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reasoning: Insights from eliciting full distributions
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Abstract

Bayesian statistics offers a normative description for how a person should combine

their original beliefs (i.e., their priors) in light of new evidence (i.e., the likelihood).

Previous research suggests that people tend to under-weight both their prior (base rate

neglect) and the likelihood (conservatism), although this varies by individual and sit-

uation. Yet this work generally elicits people’s knowledge as single point estimates

(e.g., G has a 5% probability of occurring) rather than as a full distribution. Here we

demonstrate the utility of eliciting and fitting full distributions when studying these

questions. Across three experiments, we found substantial variation in the extent to

which people showed base rate neglect and conservatism, which our method allowed

us to measure for the first time simultaneously at the level of the individual. While

most people tended to disregard the base rate, they did so less when the prior was made

explicit. Although many individuals were conservative, there was no apparent system-

atic relationship between base rate neglect and conservatism within each individual.

We suggest that this method shows great potential for studying human probabilistic

reasoning.
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1 Introduction

Bayes’ theorem offers a normative account about how beliefs should be updated in light of

new data. According to it, the probability of a belief or hypothesis � conditional on data �

is:

%(� |�) ∝ %(� |�)%(�) (1)

where the likelihood %(� |�) is the probability of the data given the hypothesis �, and the

prior %(�) reflects the degree of belief in the hypothesis before seeing the data. Across a

wide variety of domains, Bayesian models have emerged as a powerful tool for understanding

human cognition. One useful aspect of such models is that they provide a normative standard

against which human cognition and decision making can be compared. This approach has

been applied successfully in a wide variety of domains including concept learning (Kemp,

2012; Sanborn et al., 2010), causal inference (Lucas & Griffiths, 2010), motor control

(Wolpert, 2009), and perception (Vincent, 2015).

Despite the success of the Bayesian approach, and though people in the aggregate

sometimes appear to behave qualitatively in accordance with Bayesian reasoning (Griffiths et

al., 2010), there is strong evidence that individuals usually do not. People tend not to update

their beliefs in accordance with Bayes’ theorem, either underweighting the prior (Kahneman

& Tversky, 1973) or the likelihood (Phillips & Edwards, 1966) or both (Benjamin et al.,

2019). Base rate neglect occurs when people discount information about prior probabilities

when updating their beliefs. It has been replicated in field settings and in hypothetical

scenarios (e.g., Bar-Hillel, 1980; Kahneman & Tversky, 1973; Kennedy et al., 1997) as

well as in lab experiments such as sampling balls from urns (e.g., Griffin & Tversky,

1992; Grether, 1980). Interestingly, in addition to underweighting the prior, people also

often underweight the likelihood: that is, they fail to update their beliefs as strongly as

Bayes’ theorem predicts. This phenomenon, known as conservatism, has also been widely

replicated across a variety of situations (Corner et al., 2010; Grether, 1992; Hammerton,

1973; Holt & Smith, 2009; Peterson & Miller, 1965; Phillips & Edwards, 1966; Slovic &

Lichtenstein, 1971).

To some extent, base rate neglect and conservatism cannot easily be separated. Assum-

ing a point prior hypothesis and a single data point, in fact, it is mathematically impossible

to identify whether the prior or the likelihood is responsible for a particular pattern of

inference: a weaker inference than expected could reflect either conservative updating or

stronger priors than were assumed, while a stronger inference than expected could reflect

either weaker priors or overweighting the likelihood. Most research exploring base rate

neglect and conservatism does not disentangle the effects of priors and likelihoods, and

those studies that do disentangle the effect of the prior and the effect of the likelihood focus

on aggregate behaviour (for a review see Benjamin et al., 2019). As a result, little is known

about how conservatism and base rate neglect co-occur within the same individual. More

problematically, as Mandel (2014) points out, people’s priors are typically not measured at
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all; it is instead assumed that they correspond to the given base rate. However, if they do

not — for instance, if participants are suspicious about the accuracy of the base rate or they

represent it with some fuzziness in memory — this could look like conservative updating

or base rate neglect when it is not.

Even those studies that explicitly measure people’s priors are somewhat lacking, since

virtually all of them elicit priors (and posteriors) as point estimates rather than as full

distributions (for overviews and discussion see, e.g., Benjamin et al., 2019; Mandel, 2014;

Wallsten & Budescu, 1983). This matters because, as illustrated in Figure 1, distributional

shape plays an important role in belief updating: even perfect Bayesian reasoners whose

priors have the exact same expected value may draw different conclusions if their priors

have different distributional shapes. Thus, determining whether people update their beliefs

in accordance with Bayes’ theorem depends heavily on obtaining an accurate measure of

the full distribution of prior beliefs.

Figure 1: The importance of distributional shape in Bayesian updating. The reasoners in

both panels are perfect Bayesians who are estimating the probability of observing a certain

outcome, such as pulling a red ball from an urn. Both have priors with the same expected

value (single dots such that %(red) = 1
3
) but different full prior distributions (dotted lines). The

prior on the left, Beta(0.25,0.5), reflects initial beliefs that the urn has either mostly red balls

or mostly blue balls (probably mostly blue). The one on the right, Beta(2,4), reflects the belief

that there are slightly more blue balls. This difference in distributional shape has a strong

effect on the posterior distributions that are inferred after seeing a single new data point

corresponding to one red ball. Not only do the posteriors have different distributional shapes,

the expected values (diamonds) are also different: the one on the left has an expected value

of %(red) = 0.74 and the one on the right %(red) = 0.43. This shows that fully capturing

Bayesian updating requires getting the shape of the underlying distribution right, not just

accurately measuring the point estimate of the expected value of the prior.

Of course, this is only relevant if people actually do represent probabilities as distri-

butions, at least implicitly. It is generally assumed that this is the case, as described by

Wallsten and Budescu (1983) when discussing the measurement of subjective probabilities:
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“Upon being asked to evaluate the probability of an outcome, a person will search his or her

memory for relevant knowledge, combine it with the information at hand, and (presumably)

provide the best judgment possible...If the same situation were replicated a large number

of times, and if the person had no memory of his or her previous judgments, the encoded

probabilities, - , would give rise to a distribution for that particular individual” (p. 153).

