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We investigate aspects of the spherical squirmer model employing both large-scale
numerical simulations and asymptotic methods when the squirmer is placed in
weakly elastic fluids. The fluids are modelled by differential equations, including the
upper-convected Maxwell (UCM)/Oldroyd-B, finite-extensibility nonlinear elastic model
with Peterlin approximation (FENE-P) and Giesekus models. The squirmer model we
examine is characterized by two dimensionless parameters related to the fluid velocity
at the surface of the micro-swimmer: the slip parameter ξ and the swirl parameter ζ . We
show that, for swimming in UCM/Oldroyd-B fluids, the elastic stress becomes singular
at a critical Weissenberg number, Wi, that depends only on ξ . This singularity for the
UCM/Oldroyd-B models is independent of the domain exterior to the swimmer, or any
other forces considered in the momentum balance for the fluid – we believe that this is the
first time such a singularity has been explicitly demonstrated. Moreover, we show that the
behaviour of the solution at the poles is purely extensional in character and is the primary
reason for the singularity in the Oldroyd-B model. When the Giesekus or the FENE-P
models are utilized, the singularity is removed. We also investigate the mechanism behind
the speed and rotation rate enhancement associated with the addition of swirl in the
swimmer’s gait. We demonstrate that, for all models, the speed is enhanced by swirl, but
the mechanism of enhancement depends intrinsically on the rheological model employed.
Special attention is paid to the propulsive role of the pressure and elucidated upon. We
also study the region of convergence of the perturbation solutions in terms of Wi. When
techniques that accelerate the convergence of series are applied, transformed solutions are
derived that are in very good agreement with the results obtained by simulations. Finally,
both the analytical and numerical results clearly indicate that the low-Wi region is more
important than one would expect and demonstrate all the major phenomena observed when
swimming with swirl in a viscoelastic fluid.
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1. Introduction

Recently there has been a great deal of work on studying locomotion in complex
fluids, because, indeed, most biological fluids exhibit non-Newtonian behaviour owing
to the presence of large biomolecules embedded within them (Spagnolie 2015; Patteson,
Gopinath & Arratia 2016). Notably, these biofluids are often viscoelastic, meaning they
exhibit both a fluid-like and solid-like response to deformation (D’Avino & Maffettone
2015). This fluid elasticity can have a profound impact on the motility of swimming
micro-organisms, either hindering (Fu, Powers & Wolgemuth 2007; Lauga 2007; Fu,
Wolgemuth & Powers 2009; Shen & Arratia 2011; Zhu et al. 2011; Zhu, Lauga & Brandt
2012; Thomases & Guy 2014; Li et al. 2017; Binagia, Guido & Shaqfeh 2019) or enhancing
(Teran, Fauci & Shelley 2010; Liu, Powers & Breuer 2011; Spagnolie, Liu & Powers 2013;
Riley & Lauga 2014; Thomases & Guy 2014, 2017; Patteson et al. 2015; Binagia et al.
2020) propulsion depending upon the swimmer’s gait, the structural properties of the
immersed body and, of course, the rheology of the fluid (Dasgupta et al. 2013). Likewise,
in regard to collective motion, viscoelasticity has been shown to have a substantial effect,
engendering both aggregation and alignment of swimming cells (Li & Ardekani 2016;
Tung et al. 2017; Ishimoto & Gaffney 2018).

A workhorse model to study the effect of fluid elasticity on micro-organism motility
is the squirmer model (Lighthill 1952; Blake 1971), which, in short, describes an active
particle as being a nearly spherical body with a prescribed slip velocity on its surface
(Pedley 2016). Using this mathematical description of a micro-swimmer, researchers have
leveraged both numerical simulations (Zhu et al. 2011, 2012; Li, Karimi & Ardekani
2014; De Corato & D’Avino 2017; Binagia et al. 2020) as well as asymptotic analysis
(Lauga 2009; Yazdi, Ardekani & Borhan 2014, 2015; De Corato, Greco & Maffettone
2015; Datt et al. 2017; Yazdi & Borhan 2017; Binagia et al. 2020) to better understand the
hydrodynamics of swimming in elastic fluids. In particular, though, no one to date has yet
considered if the squirmer model itself is mathematically well-behaved in the context of
the nonlinear constitutive models commonly used to model viscoelastic fluids such as the
upper-convected Maxwell (UCM), Oldroyd-B, Giesekus and finite-extensibility nonlinear
elastic model with the Peterlin approximation (FENE-P) models. Indeed, for the UCM and
Oldroyd-B models, we demonstrate the presence of a singularity that is only removed for
models that include regularization of the elastic stress, such as the Giesekus and FENE-P
models. Furthermore, we show that the radius of convergence of asymptotic, perturbation,
solutions in terms of the Weissenberg number, Wi, applied to squirming in elastic fluids
is very small, necessitating the use of techniques that accelerate the convergence of series
(Housiadas 2017), where Wi, defined in § 2, gives a measure of the elasticity of the ambient
fluid. The singularity at small Wi and the even smaller radius of convergence of the relevant
perturbation solutions fully explain the observations made by other researchers that the
higher-order corrections significantly add to the results, leading to qualitatively different
speeds (Datt et al. 2017; Datt & Elfring 2019, 2020). They also provide the range of Wi at
which the perturbation expansions can render accurate predictions.

While the spherical squirmer model has been described in detail in the literature
and is summarized in our latest article (Binagia et al. 2020), here we provide a
brief description for completeness. We assume a spherical, axisymmetric, neutrally
buoyant, micro-swimmer with radius R in a highly viscous matrix fluid. The fluid is
considered Newtonian with constant mass density ρ and constant shear viscosity ηs. The
micro-swimmer is translated with velocity V and rotates with rotation rate ω. The motion
of the body takes place under the influence of the force exerted on its surface by the
ambient fluid, in the absence of any external forces and torques, and under isothermal
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Figure 1. Geometry, coordinate systems and dimensionless boundary conditions. (a) Cartesian: xyz with the
x-axis being normal to the yz plane. (b) Spherical: rθφ, where θ is the polar angle (0 ≤ θ ≤ π) and φ is the
azimuthal angle (0 ≤ φ ≤ 2π).

and steady-state conditions. In this case, the relevant Reynolds number for the fluid,
Re = ρVR/ηs, is negligible, Re � 1, and it can be safely considered zero. Because of the
axisymmetric shape of the body, the directions of translation and rotation are the same,
which implies that the swimmer can only swim in a straight line (Pak & Lauga 2014).

We choose an inertialess (co-moving) frame of reference and a spherical coordinate
system with origin located at the centre of the swimmer. The spherical coordinates are
r̃, θ, φ (a tilde above a variable indicates a dimensional quantity) and the unit vectors
are {er, eθ , eφ}, where r̃ is the distance from the centre of the swimmer, θ is the polar
angle measured from the axis of symmetry (0 ≤ θ ≤ π) and φ is the azimuthal angle (0 ≤
φ < 2π); see figure 1 for more details. The velocity vector and the isotropic pressure are
denoted by ṽ = ṽrer + ṽθeθ + ṽφeφ and p̃, respectively. Under the assumptions mentioned
above, the governing equations for the flow around the micro-swimmer are

∇ · ṽ = 0, −∇p̃ + ηs∇2ṽ = 0. (1.1a,b)

We are interested in velocity fields characterized by no radial velocity on the surface
of the body, i.e. ṽr(r̃ = R, θ, φ) = 0, which corresponds to the no-penetration boundary
condition on a non-deformable object. Equations (1.1a,b) are linear and can be solved
analytically to find the general solution for the field variables in the domain exterior to
the swimmer (r̃ > R). Then, by evaluating the solution on the surface of the body, r̃ = R,
one can impose the so-called ‘slip velocity’, which denotes a purely tangential motion
ṽ(S) ≡ ṽ(r̃ = R, θ, φ) = v

(S)
θ eθ + v

(S)
φ eφ , where hereafter the superscript (S) indicates a

value on the surface of the body. Considering only axisymmetric and creeping flow, ṽ(S)

is generally given by the expression (Pak & Lauga 2014)

ṽ(S)(θ) = sin(θ)

{(
2

∞∑
n=1

Bn
P′

n(μ)

n(n + 1)

)
eθ +

( ∞∑
n=1

Cn
P′

n(μ)

Rn+1

)
eφ

}
, (1.2)

where Bn, Cn, n = 1, 2, 3, . . ., are constants, μ = cos(θ) and Pn = Pn(μ) is the Legendre
orthogonal polynomial in [−1, +1] of degree n. We focus on flows driven only by the
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first two polar modes, the first two azimuthal modes and a rigid-body motion in the
z-direction with velocity ωR sin(θ). Note, however, that the first azimuthal mode, C1, and
the rigid-body rotation rate, ω, can be merged into a single parameter. Thus, the velocity
at the surface of a micro-swimmer is expressed as

ṽ(S) =
(

B1 sin(θ) + B2

2
sin(2θ)

)
eθ +

((
C1

R2 + ωR
)

sin(θ) + 3C2

2R3 sin(2θ)

)
eφ. (1.3)

This simplification is made since, in a Newtonian fluid, the swimming speed is determined
solely by the value of B1, while B2 is the only coefficient that appears in the force that
the fluid exerts on the particle. Furthermore, these are the only two modes necessary to
distinguish between pushers (swimmers that generate thrust from behind their body) and
pullers (swimmers that generate thrust from the front of their body). Regarding the first
two swirling modes considered here, C1 is closely related to ω, and for a Newtonian fluid
one determines the other (see below); while C2 corresponds to a rotlet dipole and is the
cause of the slowest-decaying flow in the azimuthal direction (Pak & Lauga 2014). Thus,
the surface velocity as described by (1.3) contains the most important information for this
type of motion of the micro-swimmer.

We choose the characteristic velocity as the coefficient of the first polar mode, i.e. B1,
and we define the dimensionless quantities

ξ ≡ B2

B1
, ζ ≡ C2

R3B1
, U ≡ V

B1
, Ω ≡ C1

R2B1
+ ωR

B1
. (1.4a–d)

We will be referring to ξ as the slip parameter, to ζ as the swirl parameter, to U as the
speed of the swimmer (or translation velocity) and to Ω as the dimensionless net rotation
rate of the swimmer. Thus, the dimensionless boundary conditions on the surface of the
body become

v(S)
r = 0, v

(S)
θ = sin(θ) + ξ

2
sin(2θ), v

(S)
φ = Ω sin(θ) + 3ζ

2
sin(2θ). (1.5a–c)

Evaluating the continuity equations (1.1a,b) at r = 1 and using (1.5a–c) gives

∂vr

∂r

∣∣∣∣
r=1

= −ξ

2
− 2 cos(θ) − 3ξ

2
cos(2θ). (1.6)

For ξ < 0 the micro-swimmer is defined as a pusher, for ξ > 0 it is a puller and for ξ = 0 the
swimmer is considered neutral. Also, all the components of the velocity gradient tensor,
∇v, at r = 1 can be found using (1.5a–c) and (1.6) and the fact that the flow field is
axisymmetric (i.e. ∂v/∂φ = 0), with the exception of the components (∇v)rθ = ∂vθ/∂r
and (∇v)rφ = ∂vφ/∂r. To determine the latter two components, full knowledge of the
velocity field around the swimmer is needed.

