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Abstract

The nonlinear convection-diffusion equation has been studied for 40 years in
the context of nonhysteretic water movement in unsaturated soil. We establish
new similarity solutions for instantaneous sources of finite strength redistributed
by nonlinear convection-diffusion obeying the dimensionless equation 860/9t =
8(0™80/0z2)/0z — 0'”+180/62(m > 0). For m = 0 (Burgers’ equation) solu-
tions involve the error function, and for m = 1 Airy functions. Problems 1,
2, and 3 relate, respectively, to the regions 0 < z < o0, —o00 < z < o0, and
—o00 £ z < 0. Solutions for m = 0 have infinite tails, but for m > 0 and finite
t, 8 >0 inside, and @ = 0 outside, a finite interval in z . At the slug boundary,
6(z) is tangential to the z-axis for 0 < m < 1; and it meets the axis obliquely
for m =1 and normally for m > 1. Illustrative results are presented. For Prob-
lems 1 and 2 (but not 3) finiteness of source strength sets an upper bound on 8,
the similarity “concentration” at z = 0. The magnitude of convection relative to
diffusion increases with 6, ; and apparently the dynamic equilibrium between the
two processes, implied by the similarity solutions, ceases to be possible when 6,
is large enough.

1. Introduction

The current interest of mathematicians in nonlinear diffusion and nonlinear
convection-diffusion was preceded many decades earlier by that of physicists
concerned with soil-water. Building on the pioneering physical concepts of
Buckingham [2], Richards [17] in 1931 developed the general partial differ-
ential equation describing water flow in unsaturated soils. For nonhysteretic
flows in homogeneous isotropic soils this is the nonlinear Fokker-Planck, or
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convection-diffusion, equation

a6 dK 06
5z, =V OV - G5 5 (1.1)

Here 6 is the volumetric moisture content, ¢, is time, and z, is the vertical
space coordinate, taken positive downward. V_ signifies differentiation with
respect to space coordinates. (We drop asterisks later when we introduce
dimensionless variables.) D, the moisture diffusivity, and K, the hydraulic
conductivity, are strongly-varying functions of 8. There is a very large liter-
ature on the solution of (1.1) in soil physics and hydrology, which goes back
to the early 1950s. References [11-16] give extensive reviews.

For a given soil D(6) and K(6) are experimentally measured functions
which characterise it hydrologically. D and K are inherently non-negative,
with dK/d6 a nondecreasing function of 6. The primary emphasis has been
on seeking solutions for D(f) and K(6) otherwise arbitrary. This has been
supplemented by work with these functions assigned simple functional forms
which, it is hoped, may model adequately actual measured functions for a
particular soil. The power-law form of D(@) is popular with mathematicians.
Its implications in the soil-water context were explored as early as 1957 [10].
Positive power laws yield some simple and interesting results, mainly because
they require that D — 0 as § — 0. For soils, D frequently tends to be small
at the dry end of the moisture range, but it is definitely not zero.

Soil physicists have worked more with infiltration problems, with either
moisture content or flow velocity prescribed at the soil surface, than with the
(generally more difficult) problems of redistribution. The latter deal with the
subsequent redistribution of a finite slug of water initially in the soil mass.
This slug may have been infiltrated at the surface by rainfall or irrigation,
or at some depth beneath the surface by sub-irrigation or in an experimental
arrangement, or experimentally at the bottom of a soil column. We designate
these as Problem 1 (downward redistribution), Problem 2 (two-way redistri-
bution), and Problem 3 (upward redistribution).

We develop here solutions bearing on these three distinct modes of re-
distribution. Because they are similarity solutions, we necessarily follow the
mathematicians’ path by using power-law representations of D and dK/dé4,
and we are obliged also to avoid the complication of hysteresis. Accordingly,
the results do not apply to coarse-textured soils where capillary hysteresis (e.g.
[4]) is important. On the other hand, they are relevant to redistribution in
nonhysteretic fine-textured soils, and to the full range of other nonhysteretic
nonlinear convection-diffusion processes.