This view reflects considerable (if often implicit) agreement; even those who suggest that

people make specific inferences on the basis of samples rather than full distributions assume

that the underlying representation from which the samples are generated is a distribution

(e.g., Lieder & Griffiths, 2020; Mozer et al., 2008; Vul et al., 2009; Vul & Pashler, 2008). If

people do represent probabilities as distributions, even if only implicitly, then their cognitive

processes can be described adequately only by eliciting probability distributions. Indeed,

there is a rich literature about how best to elicit and measure full belief distributions (for a

review see Schlag et al., 2015). This literature, which was developed in applied contexts

such as political science and expert elicitation, has rarely been used in research on Bayesian

belief updating and provides the methodology that we employ here.

Our aim was to investigate the extent to which people demonstrate base rate neglect

and/or conservatism in a simple probability task. We did this by eliciting from each

individual both their prior and their posterior. Following the advice of Garthwaite et al.

(2005), we have limited ourselves to eliciting one dimensional probability distributions and

do so using a graphical user interface. In particular, our method of eliciting probability

distributions is similar to that used by Goldstein and Rothschild (2014) which has been

demonstrated to accurately elicit probability distributions similar to those that we elicit

(i.e., one dimensional and unimodal). This method is superior to methods based on verbal

reports (Goldstein & Rothschild, 2014) and follows best practice in that participants are

asked to estimate proportions, as opposed to probabilities, as participants find the former

easier to estimate (Gigerenzer & Hoffrage, 1995).

The probability task that we used consists of a game, common in this literature, known

as the urn problem (Corner et al., 2010; Johnson & Kotz, 1977; Peterson & Miller, 1965).

In a typical version of this game, participants are asked to imagine a container like an urn

containing two different types of object (e.g., red and blue chips). Objects are drawn from

the container and are revealed to the participant sequentially. Based on this information,

people are asked to estimate the overall proportion of one of the types of objects (e.g., red

chips) in the container.1

We report three experiments. In Experiment 1, we presented people with the urn problem

but elicited their priors and posteriors as distributions rather than single estimates by having

them draw histograms. We had two main goals in doing this: to establish what people

actually assume if the prior is left unspecified, and to determine to what extent each person’s

1Although the urn problem is traditionally used to study probabilistic reasoning, technically participants

estimate proportions, not probabilities. However, in the urn problem they are equivalent; because all chips

have an equal chance of being drawn, the probability that a red chip is drawn next is equal to the proportion

of chips in the urn that are red.
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reasoning was well-captured by Bayes’ theorem using their stated prior. Our findings

suggested that people showed substantial individual differences in their reported priors as

well as how closely they followed the predictions of Bayes’ theorem. That said, the majority

demonstrated strong base rate neglect, with most people completely or almost completely

disregarding their stated priors. They also showed a moderate degree of conservatism,

updating their beliefs somewhat less than a fully Bayesian reasoner would, with no readily

apparent systematic relationship between the two. We followed up in Experiment 2 by

presenting people with explicit information about a stronger prior distribution in order to

determine whether this changed the extent to which they incorporated it. Most participants

still showed some conservatism and base rate neglect, although less strongly. To ensure that

these results were not due to the particular prior used in that experiment, Experiment 3 used

a different prior — the prior that, in the aggregate, people assume when not explicitly given

a prior (as determined by Experiment 1). Experiment 3 confirmed that explicitly giving

participants a prior caused them to neglect the base rate less than when they were required

to infer the prior for themselves.2

2 Experiment 1

2.1 Method

According to Bayes’ theorem, the degree to which a person’s prior influences their poste-

rior is determined by the amount of data they see: the more data, the more the posterior

is shaped by the likelihood rather than the prior. There were three conditions, the first

two being control conditions. In the OnlyFive condition people were shown five chips

drawn sequentially from the urn and then reported a probability distribution. In the On-

lyUnlimited condition participants were first shown five chips and then allowed to view

as many chips as they wanted before reporting a probability distribution. Finally, in the

main condition participants reported their prior, were shown five chips and reported their

posterior. They were then allowed to view as many additional chips as they wanted before

reporting a second posterior. In this way, the main condition encompassed the previous

two conditions. The purpose of the two control conditions was to allow us to determine

whether asking participants to repeatedly draw the posteriors in the main condition affected

what they drew. We tested for this by comparing whether the posteriors drawn in the main

condition matched the corresponding posteriors drawn in the two control conditions.

2.1.1 Participants

452 people (249 male, 201 female, 2 non-binary) were recruited via Prolific Academic and

paid 60 British pence. Mean age was 31 years. Ninety were excluded because they failed

2Data and analysis code for all experiments can be found at

https://github.com/perfors/probability/
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the bot check (see below) or did not adjust any bars when estimating distributions. All

participants gave informed consent and all three experiments in this paper were approved

by the University of Melbourne School of Psychological Sciences Human Ethics Advisory

Group (ID: 1544692).

2.1.2 Materials

In all conditions, participants were shown an image of a bag that they were told contained

red and blue chips. They were asked to provide their probability distributions by adjusting

sliders corresponding to bars of a histogram, as shown in Figure 2. The first bar represented

the participant’s estimate of the probability that 0% of the chips in the bag were red, the

second that 10% were red, and so on, with the final slider representing their estimate of

the probability that 100% of the chips were red. The sliders were initialised randomly and

constrained so that the total probability added up to 100%. In this way, by varying the

position of the sliders, people could draw their probability distributions. When they were

satisfied with the distribution, they pressed the submit button to continue.