Finally, by using the superscript (∞) to denote the far flow field, the velocity −Uez and
pressure become

v(∞)
r = −U cos(θ), v

(∞)
θ = U sin(θ), v

(∞)
φ = 0, p(∞) = 0. (1.7a–d)

Since the swimmer is force- and torque-free, two additional auxiliary conditions can be
applied, the force-free and torque-free conditions (FFC and TFC, respectively). In the
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spherical coordinate system, these conditions are given as∫
r=1

T · er dS = 0,

∫
r=1

er × (T · er) dS = 0, (1.8)

where T = −pI + γ̇ is the dimensionless total stress tensor of the fluid, γ̇ = ∇v + (∇v)T

is the rate-of-deformation tensor, the superscript ‘T’ denotes the transpose and I is the unit
tensor. By applying (1.8), the unknown swimming velocity U and net rotation rate Ω of
the micro-swimmer are determined, leaving the remaining two dimensionless quantities ζ

and ξ , reported in (1.4a–d), as free parameters. Consequently, we do not investigate either
the effect of C1 or the effect of ω, but we discuss only the net rotation rate, Ω , as this
results from the TFC.

The analytical solution of (1.1a,b) with the associated boundary conditions
(1.5a–c)–(1.7a–d) is

vr = ξ

4r2

(
−1 + 1

r2

)
(1 + 3 cos(2θ)) +

(
−U + 3U − 2

2r
+ 2 − U

2r3

)
cos(θ), (1.9)

vθ =
(

U + 2 − 3U
4r

+ 2 − U
4r3

)
sin(θ) + ξ

2r4 sin(2θ), (1.10)

vφ = Ω

r2 sin(θ) + 3ζ

2r3 sin(2θ), (1.11)

p = − ξ

2r3 (1 + 3 cos(2θ)) + 1
r2

(
3U
2

− 1
)

cos(θ). (1.12)

Moreover, by applying (1.8), we determine the translation velocity and the rotation rate of
the swimmer as

U = 2/3, Ω = 0. (1.13a,b)

In this case, the O(1/r) contribution in the velocity components and the O(1/r2)
contribution in the pressure field are eliminated. Thus, as is well known, the velocity of
the micro-swimmer in a simple Newtonian fluid under creeping conditions is two-thirds
of the coefficient of the first polar mode (Lighthill 1952; Blake 1971), i.e. V = 2B1/3 in
dimensional units, and the rotation rate is ω = −C1/R3 (obviously, ω = 0 for C1 = 0).
The linearity of the governing equations, (1.1a,b), has the consequence that the
translational and rotational velocities of the body are independent. It is also clear that
the slip and swirl parameters, ξ and ζ , do not affect the velocity of the body, U. Finally,
the analytical solution reveals that at the poles, θ = 0, π, and at any radial position r ≥ 1,
γ̇ii /= 0 and γ̇ij = 0, i /= j, where i, j = r, θ, φ. Therefore, at the poles of the spherical
coordinate system, the flow is purely extensional in character.

2. The squirmer model in viscoelastic fluids

In our previous publication (Binagia et al. 2020), we described the fact that, for real
swimming organisms in elastic fluids, for which the squirmer model is a reasonable model,
e.g. Escherichia coli, the Weissenberg numbers based on their swimming speed and
characteristic dimension are quite modest (Wi < 0.25). However, the Weissenberg number
based on their swirl may be much larger, and, moreover, such swirling flow can make the
swimming velocity, for the same swimming gait, faster than that in a Newtonian fluid of the
same viscosity. Since this result was only demonstrated over a relatively small parameter
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range, and primarily for the Giesekus fluid, we revisit this problem focusing on the low
-Weissenberg-number regime where significant analytic progress can be made.

Thus, we consider a viscoelastic highly viscous ambient fluid that is composed
of a pure Newtonian solvent with viscosity ηs and a viscoelastic solute with zero
-shear-rate viscosity ηp and single relaxation time λ. We also assume that the
spherical micro-swimmer changes direction of swimming with a frequency ν. We
make dimensionless the governing equations by scaling all lengths with R, the velocity
components with B1, the time with 1/ν, the pressure with (ηs + ηp)B1/R and the
viscoelastic extra-stress components with ηpB1/R. Thus, the dimensionless total stress
tensor can be expressed as

T = −pI + βγ̇ + (1 − β)τ . (2.1)

In the above equation, τ is the symmetric elastic extra-stress tensor and β is the solvent
viscosity ratio, β ≡ ηs/(ηs + ηp), which by definition varies in the range 0 < β < 1. For
β = 1 the fluid is purely Newtonian, and for β = 0 it is purely polymeric. Then, the
dimensionless mass and momentum balances are

∇ · v = 0, ∇ · T = −∇p + β∇2v + (1 − β)∇ · τ = S
∂v

∂t
+ Re v · ∇v, (2.2)

where Re ≡ ρRB1/(ηs + ηp) and S ≡ ρR2ν/(ηs + ηp) are the Reynolds and frequency-
related Reynolds number, respectively. However, due to the micrometre size of the
swimmer, the high viscosity of the ambient fluid and the small magnitude of the slip
velocity, the Reynolds number in (2.2) is vanishingly small, Re = 0. Moreover, for typical
biological systems, the frequency ν is low; hence S � 1 and the transient term in (2.2) is
negligible compared to the remaining terms (Eastham & Shoele 2020).

The polymer extra-stress tensor is determined via the following generalized
dimensionless equation:

f (c)c + De
∂c

∂t
+ Wi(v · ∇c − c · ∇v − (∇v)T · c) + am(c − I)2 = I,

τ = f (c)c − I

Wi
,

⎫⎪⎬
⎪⎭ (2.3)

where c is the symmetric and positive definite conformation tensor, f = f (c) is a strictly
positive scalar function of c defined below, am is a rheological parameter, Wi is the
Weissenberg number, Wi ≡ λB1/R, which is the well-known measure of the elasticity
of the fluid, and De ≡ λν is the frequency-related Deborah number. Equation (2.3) shows
that the transient term ∂c/∂t can be neglected provided that De � 1, namely, as long
as the characteristic time 1/ν is much longer than the relaxation time λ of the fluid.
In summary, we utilize the spherical squirmer model for viscoelastic ambient fluids,
namely (2.1)–(2.3) with Re = S = De = 0. We also mention here that the suitability of the
steady-state squirmer model for the study of real micro-swimmers in biological Newtonian
systems has been investigated by Ito, Omori & Takuji (2019). These authors concluded
that the steady squirmer model can predict very well the swimming speed of the body but
drastically underestimates the power consumption, i.e. the energy cost of swimming.

As far as the boundary and auxiliary conditions are concerned, these are the same as in
the Newtonian case, namely the boundary conditions, (1.5a–c)–(1.7a–d), and the FFC and
TFC, (1.9), are used (see also below in § 6). We summarize specific constitutive models
that are special cases of the generalized equation (2.3); for more details about the models
see Bird, Armstrong & Hassager (1987a).
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UCM/Oldroyd-B models
The UCM/Oldroyd-B models are the most fundamental nonlinear differential models

in viscoelasticity. Both models are recovered from (2.3) with am = 0 and f (c) = 1. When
β = 0, one gets the UCM model, when 0 < β < 1 the Oldroyd-B model is recovered, and
for β = 1 the model reduces to the simple Newtonian fluid.

Giesekus model
The Giesekus model (Giesekus 1982) is recovered from (2.3) for am > 0 and f (c) = 1.

Thermodynamically admissible values for the Giesekus mobility parameter are 0 < am <

1/2.

FENE-P model
The FENE-P model (Peterlin 1966; Bird et al. 1987b) is recovered from (2.3) with am =

0 and with the scalar function f , known as the ‘Peterlin function’, given by the expression

f (c) = 1 − 3χ

1 − χ tr(c)
, χ ≡ 1

L2 , (2.4a,b)

where L is the maximum extensibility parameter of the FENE-P model (L corresponds to
the maximum ensemble average length of the polymer molecules).

In the analysis that follows, it is important to emphasize that the momentum balance
does not play any role, and thus the results are purely kinematic in nature. First, evaluating
all the components of the generalized constitutive model, (2.3), on the surface of the
swimmer (at r = 1) in a spherical coordinate system, and using the applied boundary
conditions (namely the no-penetration and slip velocity as given by (1.5a–c)–(1.7a–d)),
we obtain the following:

rr-component

f crr + (1 − 2crr + c2
rr + c2

rθ + c2
rφ)am

+ Wi
{
v

(S)
θ

∂crr

∂θ
+ (ξ + 4 cos(θ) + 3ξ cos(2θ))crr

}
= 1, (2.5)

rθ -component

f crθ + (−2crθ + crrcrθ + crθcθθ + crφcθφ)am

+ Wi
{
v

(S)
θ

∂crθ

∂θ
+
(

sin(θ) − ∂vθ

∂r
+ ξ

2
sin(2θ)

)
crr

+
(

ξ

2
+ cos(θ) + ξ

2
cos(2θ)

)
crθ

}
= 0, (2.6)

rφ-component

f crφ + (−2crϕ + crrcrφ + crθcθφ + crφcφφ)am

+ Wi
{
v

(S)
θ

∂crφ

∂θ
− crr

∂vφ

∂r
+ (cos(θ) + ξ cos(2θ))crφ + Ω sin(θ)crr

+ 3ζ

2
(sin(2θ)crr + crθ − cos(2θ)crθ )

}
= 0, (2.7)
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θθ -component
f cθθ + (1 + c2

rθ − 2cθθ + c2
θθ + c2

θφ)am

+ Wi
{
v

(S)
θ

∂cθθ

∂θ
+ 2

(
sin(θ) − ∂vθ

∂r

)
crθ

− 2 cos(θ)cθθ + ξ(sin(2θ)crθ − 2 cos(2θ)cθθ )

}
= 1, (2.8)

θφ-component
f cθϕ+(crθcrφ − 2cθφ + cθθcθφ + cθφcφφ)am

+ Wi
{
v

(S)
θ

∂cθφ

∂θ
+
(

sin(θ) − ∂vθ

∂r

)
crφ + Ω sin(θ)crθ

− 2 cos(θ)cθφ − crθ
∂vφ

∂r
+ ξ

2
(sin(2θ)crφ − cθφ − 3 cos(2θ)cθφ)

+ 3ζ

2
(sin(2θ)crθ + cθθ − cos(2θ)cθθ )

}
= 0, (2.9)

φφ-component
f cφφ + (1 + c2

rφ + c2
θφ − 2cφφ + c2

φφ)am

+ Wi
{
v

(S)
θ

∂cϕϕ

∂θ
− 2crφ

∂vφ

∂r
+ 2Ω sin(θ)crφ

− (2 cos(θ) + ξ(1 + cos(2θ)))cφφ + 3ζ(sin(2θ)crφ + cθφ − cos(2θ)cθφ)

}
= 1.

