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Abstract

We prove a new energy or Caccioppoli type estimate for minimisers of the model functional fa \Du\2 +
(det Du)2, where B e l and u : £2 —> OS . We apply this to establish C°° regularity for minimisers
except on a closed set of measure zero. We also prove a maximum principle and use this to establish
everywhere continuity of minimisers.
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1. Introduction

Since the first paper by Evans [4] on the subject appeared, partial regularity of min-
imisers (that is, smoothness except on a closed set of measure zero) of functionals of
the form

" > = / •

Jn
(1.1) I[u] = / F(Du)dx,

Jn

where Q c K", u : £2 -*• RN and F is quasi-convex, has been extensively studied (see
Acerbi and Fusco [1], Evans and Gariepy [5], Fusco and Hutchinson [6], Giaquinta
and Modica [9]).

Recently in [7] the authors have studied the partial regularity of minimisers of
certain polyconvex functionals (that is functionals which are convex in the various
minors of the matrix [Du]). Polyconvex functionals are quasiconvex and arise in
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[2] A model problem from non-linear elasticity 159

non-linear elasticity (Ball [2, 3]), and all known 'natural' examples of quasiconvex
functionals are polyconvex.

A model problem covered by the results in Fusco and Hutchinson [7] is given by
N = n = 2 and

(1.2) I[u] = [ \Du\2 + (det DM) 2 .

The first term in the integrand is the usual Dirichlet energy (for line elements); the
second term is the Dirichlet energy for area elements (compare Fusco and Hutchin-
son [7]). There is clearly no loss of generality in having the same coefficient in front
of each term, as follows by a scaling argument.

We show in particular that mininimisers of this functional are smooth except on a
closed set of measure zero, and are everywhere continuous.

Although simple, this example already contains all the difficulties which appear
in handling the general case to which the main theorem in Fusco and Hutchinson [7]
applies. Firstly, the set of competing functions, those for which the integral is finite,
is not a linear subspace of Wh2. Secondly, the term (det Du)2 can grow, in certain
directions, like a fourth power of Du, which one has no way of controlling by using
the leading term |DM| 2 appearing in / [«] .

These two difficulties were overcome in Fusco and Hutchinson [7]. There we used
the standard technique of blowing up a minimiser u of / around a convergent sequence
of points in order to obtain a sequence vm of functions which converges weakly in
W12 to the solution D of a linear elliptic system with constant coefficients. Then
the crucial fact that we proved in order to obtain the decay Lemma 3.1 and hence
the partial regularity result Theorem 3.2 was that the functions vm converge strongly
in W1'2 to v.

The first main result in this paper is an energy estimate of Caccioppoli type which
leads to an alternative proof of the decay estimate Lemma 3.1. Namely, we prove that
if u € Wi2 is a minimizer of / then for any ball BR CC £2

(1.3) [ |DM| 2 + ( d e t DM) 2 < -£- I \ u - u R \ 2 + - ^ - ( [ \Du\2) .
JBR/2 R JBR * \JBR )

This estimate is proved using the comparison function (2.9) introduced in Fusco and
Hutchinson [7]. Once one has (1.3), the proof of the Lemma 3.1 becomes simpler
than in [7].

In order to make clear the ideas and techniques used in the proof of partial regularity,
we restrict ourselves to the model case / [«] . To prove Theorem 3.2 in the general case
one should use the appropriate version of the estimate (1.3) containing all the higher
order minors of the matrix [DM]. This requires only technical complications, but no
new ideas.
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Finally, we remark that the blow-up argument used here and in [7] works because
the leading term in /[«] is quadratic and there is no degeneracy in ellipticity. It would
not work if we had something like

-L(1.4) /[«]= / \Du\" + (detDu)p,
In

with p > 2, or its ̂ -dimensional version. However, the extension of Theorem 3.2 to
functionals having a degenerate elliptic leading term will be treated in a forthcoming
paper by the two authors.

The second main result in this paper is a proof of everywhere continuity of min-
imisers of the functional /[«]. This uses an earlier unpublished maximum principle
result of the authors, and of Leonetti [10, 11]. We give here a simple geometric proof.
Everywhere continuity follows from an application of the Courant-Lebesgue lemma.
We remark that this result does not extend to the general class of problems considered
in [7]. The second author would like to thank Michael Griiter and Ulrich Dierkes for
pointing out the relevance of the Courant-Lebesgue lemma in this setting.