In physical applications, we are generally concerned with the redistribu-
tion of an initial slug of the transported material with finite maximum
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concentration and (usually) finite dimensions. The basic solutions gener-
ated here are for nonlinear convection-diffusion from an instantaneous point
source at ¢, = 0. It will be understood that finite slugs initially at appropriate
values of ¢, > 0 may be matched, as required, to these solutions.

In what follows, we broaden our definitions to apply to any convection-
diffusion process. D is simply a diffusivity, K a convective velocity, &
the volume fraction of the transported material (based, if necessary, on a
putative material density), and z, the space coordinate taken positive in
the direction of the convective velocity. We continue to consider the three
distinct Problems 1, 2, and 3; and we retain the requirements that 6, D,
and K be non-negative and that dX/d6 be a nondecreasing function of 0.

2. Similarity solutions for redistribution by convection-diffusion

We use the one-dimensional (z,) form of (1.1) with

D =Dy6", Z—I;=k0", (Dy>0,k>0,m>0,n>0) (2.1)
namely
06 o] m 060 n 006
ét_. = a—z‘ (DO() a—z‘) ~ k6 8z, (2.2)
We reduce this through the substitutions
z=kz,/D,, t=Kkt,/D,, (2.3)

to the dimensionless form

00 o (,m00 n00
This is subject to the initial condition
t=0,z#0,0=0. (2.5)

We seek similarity solutions of (2.4), (2.5) describing redistribution of a
finite quantity of the transported material. The appropriate form is

0=0(p)™", ¢p=z2% (a>0) (2.6)

which ensures total material conservation. Putting (2.6) into (2.4), we find
that similarity requires that

l+a=(m+3)a=(n+2) (2.7)
That is, we have
n=m+1, a=1/(m+2). (2.8)
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(Note that taking n = m+1 is, in the soil-water context, equivalent to taking
d¥/d @, the derivative of the moisture potential ¥, proportional to 62 ,a
reasonably plausible representation.) We therefore rewrite (2.4), (2.6) as

30 _ o m60 m+l(90
5= 37 (0 5)—9 - (2.9)
6 =8(p) /D g = g mED) (2.10)

We see, further, that (2.6) (and (2.10)) enables total material conservation
in each of the separate regions z < 0 and z > 0. Accordingly, the solutions
of (2.9) we seek satisfy the condition of zero flow across z = 0, namely

90 6
t>0, Z——O, E—m (2.11)
Substituting (2.10) into (2.9) and (2.11), we obtain the ordinary differential
equation 4 4 J
m e _ 1 m+2
o’ [e dw] - Lo - ve] 2.12)
subject to
de e’
=0, do ~m+2 (2.13)
Integration of (2.12) with respect to ¢, and use of (2.13), then gives
ae _ 1 2 1-m
o=z -8, (2.14)
We seek solutions of (2.14) subject to the condition
p=0, 6=06,>0. (2.15)

6, serves to parametrise the solution. For m > 0, (2.14), (2.15) may be
rewritten, with # for 8", as

d
ﬁ = .m_'”+_2 [V _ o] (2.16)

subject to
p=0, u=67=u,>0. (2.17)
For Problem 1, we require the solution in 0 < ¢ < oo ; for Problem 2 in

—o0 < ¢ < 00} and for Problem 3 in —oo < ¢ < 0. The practical interest is
in solutions with 0 < © < o0, and with the integrals

[N 0
Q+=/O 8dy, Q_=/¢ 8do, (2.18)

finite. In connection with Problem 2, we use the notation

0=0,+0_. (2.19)
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Here ¢ is either the smallest positive finite value of ¢ at which 8 =0, or,
if this does not exist, +oc0; and ¢_ is either the negative finite value of ¢
of smallest magnitude at which © = 0, or, if this does not exist, —oo. Note
that Q , Q,and Q_ are respectively the dimensionless source strengths (or
slug magnitudes) for Problems 1, 2, and 3. They are related to the physical
source strengths (or slug magnitudes) Q,, , Q,,and Q,_ by the relations

Q* _ Q*+ - Q'— DO

0~0 "o k&

The Q,’s have the dimensions [length], consistent with 6 expressed as vol-
ume fraction.