(2.10)
Next, we proceed with each individual model separately, and we focus on the singular

points of the coordinate system, i.e. at θ = 0 (the north pole) and θ = π (the south
pole). One is reminded here that the poles are not physical singular points of the
coordinate system but are a consequence of the transformation from Cartesian to spherical
coordinates. Indeed, the Jacobian determinant of the transformation is |J| = r2 sin(θ),
which becomes zero at r = 0 or at θ = 0, π. However, since we are interested only in
the flow exterior to the spherical swimmer, the centre of the spherical coordinate system
(r = 0) does not belong to the domain of definition of the governing equations. On
the contrary, the points θ = 0, π belong to the domain both interior and exterior to the
swimmer. Notice also that in the spherical coordinate system the domain D = {(r, θ)|r ≥
0, θ ∈ (0, π)} actually describes the z-axis of the Cartesian coordinate system, along which
the body moves; see figure 1. Owing to the singular mathematical nature of the poles, the
solution of the equations must satisfy certain conditions, and thus special attention to the
poles needs to be given. For instance, and since we are interested in flow fields that do not
depend on the azimuthal angle, the governing equations are well defined provided that the
polar and azimuthal components of the velocity vector are zero at both poles. In addition,
the off-diagonal components of the total stress tensor must be zero, while the associated
diagonal components in the angles of the spherical coordinate system must be equal, viz.

T θθ = Tφφ, T θφ = T rθ = T rφ = vθ = vφ = 0 at r ≥ 1, θ = 0 or π. (2.11a,b)
Because of these properties, the flow along the z-axis is purely extensional. Finally, one can
trivially confirm that the analytical solution for the Newtonian fluid given by (1.9)–(1.12)
satisfies all the conditions given in (2.11a,b).
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Squirmers with swirl at low Weissenberg number

3. Analysis of squirming for the UCM/Oldroyd-B models

3.1. Analysis at the poles
For the UCM/Oldroyd-B models (am = 0, f (c) = 1), we evaluate (2.5)–(2.10) at
(r = 1, θ = 0) and (r = 1, θ = π). The resulting equations can be solved easily, showing
that all the off-diagonal components of the conformation tensor are zero for both poles,
crθ = crφ = crθ = 0, while the diagonal components are

crr = 1

1 + 4W̃
, cθθ = cφφ = 1

1 − 2W̃
, (3.1a,b)

where W̃ is a modified Weissenberg number, which is used hereafter for all the constitutive
models and is defined as

W̃ :=
{
(ξ + 1)Wi, θ = 0,

(ξ − 1)Wi, θ = π.
(3.2)

Equation (3.1a,b) reveals the following features for the UCM/Oldroyd-B models:

(a) As Wi → 0 the diagonal components of the conformation tensor go to unity, i.e.
crr = cθθ = cφφ = 1 (as they should). Unexpectedly, and for any Wi > 0, the same
limit is also achieved for ξ = −1 at the north pole, and for ξ = 1 at the south pole.

(b) The flow at the poles is purely extensional, as previously identified for a Newtonian
fluid. However, the modified Weissenberg number, W̃, which determines the degree
of extensional character of the flow, is different between the poles. Note that, for
the neutral squirmer, i.e. for ξ = 0, the modified Weissenberg number has the same
magnitude but opposite signs at the poles (W̃ = Wi > 0 on the north pole, and
W̃ = −Wi < 0 on the south). This implies a uniaxial extensional flow on the north
pole, with z being the main axis of elongation, and a biaxial stretching in the x- and
y-directions (i.e. on the z = −1 plane) at the south pole.

(c) The solution for the conformation tensor is physically valid only in a specific window
for the Weissenberg number. Based on the limit as Wi goes to zero, as well as the
positive definite property of the conformation tensor, which requires that its diagonal
components must be strictly positive, the window of validity of the UCM/Oldroyd-B
models depends on the slip parameter ξ :

0 ≤ Wi <

⎧⎪⎪⎨
⎪⎪⎩

1
4(1 − ξ)

, ξ ≤ 1
3
,

1
2(1 + ξ)

, ξ >
1
3
.

(3.3)

Hereafter, we will be using the symbol Wiu to denote the upper limit of validity for
Wi, as given in (3.3). For ξ = −1, (3.3) gives 0 ≤ Wi < 1/8, and for ξ = 0 and 1, it
gives 0 ≤ Wi < 1/4. The maximum window of validity is observed for ξ = 1/3; in
this case one gets 0 ≤ Wi < 3/8. We emphasize that these values correspond to the
range of validity of the rheological models in steady uniaxial or biaxial elongational
flow if the local rate of extension is correctly factored into the Weissenberg number
at both poles.

(d) The solution given by (3.1a,b) can be expanded in terms of W̃ (or Wi) as follows:

crr ≈ 1 − 4W̃ + (4W̃)
2 − (4W̃)

3 + (4W̃)
4 + · · · ,

cθθ = cφφ ≈ 1 + 2W̃ + (2W̃)
2 + (2W̃)

3 + (2W̃)
4 + · · · .

⎫⎬
⎭ (3.4)
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0.40

0.35

0.30

0.25
Wi

Wi = 1/4

Wiu

Wiρ

0.20

0.15

–3 –2 –1 0

ξ
1 2 3

0.10

0.05

Figure 2. The upper limit of validity of the solution for the UCM/Oldroyd-B models, Wiu (black, solid
line), and the radius of convergence of the series solution, Wip (red, dashed line), as functions of the slip
parameter, ξ .

The radius of convergence, Wiρ , of these series expansions is of great interest,
for instance when perturbation methods are used to solve the full problem. It is
determined as the minimum distance from the closest singularity in the complex
plane. From (3.1a,b), one can see that for ξ /=±1 the singular points of the solution
with respect to Wi are

WiS,1 = − 1
4(1 + ξ)

, WiS,2 = − 1
4(−1 + ξ)

,

WiS,3 = 1
2(1 + ξ)

, WiS,4 = 1
2(−1 + ξ)

. (3.5a–d)

Their signs depend on the slip parameter, ξ . A negative WiS,j, j = 1, 2, 3, 4, reveals
a non-physical singularity, while a positive one reveals a physical singularity at a
finite Weissenberg number. Based on the singular points, the radius of convergence
of the series solutions given in (3.4) is

Wiρ =

⎧⎪⎪⎨
⎪⎪⎩

1
8
, ξ = ±1,

1
4

min
{

1
|1 + ξ | ,

1
|1 − ξ |

}
, ξ /=±1.

(3.6)

Since only positive values of Wi are of interest, the series solutions converge in
the range 0 ≤ Wi < Wiρ . The upper limit of validity of the exact solution, Wiu,
along with the radius of convergence, Wiρ , given by (3.3) and (3.6), respectively, are
shown as a function of the slip parameter ξ , in figure 2. It is seen that, for ξ ≤ 0, the
curves coincide, while, for ξ > 0, Wiρ is less than Wiu. As revealed by (3.6), Wiρ
is symmetric with respect to ξ = 0, namely Wiρ(ξ) = Wiρ(−ξ), while no symmetry
is predicted for Wiu. It is also seen that the magnitude of Wiρ is very small and
decreases monotonically with the magnitude of the slip parameter; for instance, for
ξ = 0, 1 and 3 one finds Wiρ = 1/4, 1/8 and 1/16, respectively, while for ξ = 1/3,
for which (3.3) predicts the largest window of validity of the exact solution (0 ≤
Wi < 3/8), Wiρ = 3/16. The magnitude of Wiu also decreases monotonically as ξ

increases or decreases from ξ = 1/3.
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Squirmers with swirl at low Weissenberg number

Based on the analysis above, it is clear that, although the UCM/Oldroyd-B are fundamental
models for studying the effect of elasticity in the flow, they can be utilized only for very
small values of Wi, i.e. for weakly elastic fluids.

3.2. Analysis at the surface of the swimmer
We can further the analysis presented above by focusing on the rr-component of the
constitutive model on the surface of the particle, i.e. in (2.5) with am = 0, f (c) = 1,

Wi(1 + ξ cos(θ)) sin(θ)G′(θ) + (1 + Wiξ + 4Wi cos(θ) + 3Wiξ cos(2θ))G(θ) = 1,

(3.7)
where G(θ) ≡ crr(1, θ) has been used for brevity. Equation (3.7) is a linear,
inhomogeneous, first-order ordinary differential equation with non-constant coefficients.
We emphasize that the swirling parameter, ζ , does not enter in the equation, and, most
importantly, that (3.7) is decoupled from the other components of the constitutive model
and therefore it can be studied independently. Thus, crr(1, θ) is fully determined through
(3.7). However, a singular (or discontinuous) solution of (3.7) will affect the spatial
evolution of the conformation components over the surface of the body, which in turn
will affect all the field variables exterior to the body.

To examine this possibility, we will first change the independent variable and use x =
cos(θ) instead of the polar angle θ . This change of variable transforms equation (3.7) into
the following:

−Wi(1 − x2)(1 + ξx)G′(x) + (1 + 2Wi(−ξ + 2x + 3ξx2))G(x) = 1, −1 ≤ x ≤ 1.

(3.8)
Equation (3.8) shows that there are singular spatial points that depend on the magnitude
of the slip parameter ξ :

(i) For |ξ | < 1, there are two regular singular points, i.e. x = −1 and x = 1.
(ii) For |ξ | = 1, there is one irregular and one regular singular point. In particular,

for ξ = 1, x = −1 is an irregular singular point and x = 1 is a regular singular
point, while for ξ = −1, x = 1 and x = −1 are irregular and regular singular points,
respectively.

(iii) For |ξ | > 1, there are three regular singular points, i.e. x = −1, 1 and −1/ξ .

At the singular points, G can be directly determined from (3.8) as

G(−1) = 1
1 + 4Wi(−1 + ξ)

, G(1) = 1
1 + 4Wi(1 + ξ)

,

G(−ξ−1) = 1
1 + 2Wi(ξ−1 − ξ)

,

(3.9a–c)

where the last expression is valid only when |ξ | > 1, which implies that −ξ−1 ∈ (−1, 1).
The exact analytical solution of (3.8) has been found for any value of ξ and is reported
below.
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3.2.1. The case |ξ | < 1
In this case, the solution for G(x) ≡ crr(1, x) is

G(x) = 1
Wi(1 + x)(1 + ξx)

∫ 1

0
(1 − t)a

(
1 + 1 − x

1 + x
t
)δ(

1 + ξ(1 − x)
1 + xξ

t
)γ

dt,

a = 1 + 1
2Wi(1 + ξ)

> 0, δ = 1 − 1
2Wi(1 − ξ)

< −1, γ = 1 + ξ

Wi(1 − ξ2)
.

⎫⎪⎪⎬
⎪⎪⎭

(3.10)
Equation (3.10) is given such that the solution is finite for any x ∈ (−1, 1], while for
x = −1, G is found as a limit. Also, one can confirm that G(x = 1) = 1/(1 + 4Wi(1 + ξ))

and, as x → −1+, G → 1/(1 + 4Wi(−1 + ξ)); these values are in full agreement with
(3.1a,b).

The solution for a neutral swimmer can be trivially recovered by setting ξ = 0 in (3.10).
The resulting expression can be simplified as

G(x) = 8

Wi(1 − x)1+a(1 + x)1+δ

∫ (1−x)/2
0 ta(1 − t)δ dt,

a = 1 + 1
2Wi

> 0, δ = 1 − 1
2Wi

< −1,

⎫⎪⎪⎬
⎪⎪⎭ (3.11)

where the second integral in (3.11) is simply the incomplete Beta function, B((1 −
x)/2, 1 + a, 1 + δ). Again, from the above, G(1) = 1/(1 + 4Wi), and G → 1/(1 − 4Wi)
as x → −1+ (valid only for 0 ≤ Wi < 1/4) can be confirmed; otherwise the solution
diverges. This is in full agreement with (3.1a,b) and (3.2), which for ξ = 0 give 0 ≤ Wi <

1/4.