2. The Energy Estimate

If Q C K2 is a bounded open set and A is any real number, we consider for
v e Wl2(Q; I 2 ) the functional

•), « ] = f
Jn

(2.1) /
Ja

If Q > 1 is a real number we say that u e W1>2(£2; R2) is a Q-minimiser of Ik if, for
any (j) e Wl2(Q; R2) whose support is a compact subset of £2,

(2.2)

If Q = 1 then u is a minimiser.
In the following we write

(2.3) f
JE | £ | JE

for any measurable set E of positive measure and any j e L ' (£ ; I 1 ) . If £ is the
open ball BR{x0) we also write

(2.4) + g = (g)X0,R = gR.
JBR(XO)

The key ingredient in obtaining the decay Lemma 3.1 is the following energy estimate

for a Q-minimiser of h.
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LEMMA 2.1. If u e Wh2(Q; U2) is a Q-minimiser of Ik, then there exists a con-
stant c depending only on Q such that for any BR CC £2

(2.5) / |Du | 2 + A 2 ( d e t D « ) 2 < -^ f \ u - u R
2 ^ ( f A

JBm K JBR K \JBK

PROOF. Fix BR CC £2 and R/2 < s < t < R. Define

^ - ( f \DuA .
K \JBK /

(2.6)

Then

(2.7)

£,,, = \pe(s,t): I \Du\2 < — f \Du\2} .
[ JdBp t — S JB,\B, J

\E,.,\ >
t — s

Let co = x/\x\. For a.e. p e (s, t) the function co h-> u(pco) belongs to WU2(dBi)
and

(t \1/2

(2.8) \u(pco) ~ uaBp\ < c^/p- / |£>M|2

Vafl, /

for all co (taking the continuous representative of co \-> u(pco)), where uaBp =
\/{2np) f3B u.

For each p we introduce the comparison function

p-r
(2.9) ct>(rco) =

ifr < s;
r — s

H u(pco) if s < r < p;
p — s " p — s
u(rco) if p < r < R.

It easily follows that

(2.10)

and

(2.11)

\D<t>(rto)\ <
\u(pco) -

\
<c

p-s

\u(pco) - uaBp

p-s

+ \Du(pco)\

for any r e [s, p] (recall r /2 < s < p < R).
From (2.8), (2.10), (2.11) and the Q-minimising property of u, it follows that for

a.e. p G ESJ

L
P-'

(2.12) <

Q I \D(p\' + Xz(detDct>y
f\Bs

\u - uaBf + c(p - s)

\u-uR\2 + c(p-s) f
JdB

— f \u - uaBp\
2\Du\

~ S JdBp

\ 2

Du\2j .
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From (2.7) it follows that

(2.13) \{p 6 £,,, :p-s>(t- s)/4] \ > (t - s)/4.

Multiplying (2.12) by p — s and integrating with respect to p over ESJ, and again
using (2.7) and the definition of ESJ, we see that

it - s)
2

16 L
C f cRX2 / f \ 2

(2.14) <c \u-uR\2 + c{t-s)2 / \Du\2 + - / \Du\2 .
JB,\BS JB,\B, t — S \JB,\B, /

Dividing through by {t—s)2 and using the 'hole-filling' trick, (that is adding c fB | Du |2

+c fB A2(det Du)2 to both sides of the inequality) it follows there exists 0 e (0, 1)
such that

; B,) < 0h(u; B,) + c [ \u- uR\2

(t - s)2 JBR\BR/2

(2.5, 7^(7

The Lemma now follows from a straightforward extension of Giaquinta [8, Chapter 5,
Lemma 3.1].

3. Partial Regularity

The essential tool in obtaining the partial regularity result on Theorem 3.2 is the
following decay estimate for the quantity

(3.1) U{x,r) = l \Du - (Du)r\
2 + (det(Du - (Du)r))

2.

LEMMA 3.1. Let u e Wu2(£2; R2) be a minimiser of the functional /[•]. Suppose
M > 0. Then for some constant c(M) and any x e (0, 1/2) there exists e(r, M) such
that if

(3.2) \(Du)x,r\<M and U(x,r)<€

then

(3.3) U(x, xr) < c(M)x2U(x, r).
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PROOF. Fix M. Arguing by way of contradiction we assume that there exists a
sequence of balls BTm CC £2 for which

(3.4) | {Du)Xm,rm \<M a n d k2
m = U(xm, rm) - * 0

b u t

(3 .5 ) > c(M)r2,

where c(Af) will be chosen later.
We set Am — (Du)Xm<rm and

(3.6) vm(y) = »^+r-y)-(»)w,-r,A,y

for all y e B{(0).
Then

(3.7)

and (vm)o,i = 0. So we may suppose on passing to a subsequence that

Dvm - > • Dv weakly in L 2 (B, ) ,
vm -»• v strongly in L2{BX),

XmdetDvm —»• 0 weakly in L 2 ( B i ) ,

Am - • A.