Beyond our concern with practically-relevant solutions, we need also to
examine those solutions for which © — o as ¢ — +co. As we shall see,
these singular solutions determine the upper bound on the values of 6, per-
missible in Problems 1 and 2.

In the following section, we examine the cases m =0 and m = 1, which
provide a useful entrée into the general question of solutions for arbitrary
m>0.

(2.20)

3. The special cases m =0 and m =1

3.1 The case m =0
For m =0, (2.14) reduces to the Bernoulli equation

de
o = i[6" - ) (3.0)
The solution satisfying (2.15) is
exp(-49%)

e =

- _SP7al ) (3.2)
6, - %’-erf%

3.1.1 The upper bound on ©,. For © to be finite everywherein 0 < ¢ <
oo, we require that

8,' > yn/2, ie 0<6,<6;=2//xn. (3.3)
There is thus a definite upper bound on 6, 66 , for the existence of relevant

solutions to Problems 1 and 2; but relevant solutions to Problem 3 exist for
all 0<6;<00.
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3.1.2 Source strengths. Putting (3.2) into (2.18) and (2.19), we find

0,=-i(1-e,), (3.4)
S
Q0 = (1 + %90> . (3.6)

3.1.3 Value and location of ©_,, . For 0 < 8, < 2/y/n, © has a maxi-
mum O_ . in 0 < ¢ < oo [i.e. for Problems 1 and 2]. In view of (3.1), this
maximum is at ¢ = ¢, =6, . We see from (3.1) and (3.2) that @, is the
root of the transcendental equation

N4,

o ' exp(-Lp%) + Y- erf(4p) = e, (3.7)
For small 60 this reduces to
1 3 11
B nax = 01 = 8+ 78 + 5267 + 0(8). (3.8)

As 6, —2/y/n, B, and g, increase indefinitely but very slowly. Putting
asymptotic expansion [5]

2 1 2
erf(3g) ~ 1 - N exp(—L9?) (5 P + ) (3.9)

in (3.7) gives, in this limit,
3 2 4 7
oy expliog) ~ -/ (1 - ‘/790> . (3.10)

Note that Problem 3, for all 0 < 8, < oo, gives © increasing monotonically
from zero as ¢ — —oco to 6 at ¢ = 0. There is no maximum.

3.1.4 Some general properties. For m = 0, all solutions giving finite Q°s
have infinite tails. We note that

¢Lix§mexp(%¢2) (eg‘+%)e=1 (3.11)

forall 0 < 8, < 0o; and that
q)lgglo exp(%¢2) (6;1 - l/2£> e=1 (3.12)

forall 0< 6, < /2.

For m =0, a=1/2, sothat 8 at fixed ¢ decreases as ¢~
fixed © increases as /2.

Note that for m = 0, (2.9) reduces to Burgers’ equation [3]. The relevance
of Burgers’ equation to soil-water problems has been recognised for some

decades [13, 14]; but the present redistribution solutions appear to be new.

1/2 and z at
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3.1.5 The singular case ©, = 98 = 2/+/n . The solution for this case is

~1g?
o= 2P0 ) (3.13)
vr Cffc(§¢)
with © increasing monotonically from 0 at ¢ = —o0 to o0 at ¢ = +oo.