3.2.2. The case |ξ | = 1
For ξ = 1, the south pole (x =−1) becomes an irregular singular point of (3.8), while the
north pole (x = 1) is a regular singular point. The solution is

G(x) = 1
Wi

e−1/(2Wi(1+x)) 1
(1 − x2)(1 + x)

∫ 1
x e1/(2Wi(1+x))

(
1 − t
1 − x

)a(1 + x
1 + t

)δ

dt,

a = 1 + 1
4Wi

> 0, δ = −2 + 1
4Wi

> −1.

⎫⎪⎪⎬
⎪⎪⎭

(3.12)
For ξ = −1, the north pole (x = 1) becomes an irregular singular point of (3.8), while the
south pole (x =−1) is a regular singular point. The solution is as follows:

G(x) = 1
Wi

e1/(2Wi(1−x)) 1
(1 − x2)(1 − x)

∫ 1
x e−1/(2Wi(1−x))

(
1 − t
1 − x

)a(1 + x
1 + t

)δ

dt,

a = 2 + 1
4Wi

> 0, δ = −1 + 1
4Wi

> 1.

⎫⎪⎪⎬
⎪⎪⎭

(3.13)

3.2.3. The case |ξ | > 1
In this case, (3.10) has three regular spatial singular points, the north pole (x = 1), the south
pole (x = −1) and the point x = −1/ξ . First, we define the auxiliary integral function
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Squirmers with swirl at low Weissenberg number

I = I(x; q, a, δ, γ )

I(x; q, a, δ, γ ) :=
∫ q

x

(
1 + t
1 + x

)a(1 + ξx
1 + ξ t

)δ( 1 − t
1 − x

)γ

dt, −1 < x < 1, (3.14)

where a, δ, γ are constants. For ξ > 1, the analytical solution of (3.10) is

G(x) = 1
Wi(1 − x2)(1 + ξx)

×
{

I(x;−1, a, δ, γ ), −1 < x < −1/ξ,

I(x; 1, a, δ, γ ), −1/ξ < x < 1.
(3.15)

For ξ < −1, the analytical solution of (3.10) is

G(x) = I(x;−1/ξ, a, δ, γ )

Wi(1 − x2)(1 + ξx)
, −1 < x < 1, x /=−1/ξ. (3.16)

In (3.15) and (3.16) the following constants appear:

a = 1 + 1
2Wi(ξ − 1)

, δ = −1 + ξ

Wi(ξ2 − 1)
, γ = 1 + 1

2Wi(ξ + 1)
. (3.17a–c)

Results for G(x) ≡ crr(1, x) as a function of x, for ξ = 2, 1, 0, −1 and −2, are shown
in figure 3 with solid lines. In all cases the Weissenberg number is Wi = 1/9, except
for ξ = −2, for which Wi = 1/13. Equation (3.8) is also solved numerically with a
second-order finite difference method and the results are shown with dashed lines.
Excellent agreement between numerical and analytical results is demonstrated in all
cases. Significant differences can be witnessed in the surface stresses between pushers,
neutral swimmers and pullers. Indeed, pullers (ξ = 2 and 1) induce large stretching of the
polymer molecules on the surface of the micro-swimmer, with a maximum stretch which is
observed at the southern hemisphere. Neutral swimmers show a monotonic decrease as we
move away from the south and approach the north pole. Finally, pushers (ξ = −2 and −1)
show an exponentially decreasing stretch close to the south pole, maintaining relatively
small stretch values over most of the surface.

4. Analysis for squirming for regularized constitutive models

4.1. The Giesekus model
As before, we evaluate (2.5)–(2.10) at the poles. For 0 < am < 1/2, we find that the
off-diagonal components of the conformation tensor are zero at both poles, crθ = crφ =
crθ = 0, and the relevant (physical) solutions of interest for the normal components are

crr = 1 − 4W̃ + 1
2am

+
√

1 + 8W̃(1 − 2am + 2W̃)

2am
,

cθθ = cφφ = 1 + 2W̃ − 1
2am

+
√

1 + 4W̃(−1 + 2am + W̃)

2am
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.1)

where W̃ is given by (3.2). Equation (4.1) reveals interesting features of the Giesekus
model.

(a) The limit of the above solution as Wi → 0 is crr = cθθ = cφφ = 1. The same limit
is achieved for ξ = −1 at the north pole, and for ξ = 1 at the south pole (i.e. for
W̃ = 0). Thus, in this limit, the behaviour of the solution is the same as that of the
UCM/Oldroyd-B models.
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Figure 3. Plots of crr(1,x) as a function of x = cos(θ ) for the UCM/Oldroyd-B models: (a) ξ = 2, Wi = 1/9,
(b) ξ = 1, Wi = 1/9, (c) ξ = −1, Wi = 1/9, (d) ξ = −2, Wi = 1/13 and (e) ξ = 0, Wi = 1/9. Solid line, analytical
solution; dots, numerical solution.

(b) The flow at the poles is purely extensional, as previously identified for Newtonian
and UCM/Oldroyd-B fluids. The modified Weissenberg number, W̃ (see (3.2)),
determines the extensional character of the flow, which is different at the two poles.

(c) In contrast to the UCM/Oldroyd-B models, the solution is valid for any value of
the Weissenberg number, 0 ≤ Wi < ∞, and thus the singularity predicted for the
UCM/Oldroyd-B models with respect to the Weissenberg number is fully removed.

(d) The solution given by (4.1) can be expanded in terms of Wi (or W̃) as follows:

crr ≈ 1 − 4W̃ + (4W̃)2(1 − am) − (4W̃)3(1 − am)(1 − 2am)

+ (4W̃)4(1 − am)(1 − 5am + 5a2
m) + · · · ,

cθθ = cφφ ≈ 1 + 2W̃ + (2W̃)2(1 − am) + (2W̃)3(1 − am)(1 − 2am)

+ (2W̃)4(1 − am)(1 − 5am + 5a2
m) + · · · .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)
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Squirmers with swirl at low Weissenberg number

As am → 0+, (4.2) reduces to (3.4), namely to the perturbation solution for the
UCM/Oldroyd-B models. Since no singularities with respect to Wi exist for the
Giesekus model, the region of convergence of these series expansions is determined
by solving the inequalities |8W̃(1 − 2am + 2W̃)| < 1 and |4W̃(−1 + 2am + W̃)| <

1, and finding the intersection of the resulting solutions. We find two branches, which
we present in terms of W̃ as follows:

−1
2

− am −
√

a2
m − am + 1

2
< W̃ < −1

4
+ am

2
+ 1

2

√
a2

m − am + 1
2
,

for 0 ≤ am <
1
2

−
√

2
8

,

(4.3)

and

−1
4

+ am

2
− 1

2

√
a2

m − am + 1
2

< W̃ < −1
4

+ am

2
+ 1

2

√
a2

m − am + 1
2
,

for
1
2

−
√

2
8

< am <
1
2
.

(4.4)

The ranges given by (4.3) and (4.4) are narrow and become even narrower when
the admissible regions are given in terms of the original Weissenberg number;
recall that W̃ takes different values at the poles. In order to make this clear, we
present the region of convergence of the perturbation series at the north and south
poles, in figure 4(a). The regions are shown for both poles, in terms of the slip
parameter, ξ , and the Weissenberg number, Wi, for a Giesekus mobility parameter
am = 0.2. The intersection of these regions determines the final window of validity
of the series solutions. The results reveal that, although the singularity predicted
by the UCM/Oldroyd-B models has been removed, the corresponding final region
of convergence is still very small, making (once again) the perturbation solution of
quite limited value, while the perturbation results for Wi ≥ Wiρ are divergent and
completely erroneous. For comparison, the corresponding regions of convergence
for the UCM/Oldroyd-B models are shown in figure 4(b). This is merely the region
0 ≤ |Wi| < Wiρ , where Wiρ is given by (3.6). Clearly, the difference in the region
of convergence for the series between the constitutive models is very small. Thus,
for all practical reasons, we can safely claim that the perturbation solutions for the
UCM/Oldroyd-B and Giesekus models exhibit approximately the same radius of
convergence, and they can be used only for weakly viscoelastic fluids.

The diagonal components of the conformation tensor, crr and cφφ = cθθ , as well as the
trace of the conformation tensor, tr(c) = crr + 2cθθ , are presented in figure 5 as functions
of the slip coefficient, ξ . The results are shown with black solid lines for the north pole
and with red dashed lines for the south pole; the Weissenberg number is Wi = 0.25, 0.5
and 1.0. For the individual components, a value larger than one denotes extension of the
elastic molecules, while a value less than one denotes compression; to better distinguish
between these two situations, the constant lines crr = 1 and cθθ = 1 have also been drawn.
Interestingly, although ξ = 0 (a neutral squirmer) is the limit at which the micro-swimmer
changes type, the values ξ = ±1 define the transition from compression to extension for
the individual conformation components. For ξ = 0, crr is less than one at the north pole,
and larger than one at the south pole. Notice that the opposite is observed for cθθ . We
can also see in figure 5(c) that the trace of the conformation tensor is always larger than
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Figure 4. The domain of convergence of the perturbation solution, (4.2), denoted by the common, shadowed
area: (a) Giesekus model with αm = 0.2 and (b) UCM/Oldroyd-B models (αm = 0).
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Figure 5. Plots of (a) crr(r = 1), (b) cθθ (r = 1) and (c) tr(c)(r = 1) as functions of the slip parameter ξ , for the
Giesekus model with αm = 0.2, and Wi = 0.25, 0.5 and 1. The arrow shows the direction of increasing Wi. The
results at the north pole are shown with black solid lines, and at the south pole with red dashed lines.

three, at both poles, and achieves very large values throughout the whole range of the slip
coefficient.

4.2. The FENE-P model
Similarly, we evaluate (2.5)–(2.10) at the poles for the FENE-P model. We find that the
acceptable solution for the off-diagonal components of c are again zero, at both poles,
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crθ = crφ = crθ = 0. The diagonal components are found in terms of the Peterlin function,
f ,

crr = 1

f + 4W̃
, cθθ = cφφ = 1

f − 2W̃
, (4.5a,b)

where W̃ is given by (3.2) and f is given by

f = 1 − 3χ

1 − (crr + 2cθθ )χ
. (4.6)

Substituting equations (4.5a,b) in (4.6) and rearranging gives the following cubic equation,
which determines the Peterlin function:

f 3 + f 2(−1 + 2W̃) − f 2W̃(1 + 4W̃) + 8W̃2(1 − 3χ) = 0. (4.7)

One can easily show that f ≥ 1 − 3χ . When the FENE-P parameter goes to zero
(χ ≡ L−2 → 0), i.e. for the UCM/Oldroyd-B models, the solutions of (4.7) are f =
1, 2W̃, −4W̃. In this case, only the f = 1 root is acceptable in the window 0 < W̃ < 1/2
(for W̃ > 1/2 one gets the unphysical solution cθθ , cφφ < 0), while the other two roots are
singular points for the diagonal components of the conformation tensor (see (4.5a,b)). For
0 < χ < 1/3 ⇒ L >

√
3, there are three real roots, only one of which is acceptable:

f = 1 − 2W̃
3

+ 2
√

1 + 2W̃(1 + 14W̃
2
)

3

× cos

⎛
⎝π

6
+ 1

3
sin−1

⎛
⎝80W̃

3 + 2W̃
2
(39 − 162χ) − 3W̃ − 1

(1 + 2W̃ + 28W̃
2
)
3/2

⎞
⎠
⎞
⎠ .

