than k-means when
the cluster effects are balanced. In general, the greater n, p, q or the cluster effects are, the
better the performance. The only case when k-means considerably outperforms POFM is when
(α1, α2, α3) = (0, 1, 4) and p is large. For this particular case, POFM fails to distinguish
between Clusters 1 and 2, and partitions the individuals into only two clusters, leaving one of the
clusters empty. However, the quality of the row clustering is still satisfactory, with the average
Rand index greater than 70 % in all cases.

4. Results: Case-Studies

4.1. Religious beliefs

We consider part of the data set from a study first published by Wiech et al. (2008). Twelve
individuals, self-classified as religious, replied to 16 questions, shown in Appendix B, all rated
on a 6-point Likert scale, (1) “Strongly disagree”, …, (6) “Strongly agree”. The questions were
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Table 4.
The average Rand index for 100 simulated data sets based on our proposed (POFM) and double k-means (dkm) methods.

n p q = 3 q = 5

(κ1, κ2) = (0.5, 0.5) (0.2, 0.8) (0.5, 0.5) (0.2, 0.8)

Cluster POFM dkm POFM dkm POFM dkm POFM dkm

9 10 Row 0.61 0.75 0.63 0.72 0.65 0.76 0.64 0.74
10 Col. 0.64 0.63 0.60 0.54 0.65 0.59 0.59 0.52
20 Row 0.74 0.78 0.73 0.80 0.75 0.76 0.71 0.78
20 Col. 0.64 0.59 0.60 0.55 0.65 0.60 0.61 0.53
100 Row 0.81 0.99 0.79 0.97 0.77 0.98 0.76 0.97
100 Col. 0.66 0.62 0.62 0.55 0.70 0.64 0.65 0.57

30 10 Row 0.65 0.70 0.66 0.70 0.66 0.70 0.67 0.72
10 Col. 0.75 0.76 0.80 0.60 0.86 0.75 0.73 0.67
20 Row 0.76 0.77 0.78 0.78 0.78 0.79 0.78 0.80
20 Col. 0.90 0.80 0.86 0.65 0.91 0.83 0.86 0.71
100 Row 0.92 0.99 0.91 0.99 0.85 0.99 0.84 0.99
100 Col. 0.91 0.84 0.93 0.74 0.93 0.87 0.94 0.79

99 10 Row 0.68 0.70 0.68 0.71 0.69 0.71 0.69 0.71
10 Col. 0.99 0.96 0.95 0.85 0.99 0.97 0.93 0.88
20 Row 0.78 0.80 0.80 0.81 0.82 0.81 0.81 0.82
20 Col. 0.99 0.99 0.99 0.97 1.00 0.99 0.97 0.98
100 Row 0.98 0.99 0.97 0.99 0.92 0.99 0.91 0.99
100 Col. 0.99 0.99 1.00 0.98 1.00 0.99 1.00 0.99

Table 5.
The average Rand index based on our proposed (POFM) and double k-means (dkm) methods for 1000 simulated data
sets.

n p Method (α2, α3) = (1, 2) (α2, α3) = (2, 4) (α2, α3) = (1, 4)

q = 3 5 7 3 5 7 3 5 7

9 10 POFM 0.61 0.63 0.64 0.73 0.78 0.80 0.74 0.75 0.75
k-means 0.68 0.69 0.69 0.70 0.72 0.73 0.72 0.74 0.75

20 POFM 0.70 0.72 0.73 0.79 0.86 0.88 0.77 0.76 0.75
k-means 0.70 0.71 0.72 0.71 0.73 0.74 0.74 0.77 0.78

100 POFM 0.85 0.84 0.83 0.94 0.94 0.86 0.75 0.75 0.75
k-means 0.74 0.77 0.78 0.74 0.77 0.78 0.79 0.88 0.90

30 10 POFM 0.65 0.67 0.68 0.75 0.81 0.84 0.76 0.77 0.77
k-means 0.66 0.67 0.68 0.70 0.72 0.73 0.71 0.74 0.76

20 POFM 0.73 0.76 0.77 0.84 0.93 0.95 0.78 0.78 0.78
k-means 0.70 0.72 0.72 0.72 0.75 0.76 0.75 0.80 0.81

100 POFM 0.94 0.92 0.91 0.95 0.99 0.92 0.77 0.77 0.77
k-means 0.79 0.83 0.86 0.76 0.84 0.87 0.93 0.97 0.98

99 10 POFM 0.67 0.68 0.69 0.76 0.84 0.88 0.76 0.77 0.78
k-means 0.67 0.68 0.68 0.70 0.72 0.73 0.72 0.75 0.76