The relevant asymptotic expansions, which follow from (3.9), are: ¢ large
and negative,

-1

1 2 12
O~ |vrexp(do®)+ -~ S+5-...| (3.14)
¢ 9
@ large and positive,
2
8~¢+—+%+.... (3.15)
¢ 9

3.2 The case m =1
For m =1, (2.13) reduces to the Riccati equation

de/dy =6’ — p)/3. (3.16)
The solution satisfying (2.15) is

313Y3(0 + 68941 (3*"9) + (0 - 8))Bi 3"
V30 +6,)4i(37 ) + (p - 8,)Bi(37?p)

(3.17)

Here Ai, Bi, are the Airy functions (e.g. [1]), 4¢, Bi , their derivatives,
and

p =3"’T(3)/T(}) ~ 1.051416. (3.18)

3.2.1 The upper bound on 6,. When 6, > p, the denominator of the
right of (3.17) is zero for some large enough, finite value of ¢. It follows
that, for © to be finite everywhere in 0 < ¢ < oo, we require that

0<8,<8,=p=r1.051416. (3.19)
Here also there is a definite upper bound on 6, 83 , for the existence of

relevant solutions to Problems 1 and 2; and relevant solutions to Problem 3
exist for all 0 <6, < 00.
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3.2.2 Source strengths. Putting (3.17) into (2.18) and (2.19) we find

Q, =-3In [;\%{J:i(p +8)4i(37 9, )+ (p - GO)Bi(3_2/3(o+)}] ,
(3.20)
o [V30+©0)4i37 ) + (p - eo)Bi(s‘Z”«»_)}
=3 [ﬁ(p +6,)4i(37p )+ (p - 6)Bi(37p,) |’ (21
1
0 =3In [g—f/%{\/s(p +8,)4i3" o )+ (p - BO)Bi(3_2/3(/)_)}} .
(3.22)

Here ¢, , ¢_ are, respectively, the positive root and the negative root of
smallest magnitude of

Bi'3p) _ 3(p+8y)
Ai'(37 ) pP-6, °

3.2.3 Value and location of ©_, . For 0 < 6, < p, 6 has a maximum
O, in 0 < ¢ < oo [ie. for Problems 1 and 2]. In view of (3.16), this
maximum is at ¢ = @t = efm. Putting © = ¢1/2 in (3.17) gives the
transcendental equation for ¢t. Problem 3, for all 0 < 6, < oo, gives ©
increasing monotonically from zero at ¢ = ¢_ to 6, at ¢ = 0, with no

maximum.

(3.23)

3.2.4 Some general properties. For m = 1, all solutions giving finite Qs
have ¢, and ¢_ finite. Expansions of Ai’ and Bi' about the origin indicate
that, for small 6, ,

o_~—(68,)"* +0(8}) (3.24)
and
172 2
9, = (68,) "+ 0(8,). (3.25)
The asymptotic expansions of 4i' and Bi’ for large argument [1] show that,
as 6, - p,
9 pP+8, 23
¢+~<—lnp_eo) . (3.26)

We note that it follows from (3.16) that, at ¢ = ¢_ and ¢_, d6/dgp
assumes the finite values —%q)_ and —%¢ +- Thatis, the ©(¢) curve meets
the ¢ axis at a finite angle. At ¢ = ¢_ the slope angle is less than n/2, and
at ¢ = ¢ itis greater than 7/2.

For m =1, a=1/3, so that 8 at fixed ¢ decreases as ¢

fixed © increases as ¢/3.

1/3 and z at
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3.2.5 The singular case 6, = 68 = p. The solution for this case is
_4i37"p)
=273 °
Ai(37" )

with © increasing monotonically from 0 at ¢ = ¢_ to co at ¢ = +o0. In
this case, ¢_ is the negative root of

o= (3.27)

A3 Pp)=0 (3.28)

of smallest magnitude. It has the value ¢_ =~ -2.118. The asymptotic

expansions of Ai and Ai' for large argument [1] lead to the expansion for
large ¢

e~¢‘/2+—+.... (3.29)

We see that © — o0 as ¢ — oo like (o

4. General properties of solutions for m > 0

We now explore properties of the solutions for arbitrary values of m > 0.
Relevant solutions to Problem 3 exist for all 0 < 8 < co. On the other
hand, Problems 1 and 2 require a finite upper bound on 6, 85 , not only
for m = 0 and 1, but for all m > 0. In this connection we develop the
following asymptotic analysis.