(4.8)

The above analysis shows that there are no singular points with respect to the Weissenberg
number. As previously revealed for the Giesekus model, the analytical solution has the
correct limit as W̃ → 0, the flow at the poles is purely extensional, and the solution is
valid for any value of W̃, or, alternatively, for any positive value of the Weissenberg
number (Wi > 0). Equations (4.5a,b) can be expressed as a series solution about W̃ = 0, or
Wi = 0, as follows:

crr ≈ 1 − 4W̃ + (4W̃)2
(

1 − 3χ

2

)
− (4W̃)3

(
1 − 15χ

4

)

+ (4W̃)4
(

1 − 57χ

8
+ 54χ2

8

)
+ · · · ,

cθθ = cφφ ≈ 1 + 2W̃ + (2W̃)2(1 − 6χ) + (2W̃)3(1 − 6χ)

+ (2W̃)4(1 − 6χ)(1 − 18χ) + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

As χ → 0+, (4.9) reduces to (3.4), namely to the perturbation solution for the
UCM/Oldroyd-B models.

The domain of convergence of the series expressions, (4.9), is found by first substituting
equation (4.8) in (4.7). Then, one needs to solve the inequalities | f − 2/3 + 4W̃| < 1
and | f − 2/3 − 2W̃| < 1 and determine the intersection of the solutions. Note that this
procedure is required for both poles. Although the exact domain of convergence has not
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Figure 6. Plots of (a) crr(r = 1), (b) cθθ (r = 1) and (c) tr(c)(r = 1) as functions of the slip parameter ξ , for the
FENE-P model with L = 10 (χ = 0.01), and Wi = 0.25, 0.5 and 1. The arrow shows the direction of increasing
Wi. The results at the north pole are shown with black solid lines, and at the south pole with red dashed lines.

been found analytically, we can confirm the rather unexpected result that the domain of
convergence for the FENE-P model is even smaller than that of the UCM/Oldroyd-B
models. As χ → 0, (4.9) converges only for −1/4 < W̃ < 1/4, while as χ increases the
region of convergence decreases very slightly. Therefore, although the FENE-P removes
the singularity of the UCM/Oldroyd-B models and provides a regular solution for the
conformation tensor for any W̃, the corresponding series solutions exhibit the opposite
trend, and the effect of χ (i.e. of the finite extensibility of the elastic molecules) is minor.
As we mentioned for the Giesekus model, the perturbation solutions exhibit approximately
the same radius of convergence, and they can be used only for weakly viscoelastic fluids;
for Wi ≥ Wiρ the perturbation solutions are divergent.

The diagonal components of the conformation tensor and the trace of the conformation
tensor, crr, cφφ = cθθ and tr(c) = crr + 2cθθ , respectively, are presented in figure 6
as functions of the slip coefficient, ξ , for a maximum extensibility parameter L = 10
(χ = 0.01). The results are shown with black solid lines for the north pole and with red
dashed lines for the south pole; the Weissenberg number is the same as in figure 5. For all
quantities, we see quite similar results to those for the Giesekus model. It is also worth
mentioning the fact that tr(c) achieves almost its maximum value (recall that for the
FENE-P model 0 < tr(c) < L2) for a high enough absolute value of the slip parameter,
even at a small Weissenberg number. Therefore, it is not Wi itself that really affects the
degree of extension of the elastic molecules but its product with the slip parameter.

5. Approximate solutions

All the results presented in the previous sections are analytical and exact. They contribute
to the understanding of the flow around the spherical micro-swimmer and they can be
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Squirmers with swirl at low Weissenberg number

used to compare with approximate solutions of the full governing equations obtained with
large-scale numerical simulations or asymptotic methods. Both these methods have been
developed and used in our previous publication (Binagia et al. 2020). For completeness we
provide a short description of these methods along with additional information regarding
the nonlinear processing of the high-order asymptotic solutions that we have derived.

5.1. Numerical solution
To solve the governing equations (2.2) and (2.3), and auxiliary conditions (1.5a–c)–(1.8),
mentioned in § 2, numerically, we utilize the same method as described in detail in Binagia
et al. (2020). In short, the overall methodology is as follows. We consider the co-moving
frame of reference such that a body-fitted mesh may be used. In particular, we consider
an unstructured mesh of tetrahedral elements with increasing resolution near the squirmer.
The computational domain defined by this cylindrical mesh has length 40R and radius
20R. The governing equations and boundary conditions are solved using a third-order
-accurate finite volume flow solver developed in a series of previous publications (Ham,
Mattsson & Iaccarino 2006; Richter, Iaccarino & Shaqfeh 2010; Padhy et al. 2013; Yang,
Krishnan & Shaqfeh 2016; Castillo et al. 2019; Binagia et al. 2020; Zhang et al. 2020).
The components of the conformation tensor are simultaneously determined by solving the
polymer constitutive equation using the log-conformation method (Fattal & Kupferman
2004). The swimmer’s translational and rotational velocity are found iteratively based on
the measured net force and torque of the swimmer, respectively, until the micro-swimmer
is found to be force- and torque-free. Extensive mesh refinement has been performed in
order to achieve convergence and results of high accuracy. The exact analytical solutions
found and reported in the previous sections are also used to confirm the accuracy of our
numerical results; more comments and results follow further below.

5.2. Asymptotic solution
The asymptotic solution is derived for all the constitutive models employed here by
following a regular perturbation scheme valid for weakly viscoelastic fluids. We mention
that the first step of the solution procedure is to introduce an auxiliary symmetric tensor,
σ , according to the expression τ = γ̇ − Wiσ . Substituting in (2.1) gives the total stress
tensor as T = −pI + γ̇ − (1 − β)Wiσ . Likewise, the new form of the balance equation
(2.2) with Re = S = 0 is

∇ · v = 0, −∇p + ∇2v − (1 − β)Wi∇ · σ = 0. (5.1)

The Giesekus equation with De = 0 reduces to

σ + Wi
δσ

δt
= δγ̇

δt
+ am(γ̇ · γ̇ − Wi(σ · γ̇ + γ̇ · σ ) + Wi2σ · σ ). (5.2)

Similarly, the FENE-P model with De = 0 reduces to

(γ̇ − Wiσ )f (σ ) + Wi
δγ̇

δt
− Wi2

δσ

δt
= v · ∇(ln( f (σ )))(I + Wiγ̇ − Wi2σ ) + γ̇ , (5.3)

where f (σ ) = 1 − χWi2tr(σ ). In (5.2) and (5.3) δ(•)/δt := (v · ∇)(•) − (•) · ∇v −
(∇v)T · (•) is the steady-state upper-convected (or Maxwell) derivative of a second-order
real and symmetric tensor.
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For all the models employed here, the conformation tensor is given in general as

c = I + Wiγ̇ − Wi2σ
1 − χWi2tr(σ )

, (5.4)

where for the UCM/Oldroyd-B and Giesekus models, χ = 0. Although the constitutive
equation in terms of σ is more complicated than its original form (see (2.3)), the solution
procedure using regular perturbation methods is facilitated by this construction; for more
details the interested reader is referred to Housiadas (2019). We also note that the new
auxiliary tensor represents the deviation of the polymer extra stress τ from the pure viscous
tensor γ̇ suitably scaled with the Weissenberg number. Obviously, in the limit of vanishing
Weissenberg number σ = limWi→0(γ̇ − τ )/Wi and σ reduces to the polymer extra-stress
tensor of the second-order fluid model (Bird et al. 1987a). This implies that σ = O(1)

as Wi → 0, as can be seen from (5.2) and (5.3). It is worth mentioning however, that all
formulations of the governing equations and the accompanying auxiliary conditions in
terms of c, τ or σ are equivalent.

The details of the solution procedure are described in Housiadas (2019) and Binagia
et al. (2020). In particular, we apply a regular perturbation scheme with the small
parameter being the Weissenberg number, while the remaining dimensionless parameters
ζ, ξ, η and am are considered O(1) quantities. According to the perturbation method, each
dependent flow variable is expanded asymptotically in a standard power series in terms of
Wi:

X ≈ X0 + WiX1 + Wi2X2 + · · · as Wi → 0+, X = U, Ω, p, v, σ . (5.5)

Equation (5.5) is substituted in (5.1)–(5.3) and in boundary conditions (1.5a–c)–(1.8)
and thus a sequence of partial differential equations and boundary/auxiliary conditions
at O(Wi j), j = 0, 1, 2, . . ., are determined. The leading-order equations correspond to the
Stokes equations, the solution of which is simply given by (1.9)–(1.13a,b). At higher orders
in Wi, the equations are solved analytically with the aid of the ‘Mathematica’ software
(Wolfram Research Inc. 2019) up to fourth order for all variables except for the azimuthal
component of the velocity vector, vφ , and the net rotation rate of the swimmer, Ω , which
are found up to fifth order. The solutions are too involved to be presented in print, but they
are available upon request. We do mention, however, that, for a neutral swimmer, i.e. for
ξ = 0, the odd coefficients in the solution for U and the even coefficients in the solution
for Ω are zero,

U(ξ = 0) ≈ 2
3 + (1 − β)Ũ2Wi2 + (1 − β)Ũ4Wi4, (5.6)

Ω(ξ = 0) ≈ (1 − β)ζWi(Ω̃1 + Wi2Ω̃3 + Wi4Ω̃5), (5.7)

where in the expression for Ω the quantity (1 − β)ζWi is a common factor for all Ωj,
and to avoid confusion with the original Ωj symbols, we have used the scaled components
Ω̃j = Ωj/((1 − β)ζWi), j = 1, 2, 3, . . .. For the UCM/Oldroyd-B models and ξ = 0, the
quantities that appear in (5.6) and (5.7) are provided in the appendix.

The correctness of our high-order perturbation solution has been confirmed by
performing a variety of tests on the properties that the solution must satisfy but are not used
or enforced during the solution procedure (Housiadas 2019). Furthermore, we investigate
and confirm that our analytical solution satisfies the properties given by (2.11a,b) at any
order of the Weissenberg number. In particular, the polar and azimuthal components of
the velocity vector are found as sine-Fourier series, which implies that, at both poles
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Squirmers with swirl at low Weissenberg number

and regardless of the radial coordinate r, these velocity components are zero. Hence, the
velocity gradients ∂vθ/∂r and ∂vφ/∂r are sine-Fourier series too, which become zero at
the poles. On the contrary, the radial component of the velocity vector, vr, and its radial
derivative ∂vr/∂r, are found as cosine-Fourier series, resulting in non-zero values for
any r > 1. Therefore, only the diagonal components of the velocity gradient tensor are
different from zero, revealing the purely extensional character of the flow along the z-axis,
as previously found for a simple Newtonian fluid. Moreover, the off-diagonal components
of the auxiliary tensor σ , the polymer extra-stress tensor τ and the conformation tensor c
are zero at both poles for any r ≥ 1. Lastly, it is confirmed that, at the poles, γ̇θθ = γ̇φφ

and σθθ = σφφ .
Finally, if we evaluate at the poles the asymptotic solution for the components of the

conformation tensor and compare with (4.2) for the Giesekus model and with (4.9) for the
FENE-P model, we confirm that the same expressions are derived. Recall that (4.2) and
(4.9) have been derived quite independently from the exact analytical solution at the poles,
i.e. from (4.1).