The third claim in (3.8) comes from observing that Xm det Dvm converges weakly in
L2{BX), but also for any 4> e CQ(

(3.9) £ det Dvm<f>-* I detDv<l>,I

as one can check by writing det Dvm in divergence form.
It is also immediate to check that vm minimises the functional

(3.10) w ̂  f k2JDw\2 + (det(XmDw + Am)f .
JB,

We introduce the bilinear form O defined by

(3.11) det(A + B) = det A + A Q B + detfi

where A, B e Horn ( I 2 , R2).
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Expanding out the second term on the right side of (3.10) and expressing det (XmDw
+Am) in divergence form, it follows that vm minimises the functional

(3.12) w\-+ Dw\2 + (Am © Dw + km det Dwf .
JB1

Hence vm satisfies the Euler-Lagrange system

(3.13) 0 =
IB,

for all <p e W0''
2(Bi; K2). Letting m -> oo and using (3.8) we obtain

(3.14) 0 = I DvD(p + (AQDv)(AQ Dcp).

Thus v satisfies a linear elliptic system with constant coefficients.
By standard regularity results (see for example Giaquinta [8, Chapter III]) we have

for any r e (0, 1) that

(3.15) / \Dv - (Dv)T\2 < ex2 j \Dv - (Dv)T\2 < ex2

and

(3.16) \{Dv)2x - (Dv)T\2 < ex2,

where c depends only on the ellipticity constants of the system (3.14) and hence only
on M. Notice that the last inequality in each case follows from (3.7) and (3.8).

On rescaling (3.1) we have for any x e (0, 1/2) that

(3.17) U(x xrm) = [ | £ ) ^ _ {DVm)A2+x2m m(DVm _ {DVm)x)f
Km JB,

Setting

(3.18) wm(y) = vm(y) - (Dvm)ry - (vm)lT

and using both the fact that vm minimises the functional (3.12) and the divergence
structure of 'det', we see that wm minimises the functional

(3.19) w^ I \Dw\z + «Am + \m(Dvm)x) © Dw + km det Dm)1.
JBi

Hence wm is a g-minimiser of Ikm[w; Bj] for some Q = Q{M).
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Then from Lemma 2.1 we obtain for r e (0, 1/2) that

U(xm,,, xrm) _ f 2 2

(3.20) < 4 / l^-(^m)2r|2 + c ^ f / \Dw

Passing to the limit as m —> oo and using (3.8), the Poincare inequality, (3.15)
and (3.16), we obtain for x e (0, 1/2) that

U(xm,Trm) c f 2

hmsup — ^ — f lu ~ Wzr - (Dv)ry\l

< ~2 \ \v- (v)2l - (Dv)2zy\2 + \(Dv)2z - (Dv)z\
2

r
 JB2,

) 2\Dv - (DvhA2) + cr

(3.21) <c,(M)r2.

This contradicts (3.5) if c(M) is chosen larger than C\ (M).

A standard iteration and bootstrapping argument ([7, Lemma 6.1] or [8, Chap-
ter VI]) implies:

THEOREM 3.2. Let u e W,)£(Q; K2) be a local minimiser of the functional /[•].
Then u e C1OO(S2O). where £20 is an open set such that |£2\£2O| = 0. Moreover

^o = JJC € £2 : limsup|(£>M)xr| < oo, l im+ \Du - (Du)x,r| = 0,

a«d lim + (det(DM - (Du)x,r))
2 = 0 J.

4. Everywhere Continuity

We first establish a maximum principle using a geometric-type argument. See
Leonetti [10, 11] for another proof.