Figure 2: A screenshot showing the methodology we used (in all experiments) for par-

ticipants to report their probability distributions, similar to that of Goldstein and Rothschild

(2014). People clicked on each bar to adjust its height. Clicking on a bar temporarily changed

its colour to red. The different set of controls mentioned in the screenshot were a series of up

and down buttons participants could press to adjust each slider. All probability distributions

were constrained to sum to 100%.
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2.1.3 Procedure

Bot check. All participants were initially asked a series of four multiple-choice questions

to determine that they were human with adequate English abilities and not a bot. These

questions posed analogies of the form “Mother is to daughter as father is to...” (in this ex-

ample, the correct answer is “son”). Providing an incorrect answer to any of these questions

counted as failing the bot check; data from these participants were not analysed. Following

the bot check, instructions were presented, demographic information was collected, and

people were allocated randomly to one of three conditions.

OnlyFive condition. Participants in this condition (# = 126) were shown an image

of a bag that they were told contained red and blue chips. Five chips (four red and one blue)

were then drawn from the bag and presented to each participant one at a time in a random

order. Participants were asked to report their estimate of the proportion of red chips in the

bag using the histogram visualisation tool shown in Figure 2.

OnlyUnlimited condition. This condition was identical to the OnlyFive condition,

except after the first five chips were presented, instead of reporting their posterior participants

(# = 129) were given the option of drawing an additional chip. If they chose to draw one,

after a delay of one second they were informed of the colour of the chip and given the option

to draw another. This process could be repeated as many times as the participant desired.

For the first five chips, four were red and one was blue, but the position of the blue chip

in the sequence was randomised between participants. In every additional sequence of five

chips, the pattern repeated: four chips were always red and one was always blue, but the

position of the blue chip was randomised. After the participant was satisfied that they had

drawn enough chips, they were asked to report their estimate of the proportion of red chips

using the histogram visualisation tool shown in Figure 2.

Main condition. This condition was identical to the previous two except that each

person (# = 107) was asked to estimate the probability distribution three times: once

before being shown any chips, once after being shown five chips, and finally after having

had the opportunity to view as many additional chips as they desired. Thus, each participant

estimated one prior probability distribution and two posterior probability distributions, one

after five chips and one after an unlimited number.

2.2 Modelling

Our research questions required determining the extent to which people under-weighted

their prior and/or likelihood when reasoning about what chips they expected to see. We

thus modelled participants as Bayesian reasoners who made inferences according to the

following equation: %(G |=A , =1) ∝ %(=A , =1 |G)%(G) (2)
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where G represents the proportion of chips in the bag that are red and =A and =1 represent

the observed data (i.e., the number of chips that were drawn from the bag that were red and

blue respectively). Thus, %(G |=A , =1) is the posterior and %(G) is the prior.

Prior. We represent the prior used to form the posterior (i.e., effective prior) as a

weighted average of the stated prior, i, and a uniform prior *, as shown in Equation 3,

where V represents the weighting. The value for V is a constant ranging from 0 to 1, with

V = 0 indicating that the stated prior was ignored entirely when calculating the posterior (i.e.,

complete base rate neglect) and V = 1 indicating that the prior was weighted appropriately

(i.e., no base rate neglect at all).

%(G) = Vi + (1 − V)* (3)

Likelihood. In an urn problem such as ours, %(=A , =1 |G) is captured according to a

binomial likelihood function. In order to capture the extent to which each participant over-

weights or under-weights the evidence, we use a parameter W which intuitively captures

how many “effective” red (=A) or blue (=1) chips the participant incorporates into their

calculations, as in Equation 4. Thus, when W = 1, participants are neither over-weighting

nor under-weighting the evidence; W < 1 indicates conservatism while W > 1 indicates

over-weighting the data.3 %(=A , =1 |G) ∝ GW=A (1 − G)W=1 (4)

As with the reported priors, the reported posteriors for each person were smoothed by

adding 0.01 to the zero values and then normalising; this ensured that fits would not be

artificially distorted by the propagation of zero values. (Analyses without this smoothing

had qualitatively similar outcomes.) Optimal values for V and W were calculated for the

Main condition (the only one with both priors and posteriors) in aggregate as well as

separately for each individual. The analysis was performed in R using the optim function,

with V constrained to be within 0.0000001 and 0.9999999 and W within 0.0000001 and 50

using the L-BFGS-B method. The function being minimised was the mean squared error

between the model’s prediction and the reported posterior, at the 11 points the posterior

was measured. The supplement contains information about the model fits, which were very

good in all experiments.

2.3 Results

2.3.1 Aggregate performance

In order to ensure that the act of eliciting a prior or multiple posteriors did not change

how participants reported probability distributions, we first compare the posteriors obtained

from the two control conditions (i.e., the OnlyFive and OnlyUnlimited conditions) to

3We also performed a version of this analysis which had two free parameters, one that weighted =A and

a separate one that weighted =1 , to capture a situation where participants might weight blue chips more or

less than red chips. Results were qualitatively identical and the two parameters were similar to each other,

suggesting that both chips were better modelled with one parameter.
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the corresponding posteriors obtained from the Main condition (i.e., the posterior obtained

after participants saw five chips and the posterior obtained after participants saw as many

additional chips as they desired). As shown in Figure 3, the aggregate posteriors are

extremely similar regardless of whether participants were asked to report their priors first

(solid lines) or not (dotted lines). In both subplots, for all three conditions the mode is

at 80%, indicating that participants on average correctly reported that they expected about

80% of the chips to be red regardless of the condition. Comparing the right subplot to the

left subplot, we see that the peak was narrower indicating that the participants were more

certain of the proportion of red chips after seeing more chips. Overall, this indicates that

participants understood the task and reported reasonable distributions. More importantly,

these results demonstrate that asking participants to estimate the prior did not substantially

alter their subsequent estimates of the posterior.4 This allows us to focus on the Main

condition, where each participant estimated three probability distributions: one before

viewing any chips, one after viewing five chips, and one after viewing an unlimited number

of additional chips.

We can ask several questions of this data on the aggregate level. First, what prior

distribution was reported? Participants were not given any information about the quantity

of red or blue chips in the bag, so this question allows us to investigate what they presumed

in the absence of any instruction. Figure 4 shows the aggregate prior (red line), which has a

small peak at 50%, suggesting that on balance people think that a 50/50 split of red and blue

chips is more likely than any other mixture. That said, the probability distribution is also

fairly uniform across all possible values, indicating that participants would not be terribly

surprised if the bag contained all red chips, all blue chips, or any of the other possible

combinations.