5.3. ‘Accelerated’ asymptotic solution
It is an almost impossible task to determine the domain of convergence of an asymptotic
power series representation of the field variables of a nonlinear fluid mechanics problem.
However, and based on the analysis at the poles presented in §§ 3 and 4, we conclude
that the asymptotic solution, (5.5), is divergent for Wi ≥ Wiρ . In this region, the inclusion
of the higher-order terms in the asymptotic solution leads to a fast divergence from the
exact solution; indeed, this was observed in our previous paper (Binagia et al. 2020). On
the contrary, we anticipate a good or reasonable agreement with the simulation results
in the region 0 < Wi < Wiρ . Furthermore, high-order perturbation solutions, usually
with three or more terms such as those given in (5.6) and (5.7), can be processed
further in order to increase their accuracy and extend their domain of convergence. This
has been done successfully in a variety of viscoelastic fundamental flows (Housiadas
2017), Poiseuille-type flows with singularities (Housiadas 2020) and viscoelastic flows
around spherical bodies (Housiadas 2019; Zhang et al. 2020). For the problem under
consideration, two nonlinear techniques have been implemented; the Shanks transform
(Shanks 1955) and the diagonal Padé [2/2] approximant (Padé 1892); in order to
distinguish between an original and a transformed solution, we will be referring to the
latter as the ‘accelerated asymptotic solution’, and we will be using the subscript ‘acc’.
These techniques are applied to constant and/or integral quantities of interest only, such
as the speed of the micro-swimmer, U, its net rotation rate, Ω , and the force contributions
on the swimmer, which are presented and discussed in the subsequent section. We also
emphasize that the accuracy and efficiency of these formulae were tested through extensive
comparison with the results obtained from our large-scale numerical simulations and the
exact analytical solutions derived in §§ 3 and 4.

Both the Shanks transform and the diagonal Padé [2/2] approximant yield the same
expressions when applied on U(ξ = 0) and Ω(ξ = 0)/((1 − β)ζWi), i.e.

Uacc(ξ =0)= 2
3

+ (1 − β)Wi2Ũ2
2

Ũ2 − Wi2Ũ4
, Ωacc(ξ =0) = (1 − β)ζWi

(
Ω̃1 + Wi2Ω̃2

3

Ω̃3−Wi2Ω̃5

)
.

(5.8a,b)
When Ũ2, Ũ4 (and/or Ω̃3, Ω̃5) have the same sign, the expressions in (5.8a,b) indicate a

singular point of the solution Wis =
√

Ũ3/Ũ5 (and/or Wis =
√

Ω̃3/Ω̃5). However, one
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cannot easily determine whether this singular point is not spurious. Nevertheless, when a
singular point exists, the solutions are valid in the range 0 ≤ Wi < Wis. Note that, for a
neutral swimmer and the range of parameters that are of interest, no singularities for the
Giesekus and FENE-P models have been detected.

For a non-neutral swimmer, ξ /= 0, the speed of the micro-swimmer and its rotation rate
are constructed using the first five available terms in the perturbation solution, i.e. up to
O(Wi4) and O(Wi5), respectively. In this case, the Shanks transform implemented with
two iterations and the Padé [2/2] approximant result in different transformed solutions.
Although, in general, the Shanks transform gives better results compared to Padé-type
approximants (Hinch 1991; Housiadas 2017, 2020), the opposite trend has been observed
for the current problem because the former technique predicts spurious singular points.
Thus, hereafter we will be using only the diagonal Padé [2/2] for all types of swimmers.

We close this section, first, by emphasizing that the original perturbation solutions,
derived for all the employed constitutive models, by no means should be used for Wi ≥
Wiρ , where Wiρ is given by (3.6). Moreover, detailed comparison with the simulation
results revealed that the series solutions, (5.6), appear to predict the right trends only in the
range 0 ≤ Wi < 0.1 approximately. Even for the Giesekus and FENE-P models, (5.6) give
completely erroneous results at Wi ≈ Wiρ . On the contrary, the transformed accelerated
solutions restore the right trends for all the constant and integral quantities mentioned
above in the range 0 ≤ Wi < Wiρ .

6. Results and mechanisms for speed and rotation rate enhancement

In our recent paper (Binagia et al. 2020) we predicted that the swirl parameter induces
a speed enhancement in an elastic fluid over and above the speed in a Newtonian fluid
of the same viscosity. We also analysed the force contributions acting on the body for the
Giesekus model and discussed how these changed as the model parameters are varied. This
led to a brief discussion of the mechanism of speed enhancement for a squirmer swimming
in a Giesekus fluid. From our discussion above, especially in regard to (2.5)–(2.10) for the
stress on the surface of the squirmer, as well as the pure extensional character of the flow
at the poles, we can anticipate that these surface force contributions will be sensitive to
the rheological model. Thus, we present new aspects of the force contributions and the
mechanism behind the speed enhancement for the different rheological models examined
in this paper.

We reiterate that the FFC and TFC, as given in (1.8), are required to determine the
velocity and rotation rate of the swimmer. Owing to its spherical shape, the symmetry
with respect to the z-axis and the form of the total stress tensor given by (2.1), there is only
one non-trivial component of the FFC which can be expressed in terms of the components
of the polymer extra stress τ , the conformation tensor c or the auxiliary tensor σ . All
formulations are equivalent, and in terms of σ we have∫ π

0
{(−p + γ̇ rr − (1 − β)Wi σrr) cos(θ) − (γ̇ rθ − (1 − β)Wi σrθ )sin(θ)}sin(θ) dθ = 0.

(6.1)
Similarly, there is only one non-trivial component of the TFC:∫ π

0
(γ̇ rφ − (1 − β) Wi σrφ)sin2(θ) dθ = 0. (6.2)

In (6.1) and (6.2), the required integration along the azimuthal angle φ has been
ignored since the flow is axisymmetric, and all the field variables are independent of φ.
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Although (6.1) and (6.2) are applied at r = 1, i.e. at the surface of the swimmer, one
can prove, by exploiting the integral form of the momentum balance, and separately the
φ-component of the momentum balance, that these are valid at any radial position r ≥ 1.
Consequently, a consistent solution must satisfy these equations and, indeed, this has been
confirmed with the perturbation solution up to O(Wi4) for (6.1) and up to O(Wi5) for (6.2).

Furthermore, by taking into account that γ̇rφ = r∂(vφ/r)/∂r, one can integrate (6.2)
along the radial coordinate r, and use the boundary conditions for vφ at the surface and far
from the swimmer, (1.5a–c) and (1.7a–d), respectively, to obtain

Ω = −3
4
(1 − β)Wi

∫ ∞

1

∫ π

0

σrφ

r
sin2(θ) dθ dr. (6.3)

Equation (6.2), evaluated at r = 1, can be used to determine Ω . Alternatively, Ω can be
calculated using (6.3). The latter, however, can also be used as an independent check of
the accuracy and correctness of an approximate solution of the governing equations (either
a numerical or an asymptotic solution).

We proceed with (6.1) by distinguishing between the different sources of force and
taking into account that γ̇rr = 2∂vr/∂r and γ̇rθ = ∂vθ/∂r − vθ/r, so that

Fp = −1
2

∫ π

0
p sin(2θ) dθ, (6.4)

FV =
∫ π

0

(
∂vr

∂r
sin(2θ) −

(
∂vθ

∂r
− vθ

r

)
sin2(θ)

)
dθ, (6.5)

FE = −(1 − β)Wi
∫ π

0

(
1
2
σrr sin(2θ) − σrθ sin2(θ)

)
dθ, (6.6)

where Fp is the contribution due to the isotropic pressure, FV is the contribution due to
the viscous stresses, and FE is the pure elastic contribution due to the polymer extra stress.
In principle, all components are functions of the radial coordinate, but due to (6.1) their
sum is zero, i.e. Fp + FV + FE = 0. Also, although Fp, FV and FE are given in terms of
spherical components and coordinates, one can show that these quantities are equivalent
to those reported in cylindrical coordinates in our recent publication (Binagia et al. 2020).

Furthermore, both the viscous and elastic contributions can be decomposed into a
normal and a shear component, i.e. FV = FV,n + FV,s, where

FV,n =
∫ π

0

∂vr

∂r
sin(2θ) dθ, FV,s = −

∫ π

0

(
∂vθ

∂r
− vθ

r

)
sin2(θ) dθ, (6.7a,b)

and FE = FE,n + FE,s, where

FE,n = −(1 − β)

2
Wi
∫ π

0
σrr sin(2θ) dθ, FE,s = (1 − β)Wi

∫ π

0
σrθ sin2(θ) dθ.

(6.8a,b)
Note, however, that the individual normal and shear contributions as shown in (6.8a,b) are
different from those reported in Binagia et al. (2020), since the latter were defined in a
cylindrical system.
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Evaluating all force contributions on the surface of the swimmer, we find

FP = −1
2

∫ π

0
p|r=1 sin(2θ) dθ, (6.9)

FV,n = −8
3
, FV,s = 4

3
−
∫ π

0

∂vθ

∂r

∣∣∣∣
r=1

sin2(θ) dθ, (6.10a,b)

FE,n = −1
2
(1 − β)Wi

∫ π

0
σrr|r=1 sin(2θ) dθ, FE,s = (1 − β)Wi

∫ π

0
σrθ |r=1sin2(θ) dθ,

(6.11a,b)

where (1.6) has been used in the evaluation of FV,n.
For a Newtonian fluid Wi = 0 and thus FE,n = FE,s = 0. Also, substituting the pressure

and velocity fields given by (1.9)–(1.12) in (6.9) and (6.10a,b) yields

FP = 2
3 − UN, FV,s = 4 − 2UN, (6.12a,b)

where the subscript ‘N’ is used to denote the Newtonian speed of the swimmer. Owing
to the FFC, the balance of all contributions must be zero, i.e. FP + FV,n + FV,s +

FE,n + FE,s = 0. The latter allows for the evaluation of the swimmer speed along the
axial direction, UN = 2/3, as reported in the Introduction, (1.13a,b). Therefore, for a
Newtonian fluid, (6.9)–(6.11a,b) give Fp = 0, FV,n = −8/3, FV,s = 8/3 and FE,n =
FE,s = 0. Notice that, despite the fact that the slip and swirl parameters enter into the
solution for the pressure and the velocity fields, they do not affect UN , as well as the force
contributions Fp and FV .

Finally, we mention that, if we impose UN = 0 in (1.9)–(1.12) instead of the FFC, (6.9)
and (6.10a,b) give FP = 2/3, FV,s = 4 and FV,n = −8/3, and therefore the net force on
the body along the axial direction is F = 2. In other words, if the body is kept stationary,
the slip boundary conditions on its surface will generate a flow field that will exert a
positive, i.e. propulsive, force on the body. This type of analysis also reveals that both the
pressure contribution, FP, and the shear component of the viscous forces, FV,s, generate
thrust (with the shear force being six times larger than the pressure force), while the normal
component of the viscous forces, FV,n, is purely resistive. Also, note that the FFC condition
gives a zero rotation rate of the swimmer, Ω = 0, which is a consequence of the fact that
rotation and translation in a simple Newtonian fluid are uncoupled and do not affect each
other. A similar analysis for an elastic fluid has not been undertaken here but will follow
in a future publication.