20 POFM 0.75 0.78 0.80 0.86 0.95 0.97 0.79 0.78 0.78
k-means 0.71 0.73 0.74 0.73 0.77 0.80 0.79 0.85 0.86

100 POFM 0.98 0.97 0.96 0.97 1.00 0.97 0.78 0.78 0.78
k-means 0.88 0.92 0.93 0.82 0.87 0.89 0.99 0.99 0.99
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Figure 2.
Estimated probabilities of replying 3 or above to each of the 2 column clusters for all 3 row clusters, as derived by the
biclustering model with R = 3, C = 2.

designed to assess an individual’s beliefs on the level of control that god (first 8 questions) and
powerful other individuals (last eight questions) have on their lives.

The biclustering model proposed in Sect. 2 was fitted to the 12 by 16 matrix by considering
R,C = 2, . . . , 4. The model with the greatest support by AIC3 has R = 3, C = 2 and an
interaction between row group effects and column group effects.

The two column clusters separate the questions into the two categories (god and others)
almost perfectly. Cluster 1 includes questions {1, 2, 3, 4, 5, 6, 8, 10}, while Cluster 2 includes
questions {7, 9, 11, 12, 13, 14, 15, 16}. The three row clusters are {3, 4, 5, 6, 8, 9, 10, 12},
{1, 2, 11} and {7}. Double k-means (Vichi, 2001) gives the same row clusters and similar column
clusters {2, 3, 4, 5, 6, 8}, {1, 7, 9, 10, 11, 12, 13, 14, 15, 16}.

The estimated probabilities of replying 3 or above to each of the two question clusters for
the three row clusters are shown in Figure 2. All row groups tend to agree more with god-
related questions than with questions related to the effect of other powerful people. The estimated
probabilities of agreeing with the god-related questions do not vary considerably between the
three row clusters. However, that is not the case for the second column group since Row Cluster 1
and particularly RowCluster 3, which consists of Individual 7 alone, tend to give lower scores than
individuals in Row Cluster 2. Note that in addition, Individual 7 strongly agrees with questions
in Cluster 1, demonstrating more extreme views than individuals belonging to the other clusters,
who tend to be more moderate in their answers.

4.2. Attempted Suicides

The data set was collected as part of a study of patients admitted for deliberate self-harm
(DSH) at the AcuteMedical Departments of threemajor hospitals in Eastern Norway.We consider
the answers of 151 individuals to 13 questions, shown in Appendix C, that were designed to assess
the level of depression of the respondent by means of the Beck Depression Inventory-Short Form
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Table 6.
Percent of individuals from the five POFM clusters, represented in the rows, that are clustered in the corresponding five
double k-means (Vichi, 2001) clusters.

POFM cluster Double k-means cluster

1 2 3 4 5

1 100 0 0 0 0
2 26 72 2 0 0
3 0 10 48 23 0
4 0 0 0 0 100
5 0 0 21 30 49

(BDI-SF) (Furlanetto, Mendlowicz, & Romildo Bueno, 2005). Response options range from 1 to
4, with higher scores indicating higher levels of depression (Beck, Schuyler, & Herman, 1974).

We fitted biclustering models with R = 2, . . . , 5 and C=2 or 3. The model supported by
AIC3 has R = 5,C = 2 and an additive effect of row and column groups on the response.

The two column clusters are {1, 2, 3, 4, 5, 7, 8, 10, 13} and {6, 9, 11, 12}, with the first
cluster receiving higher scores than the second (β̂2 = −0.99(0.10)), suggesting that the nine
questions of Cluster 1 are, possibly, markers of more severe forms of depression. The allocation
of individuals to the five row groups is in proportion to 0.211, 0.266, 0.208, 0.030, 0.285. Double
k-means (Vichi, 2001) gives the following column clusters: {2, 3, 4, 5, 6, 7, 8} and {1, 9, 10, 11,
12, 13}. For row clusters, we present the proportion of individuals from each of our clusters that
are allocated to each of the double k-means clusters in Table 6, where it can be seen that with the
exception of Cluster 4, the highest proportions appear in the diagonal of the table.