A second question we can ask of the aggregate data is, when we fit it to our model by

adjusting V and W, what do the resulting parameters tell us about the degree of base rate

neglect and conservatism shown by the population as a whole? As Figure 4 makes clear,

the best-fit parameters after both five chips and unlimited chips were similar. In both cases,

they reflect that the aggregate posteriors were best captured assuming people ignore their

reported priors completely (i.e., V = 0) and show a moderate degree of conservatism in

updating (i.e., W < 1). We can understand intuitively why this is the case by comparing

the reported posteriors with the predicted posteriors that we would expect from an optimal

Bayesian reasoner (grey line, V = W = 1). After five chips, such a reasoner would have a

bimodal posterior, which reflects the influence of the prior. Similarly, after an unlimited

number of chips, the posterior would be broader than we observe.

4We also compared the average number of chips people asked for in the OnlyUnlimited condition

(" = 18.05) and in the Main condition after viewing an unlimited number of chips (" = 21.18). A Welch

t-test was not significant, C (233.1) = 1.65, ? = .100, suggesting that participants who reported multiple

probability distributions requested a similar number of chips as those who reported only one.

970

https://doi.org/10.1017/S1930297500009281 Published online by Cambridge University Press

http://journal.sjdm.org/vol17.5.html
https://doi.org/10.1017/S1930297500009281


Judgment and Decision Making, Vol. 17, No. 5, September 2022 Full Distributions

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Proportion of red

P
ro

b
a
b
ili

ty

FIVE

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Proportion of red

P
ro

b
a
b
ili

ty

UNLIMITED

Figure 3: Aggregate posterior estimates of the distribution of the probability that the bag

contains a given proportion of red chips (H axis), for proportions ranging from 0% to 100%

(G axis), for the two conditions in Experiment 1. Left panel. Posterior estimates after viewing

five chips. The solid dark blue line reflects the aggregate posterior estimate of people in the

Main condition after having seen five chips, while the dashed black line reflects the aggregate

posterior estimate of those in the OnlyFive condition. Dark blue dots indicate individual

estimates in the Main condition and light grey Xs indicate those in the OnlyFive condition.

The aggregate posterior estimates are extremely similar in both conditions, with a mode at

80%, indicating that the posteriors are reasonable and that eliciting priors beforehand does

not measurably change their behaviour. Right panel. Posterior estimates after viewing an

unlimited number of chips. The solid light blue line reflects the aggregate posterior estimate

of people in the Main condition after having seen unlimited chips, while the dashed black line

reflects the aggregate posterior estimate of those in the OnlyUnlimited condition. Light blue

dots indicate individual estimates in the Main condition and light grey Xs indicate those in the

OnlyUnlimited condition. The aggregate posterior estimates are extremely similar in both

conditions, with a mode at 80%. As before, this indicates that the posteriors are reasonable

and that reporting their distributions multiple times does not change what the participants

report.

2.3.2 Individual performance

One of our main motivations was to understand how individuals (rather than populations)

represented and updated their beliefs. Figure 5 shows the distribution of V and W obtained

when fit to each participant simultaneously. It is apparent that there is substantial individual

variation and there are few differences based on whether five or unlimited chips were seen.

That said, most people showed partial or complete base rate neglect: around half of the

people completely disregarded their priors (51.4% of people after seeing five chips and

56.1% after seeing unlimited chips had V < 0.1) and only a minority showed no base rate

neglect at all (17.8% of people after seeing five chips and 22.4% after seeing unlimited

chips had V > 0.9). Participants varied more in how they weighted the likelihood, with

around half of the participants being conservative (50.4% of people after seeing five chips

and 57.9% after seeing unlimited chips had W < 1). There was no obvious systematic
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Figure 4: Aggregate best-fit estimates in the Main condition in Experiment 1. The red lines

depict the aggregate prior, the dark blue line (left panel) depicts the aggregate posterior

after seeing five chips and the light blue line (right panel) depicts the aggregate posterior

after seeing unlimited chips. In both panels, the grey line indicates the optimal Bayesian

prediction (i.e., V = W = 1) given the aggregate prior, while the black dotted line indicates

the predicted posterior based on the inferred parameters V and W. In both panels, the best

fit V is zero, indicating that the aggregate posterior was best fit by completely disregarding

the aggregate prior (i.e., complete base rate neglect). The best fit values for W indicate a

moderate degree of conservatism in both conditions.

relationship between V and W values within individuals; it was not the case that a low V

meant high W or vice versa (Spearman correlation, after five chips: d = .040, ? = .680;

after unlimited chips: d = .18, ? = .060; see the supplement for the scatterplots).

To get an intuitive sense of what people are doing, we can inspect the individual

distributions. Figure 6 shows some representative examples, and all participants are shown

in the supplement. There is considerable heterogeneity: people report a wide variety of

both priors and posteriors. That said, observation of the distributions makes it clear how it

is possible to tease apart the weightings of the prior and the likelihood separately. Under-

weighting the prior results in a posterior distribution with a different shape (with multiple

peaks) or a different peak (closer to the likelihood) than the posterior distribution produced

by an optimal Bayesian learner with that prior. By contrast, different likelihood weights

change the height of the peak: conservative updating results in a peak that is lower than the

Bayesian prediction, while over-weighting the likelihood results in a peak that is higher than

the predicted one. As such, inspection of the individual curves is useful for understanding

qualitatively what the quantitative fits of V and W reveal.