4.1 Asymptotic analysis of the singular solution

We seek the solution of (2.14) which tends to infinity as ¢ — +oo, that
is, the singular solution with 6, = 95 . We assume that this solution has an
asymptotic expansion for large ¢ in descending powers of ¢ of the form

6~al¢b'+a2¢b2+.... 4.1

It follows from the structure of (2.14) that the leading terms of the expan-
sions for ©% and for 9"'"¢ must be equal; and that the leading term of
the expansion for d8/dg must equal the second term of the expansion for
(m+2)~! [92 — 8'"™y] . Equating the various indices and coefficients, we
find

m+2 1
=1 = ——— - —— = -1]. .
a, , a, (m+1)2’ b, il b, 1 (4.2)

This procedure of equating indices and coeflicients may be continued indef-
initely to establish the higher terms of expansion (4.1). We limit ourselves
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here to the two leading terms:
2
e~ ¢l/(m+l) + m+ 0 1
(m+1)

Note that (3.15) is exactly (4.3) for m = 0, and (3.29) is exactly (4.3) for
m =1, as they should be.

(4.3)

4.2 Behaviour of 6(m)

The analytical determinations of 6,(0) and ©;(1) (Section 3) have been
supplemented by numerical calculations for other m-values, and also by up-
per and lower bounds for Ga(m) established by analysis.

4.2.1 The upper bound on Oa(m) . We seek the singular solution of (2.16),
(2.17) which gives u — oo as ¢ — oo. For such a solution, u increases
monotonically from u; at ¢ =0, t0 oo as ¢ — oo0. So, for ¢ >0, m >0,

i’f m
do  m+2

[u(l,/mu -9]. (4.4)

Now the solution of the linear equation

duy,  m [ 1m
d_¢_—m+2[° u =] (4.5
subject to
¢=0,u =u, (4.6)

is

1/m
m+2 _2 muy @ —1 m+2 -3
U, = (uo— u, /'") exp( 0 ) +ug /m(o+—m—u0 m(4.7)

m

So u; = oo as ¢ — co provided
2] m+2
m+ 2] m+
> . .
Uy > [ p” ] (4.8)

Now if u;, — oo for a given «;, then u — co for a smaller U, . It therefore
follows that

. [ma 2]
e; < [—m—] . (4.9)
4.2.2 The lower bound on 8y(m). Also, for ¢ >0, m > 1,
du m (1=m)/m_ 2
%<m—+2[uo u —¢] (410)
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Now the solution of the Riccati equation

du m (1-m)/m_ 2

dp “mrale M=ol
subject to (4.6) is in terms of Airy functions, similar in form to (3.17). Then

a comparison argument, similar but converse to the preceding one, shows
that, for m > 1,

(4.11)

1/(m+2)
8 > [W] , (4.12)

where p, = 3'°T'(2/3)/T(1/3) ~ 0.3874382.

4.2.3 Comparing bounds and calculated values. We thus have the inequal-
ities

— , (4.13)

m+2 1/(m+2) . 1/(m+2)
2] << [
with the upper bound valid for m > 0 and the lower for m > 1. These
bounds are rather weak, though the upper bound could be useful for large
m . Both bounds approach 1 as m — oo, establishing that
”!1_12080 =1. (4.14)
This is consistent with Figure 1, which shows the various calculated results. It
is seen that 88 decreases, presumably monotonically, from 2/,/m at m =0
to 1 as m — oco. The small variation of 63 as m ranges from 0 to oo is of
some interest.

114 | . T r T T T
112 .
110 [ -
1.08 - .

1.06 - .

104 |- \ -
102 | \ 1

o]
1.00 L ! L !
0 2 4 6 8

FIGURE 1. Dependence on m of the upper bound on 8,, 96 . Dots: analytical results.
Open squares: numerical results,
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4.3 Finiteness of ¢_ and ¢, for m >0

It is convenient to study the question of the finiteness, or otherwise, of ¢_
and ¢ by reference to (2.16), a form of (2.14) applicable for m > 0.