The fourth row cluster, which consists of four individuals, is believed to show the most signs
of depression since α̂4 = 1.8(0.32). The first cluster follows with α̂1 = 0 since it is the baseline,
followed by Clusters 5 (̂α5 = −1.14(0.12)), 2 (̂α2 − 2.37(0.13)), and 3 (̂α3 = −3.79(0.16)). In
fact, no one in Cluster 4 contacted someone for help after their attempt, while the corresponding
proportions for the other four clusters are all greater than 25 %, which demonstrates the greater
determination of individuals in Cluster 4 to succeed in their attempt. Of course, the size of Cluster
4 is possibly too small to make meaningful comparisons of this type. However, the proportion of
individuals in Clusters 1, 5, 2 and 3 that had at least one episode of DSHwithin three months after
the study is, respectively, equal to 30, 24, 16 and 3.4%.DSH is one of themost robust predictors of
subsequent death by suicide (Hawton, Casanas, Comabella, Haw, & Saunders, 2013). The risk of
suicide among DSH patients treated at hospital is 30- to 200-fold in the year following an episode
compared to individuals with no history of DSH (Cooper et al., 2005; Hawton et al., 2012; Owens,
Horrocks, & House, 2002). Our model has successfully ordered the groups in terms of their risk
of DSH within three months since the data we considered were collected.

5. Discussion

Our biclustering models identify homogeneous groups of both rows and columns in two-
mode data sets of ordinal responses, reducing the number of parameters needed to adequately
describe the data and therefore easing interpretation. They fully account for the ordinal nature of
the responses, while, being likelihood-based, give access to tools for selecting between possible
models.

We have performed an extensive simulation study to compare the performance of a number of
model selection criteria in identifying the correct number of mixture components for models and
data such as the ones we considered in our applications, conditional on using the EM algorithm
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and the variational approximation of Govaert and Nadif (2005). The variational approximation
is known to produce local optima, and hence it is recommended to use different random starting
values for several runs of the EMalgorithm. Recently, Keribin, Brault, Celeux, andGovaert (2014)
developed latent block models for categorical data, considering a Bayesian approach, which do
not require the aforementioned approximation. The potential to develop such models for the PO
parameterization is a matter of future research.

In the two real data applications considered, both including questionnaire-type data designed
to gain knowledge about the participants’ personality, feelings and way of thinking, the clusters
identified by the model agree with our knowledge of the system and provide useful insight of the
characteristics of the participants. Especially in the example of Sect. 4.2, the way the participants
were clustered agrees with information collected three months after the study was conducted.

In the analysis presented in Sect. 4.2 we have considered only individuals with complete
records, excluding participants withmissing data.Missing data are often present in similar studies;
and, hence, future work could extend the models to deal with such issues. Fitting the models using
a Bayesian approach could provide a way of dealing with the missing data and also of choosing
the right number of clusters, as, for example, in van Dijk, van Rosmalen, and Paap (2009) and
Wyse and Friel (2012), or of appropriately averaging over models, for example using reversible
jump MCMC (Green, 1995).

Substantial developments in specialised methods for ordinal data have recently been made
(see Liu & Agresti, 2005, for an overview). For instance, Fernández et al. (2014) have recently
developed one- and two-dimensional clustering models for ordinal data having a likelihood-based
foundation. They did this by using the assumption of the ordinal stereotype model, which allows
the determination of a new spacing of the ordinal categories, as dictated by the data. The models
presented in this paper may be extended to other ordinal models such as the adjacent-categories
logit models, continuation-ratio logit models, and mean response models (see Agresti, 2012,
for details on these models). Similarly, incorporating covariates into the model, when these are
available, is straightforward by adjusting the linear predictor accordingly.

We have presented the case when q, i.e. the number of levels, is the same for all variables.
However, the models are easily extended to allow for a set of cutpoints to be calculated for each
unique value of q observed in the data set.

The area of application of these models is extremely wide and includes market research,
where questions of the type “How likely are you to buy this product in the future” have possible
responses “Very likely to buy”, “Likely to buy”, “May or may not buy”, etc. Additionally, the
models are useful for services, such as websites, that review products, such as books, music
albums, hotels. and provide recommendations to the users according to their own past reviews,
as they can simultaneously cluster the individuals according to their taste, but also the products
according to the reviews they have received from all users.

Future research will develop a graphical method for matrix visualisation, taking the resulting
probabilities of allocation for each individual data point into account. The existing graphical
methods rely on the use of ad hoc distance metrics and similarity measures which, as we have
noted above, do not respect the full ordinal nature of the data.
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