Although our model fits in general were excellent (82.2% of people were fit with an MSE

of 0.01 or less and 96.7% with 0.05 or less), one might still worry about whether our results

were driven in part by the participants who were not fit well by the model. For instance, if

all of the people for whom V = 0 were also fit badly, this might not mean that most people
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Figure 5: Histograms showing the distribution of best-fit V and W values across individuals

after five and unlimited chips in the Main condition. The V distribution indicates that the

majority of people showed a moderate or large amount of base rate neglect; their inferences

were best described with V values less than one and often close to zero, indicating that the

posterior distribution they reported was best explained by assuming that they disregarded

their reported prior at least partially and often completely. There was a varied distribution of

W values, with about half showing conservative updating (W < 1, i.e., log(W)< 0).

showed base rate neglect after all. In order to ensure that this was not the case, we redid all

analyses after excluding the people with mean squared error greater than than 0.01. This did

not change the qualitative results, with most of the 76 remaining participants still showing

a high degree of base rate neglect (see the supplement). This suggests that our results are

not an artefact of poor fits, and we can be somewhat confident in our interpretation of the

parameters.

One might also wonder how robust our method of estimating V and W is. To address

this concern, we performed a robustness analysis. As described in the supplement, our ro-

bustness analysis used 12 different priors to construct posteriors by systematically sampling

a wide range of V and W values. It then investigated to what extent we could recover the

V and W values from the constructed posteriors. We showed that, providing the prior was

not uniform, in which case V would be undefined, our estimates of V were highly accurate

providing W was not large. This makes sense because a large W corresponds to a substantial

overweighting of the likelihood, which means that the influence of any prior is minimised,

thereby making it difficult to estimate V. Similarly, W was also recovered accurately provid-

ing it was not too large, presumably because when W is too large, the data is overweighted

so much that it is impossible to detect small differences in W. Importantly for our purposes,

very few of our participants overweighted the data that much. Even among those for whom

the model inferred W > 1, most of those had estimated W values of 10 or less, in which case
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Figure 6: Illustrative examples of individual distributions after receiving five chips (left) and

unlimited chips (right). Data obtained from the Main condition in Experiment 1. In each plot,

the red line is the reported prior, the dark and light blue lines are the reported posteriors after

five and unlimited chips respectively, the grey line is the posterior obtained by an optimally

calibrated Bayesian reasoner with that prior (V = W = 1), and the dotted black line is the

posterior obtained by the best-fit values of V and W for that person. The grey label for each

panel reports those values as well as the mean squared error of the fit (MSE, with 0 being

perfect). The number in parenthesis is the participant ID.

our estimates of V and W should be accurate for all the priors that were considered except

for prior 10. Even for this prior, our robustness analysis indicated that W would be estimated

reliably. The difficulty would be in estimating V and this difficulty was caused by prior 10

being sharply peaked but with the peak occurring on the opposite side to the true proportion

of red:blue chips. Considering just the participants who were fit well by our model, none

of them reported a prior resembling prior 10, suggesting that, for these participants, the

estimated values of V and W would be accurate.

The robustness analysis demonstrated that whether or not V and W can be recovered

accurately depends in part on the prior. As such, it is useful to ask to what extent we can

expect to recover V and W using the priors actually reported by the participants. To address

this issue, we performed a recoverability analysis. This analysis used the V and W values

estimated for each participant to generate a posterior from that participant’s prior. This

posterior was then used to estimate V and W. We showed that, for our data, the original and

recovered V and W values had a correlation of 0.97 or more, across all three experiments.

This showed that, given each participant’s prior, if the estimated V and W values were true

we could, in principle, recover them. For further details, the reader is referred to the

supplement.
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3 Experiment 2

In Experiment 1, most participants showed base rate neglect, partially or completely ignoring

their own reported prior when updating their beliefs in light of new data. Why did they do

this? One possibility is that the task demands encouraged them to do so, since no prior was

ever explicitly given and physically seeing chips being drawn may have made the data more

salient. In Experiment 2, we investigated this possibility by explicitly giving participants

the prior. People in the Peaked prior condition were shown a distribution with a mode at a

proportion of 80% red chips (as this most closely aligned with the data the participants would

subsequently receive). Those in the Uniform prior condition were shown a completely flat

prior; this is a useful comparison because reasoning based on this prior is equivalent to

reasoning that completely ignores the prior. As a result, if participants always ignore their

prior then the posteriors they report should be the same in both conditions; if not, the

posterior should be sharper in the Peaked condition.

3.1 Method

3.1.1 Participants

300 people (184 male, 113 female, 3 non-binary) were recruited via Prolific Academic and

paid 60 British pence. Mean age was 26 years. Sixty-one people were excluded because

they either failed the bot check or did not adjust any bars when estimating distributions.

3.1.2 Materials and Procedure

This experiment involved the same procedure and instructions as Experiment 1 except that

we presented participants with an explicit prior distribution using the same “bar” format that

they used to report their own. In the Peaked condition (# = 121) people were informed

that a previous participant who had completed the task several times had stated that “There

were usually about four times more red chips than blue chips in the bag (like, 80% red)” and

had also drawn the plot in the left panel of Figure 7 to illustrate their statement. Conversely,

the people in the Uniform condition (# = 118) were informed that a previous participant

who had completed the task several times had stated that “The number of red and blue chips

in the bag keeps changing, doesn’t seem to be a pattern to it” and had drawn the plot in the

right panel of Figure 7 to illustrate their statement.

Because Experiment 2 presented participants with an explicit prior, the procedure did

not involve a prior elicitation step. Instead, after having been told the prior, participants

were shown five chips (four red and one blue in random order, as before) and were asked to

draw their posterior.

975

https://doi.org/10.1017/S1930297500009281 Published online by Cambridge University Press

http://journal.sjdm.org/vol17.5.html
https://doi.org/10.1017/S1930297500009281


Judgment and Decision Making, Vol. 17, No. 5, September 2022 Full Distributions

Figure 7: A screenshot depicting the priors that participants saw in the two conditions of

Experiment 2.

3.2 Results

3.2.1 Aggregate performance

We first present the aggregate distributions in each condition, along with the best-fit V and W

values. As Figure 8 shows, participants in the Peaked condition were not entirely ignoring

the prior; their posterior is tighter and sharper than in the Uniform condition, as one would

expect if they were taking the prior into account. That said, a comparison to the posterior

inferred by an optimal Bayesian — along with the inferred V and W values — demonstrates

that people still showed substantial underweighting of the base rate (albeit less than before)

and some degree of conservatism.