Let us suppose that, for some m > 0, u - 0 as ¢ —» —oo and/or as
¢ — +oo. Then, necessarily, du/dp — 0 in the same limit or limits. But
(2.16) indicates that, in those circumstances, du/dyp — *oo according as
@ — Foo. We reach a contradiction. Accordingly ¢_ and ¢ _ must be finite
for m > 0. They are infinite only for m = 0 (Section 3.1.4).

4.4 Approachof © to O at y=¢_ and ¢ +
We then have from (2.16) that, for m > 0

du m
p=9_, u=0, o=-mia?
du m (4.15)
p=90,, u=20, %=—m—+2(o+.
Now, since —co< ¢_<0 and 0<g¢_<oo,
p=9_, 0<dufdyp < oo (4.16)
=9, —oco < du/dy < 0.
B e 6'" du
To = e (4.17)
and ©®=0 at 9 = ¢_ and ¢_, so that (4.16) gives
O<m<1, ¢p=¢_andg_, d8e/dy =0;
m=1, p=9_, O<d—e=—l¢_<oo,
dyo 3
v=0,. —oo<%=—%¢+<0; (4.18)
m>1, p=9_, d8/dy = +oo,

p=0,, d8/dyp = ~oo.

We see that, for 0 < m < 1, the 6(p) curve meets the ¢ axis tangentially
at 9 = ¢_ and ¢, ; for m =1 it meets the axis obliquely (section 3.2.4);
and for m > 1 it meets the axis normally. Figure 2 (see p. 375) compares
the solutions with 8, = 1 for m =0 (infinite tails), % (tangential to axis),
1 (oblique to axis) and 2 (normal to axis).

4.5 Location of ©_
For 0 <8, < 6;, © has amaximum in 0 < ¢ < ¢, [i.e. for Problems 1

and 2]. In view of (2.14), this maximum is at ¢ = ¢, = €™ . For Problem
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FIGURE 2. Solutions for 6, =1 and m =0 1, and 2, illustrating the four different

1
y E )
modes of approach of © to the gp-axis, accordingas m=0, 0<m<1l, m=1,0or m>1.

3, © increases monotonically from 0 at ¢ = ¢_ to 6, at ¢ = 0 for all
0<6,<o00.

4.6 Expanding the solutions about ¢ =0
Repeated differentiation gives Taylor series expansions of the solutions
about ¢ = 0. It is convenient to work with the equation

m>0, dv/dy = v _ o, (4.19)

which is (2.14) after the substitutions

m m/(m+2) m m (m+1)/(m+2)
v=(s) € x=(325) o (420

Equation (4.19) is subject to the conditions

m+ 2) m/(m+2)

p 8. (4.21)

x=0, v='vo=(
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The leading derivatives of v with respect to x at the origin are

b

’UI(O)— (m+1)/m
(0) m+1 (m+2)/m

-1,
" l/m (m+1D(Mm+2) mi2ym m+1
vO=% [T”om rak
" 2™ (m+1)(m+2)(m+3) mi2ym _ (m+1)(m+4)
© = - ogreAim - I,

(4.22)
From the Taylor series for v(y) which follows, we may derive expansions
for B(¢) of the form

00 1/m
0= [9{," +Y_a,(8,, m)(p"] ) (4.23)
1

These may be usefully convergent, provided 6, is significantly less than 83 .
The related Taylor series for v'(x) may, similarly, be used to estimate @4
and ©,_

4.7 Solution in limit of ©; small

For ©, very small, © is very small everywhere in ¢_ < ¢ < ¢, . In
physical terms, this implies that convective transport is negligible relative
to diffusive transport. If, then, we neglect the convective term in (2.9),
—0™*'960/6z, we find that (2.14) is reduced to the simpler

de _ 8'"yp
o= miz (4.24)
The solution satisfying (2.15) is
m=0, 8=GOCXP[—%¢2];
m¢2 l/m
— m —— ———————
m>0, 0= [60 2(m+2)] . (4.25)

We thus retrieve the instantaneous source solutions of Pattle [9] for nonlinear
diffusion. These solutions are symmetrical about ¢ = 0. The approach of our
convection-diffusion solutions to these symmetrical shapes as ©, decreases
is observable in Figures 3-6 (see pp. 377-378). Note that the first of (4.25)
is the limit of (3.2) for large 6, ! as it should be. We observe further that
(4.25) implies, for m > 0 and 6, small, that

2(m + 2)86”] . (4.26)

s ~ %
por e[t
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FIGURE 3. Solutions for m = 0, including the singular case 6, = 66 = 2\/m ~ 1.128379.
Numerals on the curves are values of 6, .