Suppose that

(4.1) u : ft(C R") -> RN

is a minimiser of a functional of the form

(4.2) /[«] = /" F(|£>K|, |A2DM|, . . . , \AnDu\).
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Here \AkDu(x)\ is the Euclidean norm of the map

(4.3) AkDu(x) : A ÎR" ^ - AkR
N,

given by

(4.4) AkDu(x)(wi A • • • A wk) — Du(x)(wi) A • • • A Du(x){wk),

and

(4.5) |

for any orthonormal basis T{, . . . , rk of W.
Note that in case n = N = 2, then det Du(x) can be regarded as the map A2Du(x)

operating on 2-vectors, and \A2Du(x)\2 = (det Du(x))2.
Assume moreover that F = F(pu p2,..., pn) is convex in each of the arguments

pk separately, and that F is monotone in the sense that

(4.6) F(<7i, q2,..., qn) < F(pu p2,..., pn)

provided q{ < p\ and qk < pk for k = 2,...,«. Notice that the model problem (1.1)
is of this type.

We then have the following result.

THEOREM 4.1. Let u e WhN(Q; K2) be a minimiser of the functional /[•], where I
is as in (4.2) and is convex and monotone. Let E CC Q.be an open set with Lipschitz
boundary dE. Then u(E) C C(u(dE)), where C{u{dE)) is the closed convex hull
ofu(dE).

PROOF. For any closed ball BR = BR(y0) C R" let V : R" ->• BR be the radial
projection map defined by

I v, if y e BR,

v , R(y-yo) V P » W , B

yo + K- -, y e K \BR.
\y - yo\

Fix y e l " , choose rt = (y — yo)/\y — yo\ and extend Ti to an orthonormal basis
TUT2,...,TN for KN. Then for any v e RN\BR(4.8) DV(r,) = y,r,

where | y, \ < 1. In particular, it follows that

(4.9) \Dx(r(y)(w)\ < \w\
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for any 0 ^ w 6 RN.
More generally, it follows from (4.4) and (4.8) that if y € WLN\BR then

(4.10) AkDxlr(y)(zh A • • • A xik) = Yh • • • K*(r<i A • • • A xik),

and hence using the orthonormal basis t/, A • • • A xit where ix < • • • < ik, that

(4.11) \AkD\jr(y)(w\ A • • • A wk)\ < \w\ A • • • A wk\

for any ^-vector wx A • • • A wk e AkR
N.

Now suppose C(u(dE)) c fij? and define

Then /[M] < /[v] by the minimising property of M.
On the other hand, \AkDv(x)\ = |AtD^(«(^)) o AkDu(x)\ and so from (4.5)

and (4.11),

(4.13) |AtDw(*)| < \AkDu(x)\

for any x e £2 and it = 1 , . . . , /i. Moreover, using (4.9), sfn'cf inequality holds in case
k = lifwU) e fl^VBft and £>«(*) ^ 0. I f£ CC ft is open and \u{E)\C{u{dE))\ ^
0, then by the area formula there exists £" c E with \E'\ # 0, | M ( £ ' ) \ C ( M ( 3 £ ) ) | ^ 0
and |DM(J:)| ^ 0 for x € £'. By appropriate choice of BR it follows from (4.6) that
l[v] < /[«], contradicting the minimising property of u.

We next recall an application of the Courant-Lebesgue Lemma.

PROPOSITION 4.2. Suppose u e WU2(BR\ R2). Then there exists a sequence pn —>
0 such that t{u{dBPn)) -+ 0, where £(«(3BPJ) is the length ofu(dBpJ.

PROOF. First note that fdB \Du\2 < oo for a.e. 0 < p < R, and so u\aBf is
continuous for a.e. 0 < p < R.

Let M = fB \Du\2 and assume that 0 < S < -/I < R. We claim that

(4.14)

for some p e (8,

JdB,

du_

36

2

d0 <
2M

https://doi.org/10.1017/S1446788700037496 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037496


168 Nicola Fusco and John E. Hutchinson

Suppose not. Then

[11]

M> / -i
BR P2

du
pdpdd

du

(4.15)

s p yjdB,

2M

log

dO\dp

T / -dp > M.
x Js P

This contradiction establishes (4.14).
It follows that

-L du
dO

I SB.

du
de

(4.16)

This establishes the Proposition.

Everywhere continuity of minimisers of (1.1) now follows from the previous two
results.

THEOREM4.3. Suppose u e Wl2(Q; E2) is a minimiser of (1.1). Then u has a
continuous representative.

PROOF. For each x e £2 there exists by Proposition 4.2 a sequence pn —> 0 such
that l(u(dBPn(x))) -> 0. By the maximum principle Theorem 4.1, u(BPn{x)) C
C(u(dBPn(x))), and so diam«(BPn(x)) -+ 0.
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