3.2.2 Individual performance

As before, we performed individual-level analyses by fitting each participant to the value of

V and W that best captured their reported posterior based on the prior they were given. The

distribution of these parameters in each condition is shown in Figure 9 (recall that there are

no V values in the Uniform condition because in that condition V was undefined). There

is again substantial individual variation, but most people in the Peaked condition showed

partial or complete base rate neglect: 38.8% of participants disregarded their priors (with

V < 0.1) and only 3.3% showed no base rate neglect at all (with V > 0.9). That said, more

participants than in Experiment 1 paid some attention to the prior they were given, even if

they did not weight it as strongly as an optimal Bayesian reasoner would have. The degree to

which participants weighted the likelihood depended on their condition. Participants in the

Peaked condition were less likely to be conservative than those in the Uniform condition:

38.8% in Peaked and 61.0% in Uniform had W < 1.

As in Experiment 1, we did not find an obvious systematic relationship between V

and W values within individuals (Spearman correlation, d = 0.141; ? = 0.124); see the

supplement for the scatterplots and further discussion.

Although our model fits were again excellent (79.1% of people were fit with MSE less

than 0.01, and 98.7% with MSE less than 0.05), we redid all analyses after excluding the

people that were not fit well by our model (i.e., the people with mean squared error greater
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Figure 8: Reported distributions for the aggregate prior (red line) and the aggregate pos-

terior in the Peaked (dark green line, left panel) and Uniform (light green line, right panel)

conditions of Experiment 2. The grey line indicates the optimal Bayesian prediction given

the aggregate prior, while the black dotted line indicates the prediction of the line of best fit

based on the inferred parameters V and W. The aggregate posterior is noticeably sharper

in the Peaked condition, suggesting that people are using the base rate information to at

least some extent. Consistent with this, V in the Peaked condition is 0.39, indicating that the

aggregate posterior was best fit assuming that participants partially used the prior they were

given: more than in Experiment 1, but less than an optimal Bayesian would (V = 1). In both

conditions, the value for W indicates a moderate degree of conservatism on average.

than than 0.01). As documented in the supplement, this did not change the qualitative

results: the remaining 189 people still appeared to show some base rate neglect in the

aggregate, but the Peaked condition had a sharper posterior than the Uniform condition,

demonstrating that participants in that condition did take the prior into account at least

somewhat.

As mentioned earlier, we conducted a robustness analysis that considered 12 different

priors. For this experiment, prior 11 and prior 3 are particularly relevant as they correspond

to the priors shown to participants in the Peaked and Uniform conditions respectively.

Assuming that participants used the prior given to them, our analysis demonstrated that, for

the uniform prior, the estimation of W was accurate for all combinations of V and W. For the

peaked prior, the estimation of W was accurate when the actual W was less than 10 and the

accuracy of the estimated W decayed gradually as actual W increased. This meant that the

estimated W approximated the actual W, even when the actual W was high. For the Peaked

condition, almost all participants had an estimated W less than 10, which means that we can

be confident that their actual W values were estimated accurately.

As before, we also performed a recoverability analysis. Assuming that participants used

the prior that was provided to them, this analysis confirmed that, using the posterior implied

by each participant’s individual V and W values, we could recover the original V and W
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Figure 9: Histograms showing the distribution of best-fit V and W values across individuals

in the Peaked and Uniform conditions in Experiment 2. Most people (although fewer than

in Experiment 1) showed a moderate or large amount of base rate neglect and there was

a varied distribution of W values, with more people showing conservative updating in the

Uniform condition. (N.B. V was not estimated in the Uniform condition as it was not defined

in this condition.)

values. This shows that if an individual’s estimated V and W values were true we could, in

principle, recover them. For further details, the reader is directed to the supplement.

4 Experiment 3

The Peaked condition of Experiment 2 suggested that even when the prior is made explicit,

people underweight it relative to how they should weight it according to Bayes’ theorem. In

this experiment, we further investigate this phenomenon by comparing a condition where

people are provided with a prior (the Given condition) to one where they are not, so need to

estimate it themselves (the Estimated condition). Building on our results from Experiment

1, we arrange for the prior provided in the Given condition to be approximately equal to the

average prior in the Estimated condition. This means that any differences in the aggregate

performance in the two conditions is caused by the fact that individuals are given the prior

in one condition but not in the other.
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4.1 Method

4.1.1 Participants

300 participants (132 male, 162 female, 6 non-binary) were recruited via Prolific Academic

and paid 60 British pence. Mean age was 25 years. Thirty-nine people were excluded

because they either failed the bot check or did not adjust any bars when estimating distribu-

tions.

4.1.2 Materials and Procedure

The experiment involved the same procedure and instructions as before except for the

following differences. In the Estimated condition participants were not provided with a

prior. This condition was thus identical to the Main condition of Experiment 1, except

that the experiment stopped after the participants had reported the first posterior (i.e., after

the participant had seen five chips). In the Given condition participants (# = 133) were

provided with a prior. It was thus identical to the Peaked condition of Experiment 2 except

that the prior they were shown corresponded to the aggregate prior reported in Experiment

1. We designed it this way because it means that in both conditions we would expect people

to have the same prior (at least in the aggregate); the conditions differ only in whether

that prior was explicitly provided or not. This, therefore, allowed us to determine whether

people are more likely to use a prior if it is explicitly provided to them.

4.2 Results

4.2.1 Aggregate performance

As shown by Figure 10, the prior reported by the participants in the Estimated condition

(solid red line) was very similar to the prior provided to the participants in the Given

condition (dashed black line). This suggests that any differences in the posteriors in the two

conditions is unlikely to be due to differences in their priors.