24 -
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04

-2 -1 o] 1 2 3 4 5 6

FIGURE 4. Solutions for m = 1, including the singular case €, = 65 = 3%/ 3I‘(%—)/l‘(%) ~
1.051416 . Numerals on the curves are values of 6, .

https://doi.org/10.1017/50334270000007098 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000007098

378 J. R. Philip [16]

102

FIGURE 5. Solutions for m = 2. Numerals on the curves are values of 6, . Here 65 R
1.028.

08

06

04 |-

05

02 -

FIGURE 6. Solutions for m = 4. Numerals on the curves are values of 8, . Here 9{, ~
1.012.
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and that
1
2am ]2 m+1 m+2 g2
=~ ~10 =~ _— . 27
o.m.~tox[Zm)' (r(m2) r())er.
Finally, we notice that (4.25) is consistent with (3.24) and (3.25) for the case
m=1.

5. Illustrative solutions

In addition to the analytical results for m = 0 and 1, numerical solutions
have been developed for m = 1/2, 2, 4, and 8. Limited exploratory calcu-
lations only were made for m = 1/2 and 8, with more detailed work done
for m = 2 and 4. Figures 3, 4, 5 and 6 show the solutions obtained for
m=0, 1, 2, and 4 respectively.

Solutions for m = 0, including the singular case 8, = 6, = 2//n ~
1.128379 . Numerals on the curves are values of 6. Solutions for m =1,
including the singular case 6, = 6}, = 3%/ 3I“(%) /T(3) =~ 1.051416 . Numerals
on the curves are values of 6. Solutions for m = 2. Numerals on the curves
are values of 6, . Here 9(‘) =~ 1.028. Solutions for m = 4. Numerals on the
curves are values of 6. Here 6] ~ 1.012.

Numerical solutions were conveniently based on (2.16). They involved
backward and forward integration from u = u, at ¢ = 0, using finite dif-
ferences. Calculations were for two step sizes, with final estimates using
Richardson’s A2 -extrapolation [18]. The larger number of steps ranged from
24 to 112. Final estimates of ¢_ and ¢, were based on analytical approx-
imations in steps at each end of the ¢_ range. It is estimated that errors
in ©(p) do not usually exceed about 1 in 1000, though in unfavourable
circumstances, with 8, close to 8, and ¢ large, errors may approach 1%.

6. Physical remarks

Two physical remarks are offered on these solutions. Firstly, it will be ob-
served that, as @, increases, the asymmetry about ¢ =0 of ©(p) increases.
The physical explanation is that increasing 6, increases the magnitude of
convective effects relative to diffusive effects. Convection operates in the pos-
itive ¢ direction and distorts in that direction the distribution of transported
material.

These considerations lead on to the second remark, which concerns the
finite upper bound, 68 , for Problems 1 and 2. The physical explanation for
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this is, apparently, that when 6, > 68 , convection is so strong relative to
diffusion that the dynamic equilibrium between the two processes, implied
by our similarity solutions, ceases to be possible for these problems. In the
absence of the convection term in (2.9), there is no such bound on 6.
Compare Pattle’s source solutions {9].