6.1. UCM and Oldroyd-B models
For a viscoelastic fluid Wi > 0, Fp, FV and FE are O(Wi) quantities and contribute to
the FFC affecting the final speed of the swimmer. In order to comment on the force
contributions and how the slip and swirl parameters affect U, the solution for the field
variables on the surface of the swimmer is required. However, (6.9)–(6.11a,b) reveal an
unexpected feature of the flow. In particular, for the UCM/Oldroyd-B models, and due to
(1.6) and (5.4), one finds

crr|r=1 = 1 − Wi(ξ + 4 cos(θ) + 3ξ cos(2θ)) − Wi2σrr|r=1. (6.13)

As discussed extensively in § 3, crr|r=1 depends exclusively on the slip parameter ξ ,
the Weissenberg number Wi and the polar angle θ . Owing to (6.13), the same holds for
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Figure 7. (a) Normalized squirmer velocity and (b) net rotation rate for a neutral squirmer (ξ = 0) using the
Oldroyd-B model and viscosity ratio β = 0.5. The theoretical results are denoted with black solid lines, and the
numerical results with red lines with symbols.

σrr|r=1, and therefore FV,n and FE,n do not depend on the swirl parameter ζ , which
implies that they are invariants of the swirling flow. Consequently, the variation of the swirl
parameter causes a redistribution of FP, FV,s and FE,s but keeps their sum unaltered and
equal to −(FV,n + FE,n). This suggests that the variation of U for the UCM/Oldroyd-B
models is caused by the development and redistribution of the shear components of
the rate-of-deformation and conformation tensors, γ̇rθ and crθ , respectively, due to the
viscoelasticity of the ambient fluid.

In figure 7(a), we present results for the normalized velocity U/UN of a neutral squirmer
as a function of Wi up to Wi = 0.225, where UN is the Newtonian speed given by (1.13a,b);
in this case the Oldroyd-B model is defined up to Wi = 0.25 (see (3.3)). The results are
shown for the no-swirl case (ζ = 0) and a swirl case with ζ = 3; the solid lines are theoretical
predictions according to the accelerated technique, (5.8a,b), while the red lines with
symbols are results from the large-scale simulations. For the no-swirl case one can see
a small decrease of the velocity of the swimmer with increasing fluid elasticity. Also, the
agreement between theory and simulations is excellent. As the swirl parameter increases to
ζ = 3, both theory and simulations predict a monotonic increase of the squirmer velocity;
note that the increase at Wi = 0.225 is similar to that previously calculated at a much larger
Wi number for the Giesekus fluid (Binagia et al. 2020).

Moreover, we observe that the swirl generates a rigid-body rotation of the
micro-swimmer, as figure 7(b) shows. The rotation rate of the swimmer is determined
using the TFC, (6.2), evaluated at r = 1. Owing to the conservation of momentum along
the azimuthal angle, Ω can also be determined from (6.3) as the volume integral of
the shear elastic stress σrφ weighted with the positive spatial function sin2(θ)/r. The
latter suggests that the major contribution of shear elastic forces to the development of
rigid-body motion comes from the region close to the body. For the no-swirl case, the
asymptotic solution shows that σrφ = 0 everywhere in the flow domain and thus Ω = 0.
The same has been confirmed by the numerical simulations within the accuracy of the
calculations. When the swirl parameter increases to ζ = 3, at Wi = 0.225 the rotation rate
has increased to nearly 0.3, showing that weak viscoelasticity in the presence of swirl
significantly affects the rotation rate. Even at Wi = 0.2, the elasticity of the fluid coupled
with the slip velocity at the surface of the body produce a tangential stress field, σrφ ,
everywhere negative in sign, the contours of which are presented in figure 8. We see that
σrφ reduces very quickly as the distance from the body increases. Near the swimmer,
very large values in magnitude appear at the wake of the body. On the contrary, much
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Figure 8. The σ rϕ contours for a neutral squirmer (ξ = 0) using the Oldroyd-B model with Wi = 0.2, β = 0.5
and swirl parameter ζ = 3.

lower absolute values are observed away from the south pole. This asymmetry of the
tangential elastic stress with respect to the equator, i.e. to θ = π/2, contributes to the
volume integral in (6.3), and causes the rotation of the swimmer. Finally, we observe that,
precisely at the poles, σrφ(r, θ = 0) = σrφ(r, θ = π) = 0, confirming equation (2.11a,b)
and the theoretical predictions reported in § 4, regarding the purely extensional character
of the flow at the poles.

In figure 9, we present the force contributions Fp, FV and FE on a neutral swimmer
as functions of Wi. First, we observe an excellent agreement between the accelerated
asymptotic theory and the numerical results. Recalling that FV,n and FE,n are invariant
quantities for the Oldroyd-B model, the differences between the no-swirl and swirl cases
is due to the variation of Fp, FV,s and FE,s. Looking closely at the magnitudes and signs
of these quantities, we can extract useful information about the type of forces acting on
the swimmer. Indeed, the pressure contribution generates a major thrust compared to the
Newtonian fluid and becomes even more propulsive in the swirl case. The total viscous
contribution goes from propulsive to slightly resistive; this implies that the shear viscous
contribution changes sign from positive (FV,s > 0 for ζ = 0) to negative (FV,s < 0 for
ζ = 3). Lastly, the total elastic contribution, which is absent for a Newtonian fluid, is
purely resistive in nature, and increases substantially in magnitude in the swirl case. Both
the normal and shear components, FE,n and FE,s, respectively, are negative, but, due to
the fact that FE,n does not depend on the swirl parameter, this implies that the shear
contribution of the elastic stress FE,s is affected a lot by the increase of swirl. Based
on these observations, we conclude that, for an elastic, UCM/Oldroyd-B type fluid, the
pressure contribution is the only propulsive force on the swimmer with swirl, adequate
to overcome the resistance caused by the viscous and elastic forces, and is the major
mechanism that generates thrust and increases the speed of the swimmer.
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Figure 9. Force contributions for a neutral squirmer (ξ = 0) using the Oldroyd-B model and viscosity ratio
β = 0.5. The theoretical results are denoted with solid lines, and the numerical results with dotted lines with
symbols. (a) No-swirl case (ζ = 0) and (b) swirl case with ζ = 3.
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Figure 10. Pressure field for a neutral squirmer (ξ = 0) using the Oldroyd-B model with Wi = 0.2 and
β = 0.5. The contours are shown in the YZ plane. (a) No-swirl case (ζ = 0) and (b) swirl case with ζ = 3.

Further evidence on the propulsive role of the isotropic pressure can be seen in figure 10,
where the contours of the pressure are drawn. Comparing the results between ζ = 0 and
ζ = 3, two major observations can be made. First, the magnitude of the contours is much
larger in the swirl case; and second, the pressure difference between the south and north
poles is greatly intensified in the swirl case. Note that the Weissenberg number is really
very small (Wi = 0.2), revealing again the great effect that even weak viscoelasticity can
produce on the flow. We also notice that p(r, π) � p(r, 0), in contrast to the no-swirl case,
where p(r, π) is only slighter larger than p(r, 0), and in contrast to the Newtonian pressure,
for which p(r, π) = p(r, 0) (see (1.12) with U = 2/3). The large pressure difference
between the poles generates the major thrust along the z-direction which dominates the
resistive forces on the body.

Finally, the resistive nature of the elastic forces can be realized from the results shown
in figure 11 in conjunction with the definitions of FE,n and FE,s, given by (6.11a,b). In
particular, σrr(r = 1, θ) and σrθ (r = 1, θ) are presented as functions of x = cos(θ), for
both the no-swirl (black, solid lines) and swirl cases (red, dotted lines). It is seen that very
large values are developed close to x = −1 (θ = π), and hence both σrr and σrθ produce
resistance to the body, most of which comes from the stress close to the south pole.
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Figure 11. Numerical results for the (a) normal elastic stress σ rr and (b) tangential elastic stress σ rθ at the
surface of a neutral squirmer (ξ = 0) for an Oldroyd-B fluid with viscosity ratio β = 0.5.

6.2. Giesekus and FENE-P models
As has already been discussed in the previous sections, for the Giesekus and the FENE-P
models, (2.5)–(2.10) show that all the components of the conformation tensor on the
surface of the swimmer are coupled and affect each other. As the mobility parameter am
of the Giesekus model, or the maximum extensibility parameter L of the FENE-P model,
increases, these models deviate significantly from the UCM/Oldroyd-B models, resulting
in a substantial redistribution of the force contributions to the FFC. This actually leads to
different mechanisms of speed enhancement even in the low-Weissenberg-number regime.

For the Giesekus model, U/UN and Ω are shown in figure 12 as functions of Wi, for
mobility parameter αm = 0.1 and viscosity ratio β = 0.5. In the range of the Weissenberg
number shown, the Giesekus model exhibits negligible shear thinning. The no-swirl
case and a swirl case with ζ = 3 have been chosen. The accelerated asymptotic theory
is presented with solid black lines, while the numerical results are denoted with red
lines with symbols. The agreement between theory and simulations is excellent for the
no-swirl case, while for the swirl case the agreement is very good up to Wi ≈ 0.1 for
the normalized velocity, and up to Wi ≈ 0.15 for the rotation rate. As Wi increases, the
theory starts to deviate from the numerical results, although the degree of the deviation is
reasonable, and the right trends are predicted. On the contrary, the original perturbation
solutions (not shown in figure 12) give completely erroneous results for Wi larger than
approximately 0.1. We observe that the speed enhancement is small, and the rotation rate
is significant. Compared to the results for the Oldroyd-B model, shown in figure 7, the
speed enhancement is reduced, and the same holds for the rotation rate. Obviously, the
choice of the constitutive model plays an important role in understanding swimming (with
or without swirl) in an elastic fluid.

As explained before for the UCM/Oldroyd-B models, the rotation rate of the swimmer
under creeping flow conditions for a viscoelastic fluid is produced exclusively by the
development of the shear elastic stress σrφ . Since the rotation rate for the Giesekus model
is smaller than that of the Oldroyd-B model, one expects the same to be true for the
magnitude of σrφ . Indeed, if we compare the σrφ contours, shown in figure 13, with those
shown in figure 8, we see that the Giesekus model predicts smaller stresses tangential to
the body than the Oldroyd-B model.