Figure 11 shows the aggregate posterior distributions for each condition, shown along-

side the optimal Bayesian prediction as well as the prediction made using the best-fit

parameters V and W. As expected, the best fit parameters for the Estimated condition

(V = 0, W = 0.48) are very similar to the best fit parameters in the Five condition in Exper-

iment 1 (V = 0, W = 0.55), with participants in the aggregate demonstrating complete base

rate neglect (V = 0). Conversely, in the Given condition participants made much more use

of the prior (V = 0.32). This resulted in a posterior with two modes corresponding to the

peaks of the prior and the likelihood. This is consistent with the finding from the Peaked

condition of Experiment 2 that when the prior is made explicit, participants make use of it,

but not to the extent predicted by Bayes’ theorem.
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Figure 10: Reported prior distributions in Experiment 3. The solid red line reflects the ag-

gregate of the priors reported in the Estimated condition, while for comparison the dashed

black line reflects the prior shown to people in the Given condition. Red dots indicate individ-

ual estimates in the Estimated condition. The priors are extremely similar in both conditions,

suggesting that any difference in posteriors is not due to differences in the prior.

4.3 Individual performance

As before, we performed individual-level analyses by fitting each participant to the value

of V and W that best captured their reported posterior given their prior. The distribution of

these parameters in each condition is shown in Figure 12. The results in the Estimated

condition are very similar to the analogous condition of Experiment 1, with many partici-

pants disregarding their prior (43.8% had a V < 0.1, compared to 51.4% previously) and a

minority weighting it appropriately (23.4% had a V > 0.9, compared to 17.8% previously).

The results from the Given condition are consistent with the observation from Experiment

2 that participants pay more attention to the base rate when the prior is made explicit: fewer

people in the Given condition than the Estimated one ignored the base rate entirely (26.3%

had V < 0.1) and more weighted it appropriately (41.4% had V > 0.9). As before, a mod-

erate number of participants reasoned conservatively (51.6% in the Estimated condition

and 70.7% in the Given condition had W < 1). There was also again no obvious systematic

relationship between V and W (Spearman correlation, Estimated: d = .137, ? = .124;

Given: d = −.04, ( = 406487, ? = .675; see supplement for scatterplots). Thus, the

degree to which an individual weights the prior does not predict the degree to which they

weight the likelihood.

The model fits for Experiment 3 were just as good as in previous experiments (81.6% of

people had an MSE of less than 0.01, and 98.5% less than 0.05). Nevertheless, as before,

we redid all analyses after excluding the people with MSE less than 0.01, leaving 213 in

the dataset. As shown in the supplement, this did not change the qualitative results. On the

aggregate as well as individual levels, in the Estimated condition participants were more

likely to ignore their prior whereas in the Given condition more participants used the prior.
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Figure 11: Aggregate best-fit estimates in the Estimated (left panel) and Given (right panel)

conditions of Experiment 3. For the Estimated condition, the red line depicts the reported

aggregate prior and the dark purple line depicts the aggregate posterior. In the Given con-

dition, the red line depicts the supplied prior and the light purple line depicts the aggregate

posterior. The grey line indicates the optimal Bayesian prediction given the aggregate prior

(left panel) or given prior (right panel), while the black dotted line indicates the prediction of

the line of best fit based on the inferred parameters V and W. The posterior distribution is

unimodal in the Estimated condition but multimodal in the Given condition, suggesting that

in the Given condition people are using the given prior, at least to some extent. Consistent

with this, V in the Given condition is 0.32, indicating that the aggregate posterior was best fit

assuming that participants partially used the prior they were given: more than in Experiment

1 and the Estimated condition where V was equal to zero, but less than an optimal Bayesian

would (V = 1). In both conditions, the value for W indicates a moderate degree of conser-

vatism, though the degree of conservatism is somewhat less in the Estimated condition.

As before, we performed a robustness analysis. In this analysis, prior 12 corresponds

to the prior provided to participants in the Given condition (which is very similar to the

mean prior assumed by participants in the Estimated condition as shown by Figure 10).

This analysis demonstrated that both V and W can be accurately recovered if actual W is less

than 30. Given that estimated W was always less than 25 (and usually much less), we can be

confident that this condition held for all participants. A recoverability analysis demonstrated

that, for each individual, if the estimated V and W were true, we could, in principle, recover

them. Please see the supplement for further information.

5 Discussion

In this paper we asked to what extent human probability reasoning conforms to the normative

standards prescribed by Bayes’ theorem when participants present their probability estimates

as entire distributions rather than as point estimates. Our first experiment was inspired by
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Figure 12: Histograms showing the distribution of best-fit V and W values across individuals

in the Estimated and Given conditions in Experiment 3. The V distribution shows that, as in

Experiment 1, most people in the Estimated condition showed a moderate or large amount

of base rate neglect, but that this flipped in the Given condition. There was again a varied

distribution of W values, with many participants showing conservative updating (W < 1, i.e.,

log(W)< 0).

the standard balls-and-urn task. Participants were shown a bag containing a number of

chips, some red and some blue, and were asked to provide three probability distributions

(one prior and two posteriors) using a visual histogram tool similar to that of Goldstein

and Rothschild (2014). The task description gave no information about the likely ratio of

red to blue chips. Fitting individual participants revealed that, regardless of whether they

saw only five chips or were allowed to view as many chips as they desired, the majority

showed substantial base rate neglect (i.e., ignoring the prior they had reported) and varied

in the degree to which they were conservative (i.e., updating their likelihoods less than a

normative Bayesian reasoner).

In order to determine whether people ignored their prior because it was not explicitly

stated, in Experiment 2 we presented people with either a uniform or a peaked prior and

then asked for their posterior distributions after seeing five chips. Here the aggregate results

revealed that, even when given an explicit prior, there was some underweighting of the

base rate. However, they had sharper posteriors when given a peaked prior than when

given a uniform prior, indicating that the priors were not being ignored entirely. This was

supported by fitting individual participants: although variation was again substantial, more

people used the prior when it was made explicit in the Peaked condition than when it was

not.

Experiment 3 further investigated this phenomenon by directly comparing a condition

where people were given a prior to a condition where they were not. We arranged for the
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given prior to be approximately equal to the mean prior that participants would deduce for

themselves. This means that comparing the aggregate performance in the two conditions

allowed us to determine to what extent explicitly giving participants a prior induces them

to use it. Experiment 3 confirmed the findings of Experiment 2: when the prior is made

explicit, people weight it more than when it is not.