7. Some related studies

After this paper was submitted, Professor J. M. Hill kindly furnished me
with a preprint of [6]. Among solutions given by Hill and Hill is an instanta-
neous source similarity solution of (2.4) for (in the present notation) m = 1.
These authors take their dimensionless space variable negative in the direc-
tion of the convection, so that their x is equivalent to —z in the present
work. Their solution, expressed in Bessel functions, should agree with the
present (3.17), but there are important differences. It is stated in [6] that the
solution is nonzero only in z < 0 and is zero in z > 0. We have, however,
physically acceptable nonzero solutions not only in —oco < z < 0 (Problem
3) but also in 0 € z < oo (Problem 1) and —oo < z < oo (Problem 2).
The confusion in [6] is perhaps the outcome of using J, /3 and J_, /3 rather
than the more transparent Airy functions. Note that by supposing there is a
nonzero solution only in z <0, these authors miss an important element of
the solutions, the upper bound on 6, for Problems 1 and 2.

According to [6], the initial condition is a “delta-function at the origin™.
A more precise statement is that the initial condition involves the specialised
delta-functions defined as follows:

_1_ -
PROBLEM 1. ging t m+2Q(zt ;l”)/Q+, 0<z<o0;
[ -
PROBLEM 2. gmét m+2Q(zt "?)/Q, —00 < z < 00; (7.1)
Jpp— . ~-L
PROBLEM 3. }mat m+2Q(z¢t ™)/Q _, —-00<z<0.

In each case we must take the 6(¢), and the valuesof Q_, @, and Q_,
specific to the particular value of 6.

A referee has drawn my attention to two other studies of (2.4). The first
[8] addresses the special case » = 0 and employs a similarity scheme quite
distinct from that used here. The second [7] involves a similarity scheme
similar to but more general than (2.6). Consistent with the present notation,
we write it here as

0=0p:r, ¢=z2F" (1.2)
Solutions in z > 0 are sought which satisfy a time-dependent flow velocity
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condition at z = 0. We see immediately that similarity requires that the
total material in z > 0 at time ¢ be proportional to Ak ; that (apart from
the zero-flow case with f = —1, which is Problem 1 of the present work)
physically meaningful flows require g > —1; and that the condition at z =0
is a positive flow velocity proportional to t# . We limit consideration below
to the case B > —1.

Putting (7.2) in (2.4) shows that similarity requires that

—mﬂ—l ileen—m= H_M

T1+28° 1428 (7.3)

Recalling that we require m > 0, n > 0, to avoid physically unacceptable
singularities (often with pathological mathematical consequences) in D and
dK/dO at 6 =0 [cf. (2.1)], we see that the first of (7.3) requires that

either —1<pf<—-1 or ﬂz—rl;>0. (7.4)

B

FIGURE 7. Limits on applicability of similarity scheme (7.2) for (2.4). Region with hatching
rising to the right satisfies (7.4), i.e. gives m > 0, n > 0, as required. Region with hatching
rising to the left satisfies (7.6), i.e. gives n — m > —1, as required for soil-water applications.
Region with double hatching satisfies both conditions.
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This is a significant limitation on the applicability of (7.2), since most interest
attaches to the case B = 0 (constant flow velocity at z = 0) and to cases
in the range —% < B < % giving relatively mild time-dependence of the
boundary condition. See Figure 7.

In the soil-water context the limitation is even more serious. The point
at issue is the relation between m and n, which determines the form of
d¥/d@, the derivation of the moisture potential. Since D = K d¥/d0,
d¥/d@ is proportional to 8™ "' for m > 0, n > 0. Realistic representa-
tion of d¥/d6 requires this quantity to increase as 6 decreases. That is we
require, at the least, that

n-m>-1. (7.5)
Applying the second of (7.3) to (7.5) we obtain the requirement that
either —1<f<—-1 or B>-4, m<28/(1+§). (7.6)

These inequalities also are indicated on Figure 7. We see that the condition
(7.5) gives a further restriction on the ranges of m and g . Disappointingly,
the similarity scheme (7.2) gives few solutions that are physically meaningful
and practically relevant. No such restrictions apply to the redistribution
problems solved in the present paper.

In [7] the authors arrive at a nonlinear second-order equation in ©(¢) and
give a complicated approximate technique for solving (2.4) in 0 < z < c0.
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