In figure 14, we present the force contributions Fp, FV and FE on a neutral swimmer
as functions of Wi; all parameters are the same as in the previous two figures. The
agreement between the accelerated asymptotic theory and the numerical results for the
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Figure 12. (a) Normalized squirmer velocity and (b) net rotation rate for a neutral squirmer (ξ = 0) using the
Giesekus model with αm = 0.1 and β = 0.5. Black solid lines, accelerated asymptotic results; red lines with
symbols, numerical results.
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Figure 13. Tangential stress σ rφ contours for the Giesekus model with Wi = 0.2, αm = 0.1 and β = 0.5. The
contours are shown in the YZ plane for a neutral squirmer (ξ = 0) with ζ = 3.

no-swirl case is worth noting, while for ζ = 3 reasonable differences are observed. In
all cases, however, the accelerated asymptotic theory predicts the right trends for all
quantities. As mentioned above as well, the additional quadratic term involving the
conformation tensor in the original form of the constitutive equation, (2.3), has the
consequence that the normal contribution to the force due to the elastic stress is not
invariant to the swirl in the flow; only the normal viscous contribution FV,n = −8/3
remains constant. Again, by looking closely at the details, we can extract information
about the type of forces acting on the swimmer and compare this with the results for
the Oldroyd-B model. First, we observe that the pressure contribution does not generate a
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Figure 14. Force contributions for a neutral squirmer (ξ = 0) using the Giesekus model with αm = 0.1 and
β = 0.5. The theoretical results are denoted with solid lines, and the numerical results with dotted lines with
symbols. (a) No-swirl case (ζ = 0) and (b) swirl case with ζ = 3.

major thrust compared to UCM/Oldroyd-B fluids, as well as the fact that the introduction
of swirl has a negligible effect on the pressure contribution. Second, the total viscous
contribution goes from propulsive to resistive, namely, the shear viscous contribution
changes sign from positive (FV,s > 0 for ζ = 0) to negative (FV,s < 0 for ζ = 3). Lastly,
the total elastic contribution, FE = FE,n + FE,s, changes type and becomes propulsive.
Since, FE,n is negative as the mobility parameter goes to zero, we conclude that the
non-isotropic term of the Giesekus model is responsible for the development of substantial
normal stresses that vary significantly with the increase of the mobility parameter. It
also appears that the elevated normal elastic stresses hinder the development of the
isotropic pressure. Consequently, the major propulsive character of pressure, previously
identified for the UCM/Oldroyd-B fluids, diminishes and the speed enhancement
is minimized.

The contours of the isotropic pressure can be seen in figure 15. First, we mention that for
the no-swirl case the magnitude of the pressure, and its spatial variations, are even smaller
than those in the Oldroyd-B model (shown in figure 10a). When swirl is introduced,
ζ = 3, slightly larger values of the pressure and its gradient are observed compared to the
no-swirl case. However, these are much smaller than in the Oldroyd-B model (shown in
figure 10b) and thus the contribution of the pressure to the speed of the swirling swimmer
is inconsequential.

In figure 16, we show σrr(r = 1, θ) and σrθ (r = 1, θ) as functions of x = cos(θ),
for both the no-swirl (black, solid lines) and swirl cases (red, dotted lines). Very steep
gradients are observed at the south pole, which cause the normal component of the elastic
stress to switch from negative to positive values. Recalling the definitions of FE,n and FE,s,
given by (6.11a,b), we can easily confirm that the tangential elastic stress σrθ remains
resistive in character for both the no-swirl and swirl cases. On the contrary, the normal
elastic stress σrr is resistive for the no-swirl case, but changes to propulsive for swirling
swimmers. Finally, it is worth noting that, although both the pressure contribution and the
total elastic contribution generate thrust to the swirling body, their magnitude is small,
resulting in a minor speed enhancement compared to the simple Newtonian fluid with the
same viscosity.

Finally, in figures 17 and 18, we present results for the FENE-P model with ξ = 0, L = 10
(χ = 1/102), β = 0.5 and ζ = 0 and ζ = 3. In particular, U/UN and Ω are shown in figure 17,
and the force contributions Fp, FV and FE, in figure 18; all quantities are presented as
functions of Wi. In the range of the Weissenberg number shown, 0 ≤ Wi ≤ 1/4, the
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Figure 15. Pressure field for a neutral squirmer (ξ = 0) using the Giesekus model with Wi = 0.2, αm = 0.1,
β = 0.5 and swirl parameter ζ = 3.
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Figure 16. Numerical results for the (a) normal elastic stress σ rr and (b) tangential elastic stress σ rθ as
functions of x = cos(θ ) at the surface of the body. A neutral squirmer (ξ = 0) in a Giesekus fluid with Wi = 0.2,
αm = 0.1 and β = 0.5 is shown.

FENE-P model exhibits negligible shear thinning. One can see that the results are very
similar to those for the Oldroyd-B model. Although the agreement between theory and
simulations is not as good as for the Oldroyd-B model, the general predictions and trends
remain the same. Therefore, the UCM/Oldroyd and FENE-P models exhibit the same
mechanism for speed enhancement and rotation rate of the body. These results indicate,
for one more time, that the choice of the constitutive model plays an important role in
understanding swimming (with or without swirl) in an elastic fluid.
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Figure 17. (a) Normalized squirmer velocity and (b) net rotation rate for a neutral squirmer (ξ = 0) using the
FENE-P model with L = 10 and viscosity ratio β = 0.5. The theoretical results are denoted with black solid
lines, and the numerical results with red solid lines with symbols.
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β = 0.5. The theoretical results are denoted with solid lines, and the numerical results with dotted lines with
symbols. (a) No-swirl case (ζ = 0) and (b) swirl case with ζ = 3.

7. Conclusions

In our previous publication (Binagia et al. 2020), we discussed the fact that the
low-Weissenberg-number region is appropriate for real micro-organism swimming,
because of the characteristic swimming speeds, the size of the organisms and the fluids
in which they swim. Here, we thoroughly investigated this region, both analytically and
numerically. In summary, we can conclude as follows.

(a) We proved that the UCM/Oldroyd-B models become singular at a small critical
Weissenberg number which depends on the slip parameter ξ . For a puller with
ξ = 1/3, one finds that the critical Wi is 3/8 and decreases for any other value of
the slip parameter. For a neutral swimmer, the critical Wi is 1/4. The singularity is
revealed based on the analysis at the surface of the body, and it is the first time that
such a singularity for the viscoelastic flow past a spherical body has been predicted.
The same analysis also shows that the flow at the poles is purely extensional
in character. Unexpectedly, the swirl parameter does not affect the solution for the
conformation tensor at the poles.

(b) We proved that the singularity predicted for the UCM/Oldroyd-B fluids is completely
removed when regularized and more realistic constitutive equations are employed
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such as the Giesekus and FENE-P models. However, the purely extensional character
of the flow at the poles still holds.

(c) For the UCM/Oldroyd-B models, and based on the exact analytical solution for the
conformation tensor at the poles, we found analytically the radius of convergence
of the series solutions with respect to the Weissenberg number. We showed that
the radius of convergence is even smaller than the critical Wi at which the
UCM/Oldroyd-B models become singular. Surprisingly, and although the Giesekus
and FENE-P models are valid for any value of Wi, the radius of convergence of
the corresponding series solutions is slightly smaller than in the UCM/Oldroyd-B
fluids. Therefore, the perturbation solution(s) can be used as a good approximation
of the exact solution only for very small values of Wi (Wi <∼ 0.1). This information
in conjunction with that reported in points (a) and (b) above fully explains the
fact that other researchers in the field (Datt et al. 2017; Datt & Elfring 2019,
2020) have reported large changes to their results, even at relatively small values
of Wi, when higher-order corrections are taken into account. It also explains the
large differences between the simulation and asymptotic results seen in our recent
publication (Binagia et al. 2020) in the intermediate- and high-Weissenberg -number
regions.

(d) When techniques that accelerate the convergence of series are applied, the
transformed solutions are more accurate than the original perturbation solutions.
Even when the agreement with the simulation results is not excellent, the
transformed solutions predict the right trends for all the integral and/or constant
quantities of interest in the range 0 ≤ Wi < Wiρ , where Wiρ is given by (3.6).

(e) Both theory and simulations reveal that all viscoelastic models, at a sufficiently
large swirl parameter ζ , predict a speed enhancement compared to the speed of
the swimmer in a Newtonian fluid with the same viscosity, UN = 2/3. Use of the
Oldroyd-B model results in a prediction of the largest increase in U. Also, all
viscoelastic models predict a rigid-body rotation of the micro-swimmer, and again
the Oldroyd-B model, among all models employed, predicts the largest Ω .

(f) We showed that, for an Oldroyd-B fluid, the speed enhancement for a swimmer
with swirl is driven primarily by an increase in the force due to pressure. The
same was shown for the FENE-P model, namely the FENE-P model is only a small
modification to the Oldroyd-B model. In contrast, while speed enhancement is also
seen for a Giesekus fluid, the propulsion is instead created from a large increase in
the normal elastic force. For this model, the role of pressure remains propulsive, but
is much smaller than that predicted using the Oldroyd-B and FENE-P models.

We emphasize that, although the Oldroyd-B model is the most basic and fundamental
differential fluid mechanics model for viscoelastic fluids, these results reveal phenomena
and mechanisms, for both non-swirling and swirling swimmers, not previously identified
by other researchers in the field. From our analysis, we concluded that the choice
of the constitutive model is absolutely crucial for understanding the locomotion of
micro-swimmers in viscoelastic fluids, and therefore guidance from experiments is
necessary to determine which model is best suited to predict the major features of these
types of flows. We also revealed that the low-Weissenberg-number region (i.e. of weak
viscoelasticity) is much more important in understanding swimming in an elastic fluid
than generally believed thus far. Finally, in a future publication we will present results
on the time-dependent spherical squirmer model, addressing thoroughly the effect of the
transient, frequency-related, terms in the governing equations; that work is under way.

911 A16-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

98
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.987


K.D. Housiadas, J.P. Binagia and E.S.G. Shaqfeh

Acknowledgements. J.P.B. is supported by a National Science Foundation (NSF) Graduate Research
Fellowship (Grant No. DGE - 1656518). This work is also supported partially by NSF Grant No. CBET 1803765.

Declaration of interests. The authors declare no conflict of interest.

Author ORCIDs.
Kostas D. Housiadas http://orcid.org/0000-0002-6308-2811;
Jeremy P. Binagia http://orcid.org/0000-0002-9584-6038.

Appendix A

For the Oldroyd-B model, and using the symbol η ≡ 1 − β for brevity, the high-order
terms given in (5.6) and (5.7) are

Ũ2 = − 772
2145

+ ζ 2
(

468
385

− 4392
5005

η

)
, (A1)

Ũ4 = − 314744
980343

+ 267001496
233648415

η − 381076
855855

η2

+ ζ 2
(

−135928
75411

− 463142193656
83412484155

η + 2681778613412
417062420775

η2 − 2216920922
1168242075

η3
)

+ ζ 4η

(
−922566056

237642405
+ 1570635736

468083525
η − 118941418678

112540653225
η2
)

, (A2)

Ω̃1 = 6
5
, (A3)

Ω̃3 = −2052
455

+ 534
455

η + 48
65

η2 + ζ 2η

(
−202914

35035
+ 135528

35035
η

)
, (A4)

Ω̃5 = 553568
19845

+ 95095649288
14424715305

η − 3296321288824
216370729575

η2 + 115117929392
30910104225

η3

+ 937088
1117935

η4 + ζ 2η

(
−172245369776

213165237285
+ 1195093253533414

19711928261025
η

− 117780004568598902
1793785471753275

η2 + 181723992108056408
8968927358766375

η3
)

+ ζ 4η2
(

179145233734466
9118735150525

− 9796607184217891
465055492676775

η + 53424844660340698
6975832390151625

η2
)

.

(A5)
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