To interpret this finding, it is necessary to understand how the prior distribution repre-

sents the confidence the participant has in their prior knowledge. The more the stated prior

departs from the uniform distribution, the more confidence the participant is expressing

that certain proportions are more likely to occur than other proportions. For example, if

a participant were to report a prior that had a peak at G = 0.5 and was zero at all other

values of x, they would be stating that they are 100% confident that the proportion of red

chips in the urn is exactly 0.5. Bayes’ theorem uses the degree of confidence people have

in their prior knowledge (encoded in the shape of their prior) to calculate their posterior.

Our modeling went beyond Bayes’ theorem by allowing for the possibility that the stated

prior may not be the effective prior (i.e., it may not be the prior people actually use to

construct their posterior). We found that many people disregarded their stated prior and

instead constructed their posterior from a uniform prior. We are agnostic as to the reason

why these people did this. It could be that they were less confident in their prior knowledge

than the shape of their stated prior would indicate. Alternatively, they may have constructed

their posterior from a uniform prior because it was cognitively easier to do so.

In Experiment 1 and in the Estimated condition of Experiment 3, participants were

given no information as to the likely proportion of red chips, so how did they estimate the

prior? Most likely, they did so by drawing on logic and previous knowledge. As there

was nothing to suggest that there would be more red chips than blue chips or vice versa,

we would expect for the reported prior to be approximately symmetrical around G = 0.5.

Furthermore, since all proportions of red chips were possible, we would expect a fairly

uniform prior to reflect this fact. Finally, past experience would suggest an approximately

equal ratio of red to blue chips would be more likely. For instance, it is common practice

that packages of assorted goods have approximately equally quantities of each good. For

example, one would expect a package of assorted biscuits to have approximately equal

quantities of each type biscuit. Consequently, it would not be unreasonable to assume that

proportions near the point G = 0.5 may be more likely than those further away. These

considerations can explain why the aggregate priors shown by the red lines in Figure 4 are

approximately uniform and symmetric around the point G = 0.5 with a slight peak there.

Some of the subtleties that arose in our analysis illustrate both the benefits and com-

plexities of measuring and fitting full probability distributions. There are several benefits.

For instance, this method allows us to disentangle, for an individual participant on a single

reasoning problem, to what extent they under-weight or over-weight both their prior and

their likelihood. This is not possible using any other methodology: mathematically, a

single point posterior can arise from one of an infinite number of possible weighting of the
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prior and likelihood because overweighting the prior is equivalent to underweighting the

likelihood and vice versa. The studies that do attempt to disentangle prior and likelihood

weightings do so by presenting multiple problems, systematically varying both the priors

and the evidence (e.g., Benjamin et al., 2019; Griffin & Tversky, 1992). This is sometimes

useful, but presumes that people weight their priors and likelihoods similarly across all

problems. Our results suggest that this is not necessarily the case: people showed more

base rate neglect in some circumstances than in others. In particular, people demonstrated

more base rate neglect when they estimated the prior as opposed to when it was given to

them. Surprisingly, we found that in all three experiments there was no correlation between

an individual’s base rate neglect and their degree of conservatism. We had expected these

two variables to trade off against each other, so be anti-correlated. Instead, we found that

they were independent of each other, implying that they are determined by independent

cognitive processes. To our knowledge this is a novel finding; future research is necessary

to determine how robust it is and how far it extends.

Another benefit of fitting full probability distributions is that because each individual was

fit separately for both prior and likelihood weights, we could determine how each of these

weights varied among people. For instance, Experiment 1 demonstrated that most people

either completely ignored their priors (with V close to 0) or weighted them appropriately

(with V close to 1); that is, the distribution over V was bimodal, with few intermediate

values. This bimodal distribution was not observed in Experiment 2 but was in Experiment

3. Further research will be needed to determine when it is and is not observed.

One potential worry about the validity of our method is the extent to which people

can actually accurately report their underlying distribution. If people reason by drawing

a small number of samples from their distribution, as some suggest (Vul et al., 2014), it

is not obvious that this would be sufficient for people to reconstruct and report the actual

distribution. Although this is a possibility we cannot rule out with certainty, it seems

unlikely: the distributions people reported seem reasonable both individually and in the

aggregate, and reflect the overall patterns one would expect: tightening with additional

information in Experiment 1, stronger inferences with a stronger prior in Experiment 2, and

more reliance on the prior when it is made explicit in Experiment 3. Moreover, previous

work has demonstrated that people can accurately report similar probability distributions

(Goldstein & Rothschild, 2014), which they could not do if they were limited to drawing a

small number of samples from the underlying distribution.

More broadly, this research demonstrates why it can be useful to elicit and analyse

entire distributions rather than single point estimates. As long as (i) the prior is not

uniform and (ii) the prior and likelihood have different modes (unlike in Experiment 2), the

two terms make different contributions to the shape of the posterior distribution, so their

individual contributions can be estimated. There is a great deal of potential in applying

this methodology to long-standing problems in human reasoning. Might the framing of

the problem (i.e., how the problem is presented to the participants) affect base rate neglect
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(Barbey & Sloman, 2007) at least in part because people may implicitly assume priors with

different distributional shapes (reflecting different levels of confidence or extent) depending

on how the problem is presented to them? Might base rate neglect be smaller for priors that

are easier to use, represent, or sample from? To what extent do anchoring effects change

if the information is presented as a full distribution? Do the same individuals weight their

priors and likelihoods the same across different problems? These are only some of the

questions that can now be addressed.

In sum, this paper presents initial research demonstrating the utility of eliciting and

fitting full distributions when studying probabilistic reasoning. Across three experiments,

we found substantial variation in the extent to which people showed base rate neglect and

conservatism, which our method allowed us to measure in individuals on single problems.

While most people tended to disregard the base rate, they did so less when it was explicitly

presented. Moreover, there was no apparent systematic relationship between base rate

neglect and conservatism within individuals. There is a great deal of potential in applying

this methodology to other problems in human probabilistic reasoning.
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