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S M O O T H N E S S O F T H E S O L U T I O N O F T H E
T R I V I A L M O N G E - A M P E R E E Q U A T I O N

VlTALY USHAKOV

A solution of the equation zxxzyy — zxy = 0 must be C2 smooth, need not be C3

smooth, but at the same time the ratio zxy : zxx is C1 (provided zxx / 0). An
analytical proof of this fact is given; the underlying geometrical interpretation is
discussed.

1. BASIC DEFINITIONS AND STATEMENTS

The trivial Monge-Ampere equation is

(1) Hess (z) = zxxzyy - zly = 0

and sometimes is called the equation of developable surfaces [l , p. 10].

THEOREM 1 . Let a C2 smooth function z: D C R2 ->• M be a solution of the
equation Hess (z) = 0 and assume zxx ^ 0. Then zxy : zxx is C1 smooth.

REMARK 1. The assumptions Hess (z) — 0 and zxx ^ 0 could be replaced with

, / Zxx Zxy \

rank * = 1;
\ 6yX Zyy /

then the conclusion is zxy : zxx = zyy : zxy € C 1 .

REMARK 2. Theorem 1 is precise in the following sense: z e C2 but need not be C 3

smooth; the quotient zxy : zxx is C 1 , but need not be C2 [8].

Theorem 1 although having a purely analytic formulation, possesses a sound ge-
ometric interpretation. If one considers the surface F C E3 with the radius vector
(x,y,z(x,y)) given over the domain D C K2 then the condition Hess (2;) = 0 means
the vanishing of the Gaussian curvature; the condition zxx ^ 0 guarantees the absence
of planar points (that is, points with zxx = zxy — zyy = 0 ) . These conditions provide
a linear structure for the surface F and, moreover, the tangent plane of F is stable
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along these rectilinear generators. (A linear surface with such a property is called a
torse, following Euler.) In other words there exists a linear parametrisation r(u, v) of
the surface F such that

(2) r(x,y)=\ y \= r(u,v) = a(u) + v • b(u), \\b(u)\\ = 1,

where a(u) sets a directrix, b(u) gives the direction of the generators; the condition

of stability of T~,UV^F = span{d + vb, b} means the independence of TF from the

parameter v, that is, b £ span{a, b}.

But what is the smoothness of a(u) and b(u) ? Can we differentiate them (in the
hypothesis of C2 smoothness of the surface F, that is, z(x,y) £ C2)?

The function a(u) being almost an arbitrary curve on the surface F (we need
only the transversality with the generators) can be easily chosen C2 smooth. But the
direction b(u) is determined uniquely. It turns out that the quotient zxy : zxx from
Theorem 1 describes precisely the direction of b(u). Indeed, at the point (x, y, z(x, y))

the vector b{u) annihilates the second fundamental form of the surface, that is, for
b(u) = bi(u)rx + b2{u)ry we have

ZT

Zv Zyy

hence b\(u) : b2(u) = —zxy : zxx. Finally, the geometric reformulation of Theorem 1 is
as follows.

THEOREM 2 . Let a C2 smooth surface F c E3 given over a simply connected

domain D c R 2 possess vanishing Gaussian curvature and assume it does not contain

planar points. Then

(1) F is a torse;
(2) the vector Geld setting the directions of the generators is C1 smooth.

REMARK. The statement b(u) € C1 is not obvious. For instance, if one omits the
condition on the absence of planar points (while the vector field b(u) may be well
defined: a point Uo is planar and at the same time is a cluster point for non-planar
ones) then b(u) e C° and need not be C1 [7].

In this form Theorem 2 was stated in the work [3, Corollary 3] with references in the
proof to [4, Theorem 5] and [5, Theorem 14]. Therefore, we can not claim Theorem 1
to be new. Nevertheless, the proof of Theorem 2 is scattered over three different papers
and inside the papers by preparatory stages. Besides that in places the proof lacks
clearness. As a result, the conclusion about smoothness in Theorem 2 is little-known
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and the public is primarily aware of conclusion (1) only. At the same time this result is

basic in the theory of surfaces of constant nullity and Riemannian manifolds of constant

nullity. It has been generalised with respect to dimension and codimension (the latter,

of course, for surfaces); see [6] for references. These facts as well as the possibility of

a purely analytic formulation and proof compelled us to the present note. In Section 2

we prove Theorem 1 and then in Section 3 pass to the geometric interpretation of the

steps.

2. P R O O F S

The proof of Theorem 1 is based on the following Lemma.

LEMMA 1. In the hypotheses of Theorem 1 the domain D is fibred on rectilinear

generators along which the function zx is constant.

Lemma 1 is a direct corollary of the following fact.

LEMMA 2 . Let a curve y = y(x) be a level curve of the function zx(x, y) where

z: D c R2 —> R is C2 smooth and zxx / 0. Then y\x) exists if and only if the partial

derivative (Hess (z)/zxx)x exists; y can be computed by the formula

(3) ^ = " ^ (

the actual curvature of y(x) is given by

,_ 4 fHess(z)

In the proof of Lemma 2 we shall use the following.

PROPOSITION . Let a curve y = y(x) be a ievei curve of a C2 smooth function

i ^ : D c K 2 - > R . Then y is given by the formula

(4) y = --^{4>xx<t>2
y - 14>xv<j>x<l>y + 4>yy4>l]•

PROOF OF PROPOSITION: Since y = y(x) sets a level curve of the function <j>, we
have

4>{x,y(x)) = const.

Differentiating this equation with respect to x, we obtain <j>x + (f>y • y = 0, hence

6X
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Further ,

<Py

~ 2<f>xy<Px<Py + 4>yy<\>x\- n

PROOF OF LEMMA 2: Let us assume for the beginning that z £ C3 and later
discuss how to drop this assumption. Direct application of the Proposition to cj> = zx

gives

y- L f , z2 -2z z z + z z2 ]
y 3 [ xxx^xy "iiy^n^iy T ''xyy'zzj

Zxy

— o l^xxxy^xx^yy rlGSS ZJ ^^xxy^xx^xy > ̂ xyy^xxl
Zxy

1 r
— 3~ [zxx\zxxX

zyy T ZxxZyyX — 2zXyZXXy) — Zx
Zxy

1 r /TT . TT i zxx / H e s s z \
= - ^ - U I X ( H e s s z ) x - ZxxxHessz] = --f^ ,

\ zxx

which is the desired formula (3). To obtain the curvature it is sufficient to apply the

standard expression k = j/(l + y2)3^2.

The formula (3) for the case z € C2 can be derived in the same way, but now we

should avoid the third partial derivatives zxxx, et cetera. That is possible if we leave

everything under the limit sign up to the final step:

.. (5) (zxx < >\
y = - — (x,v{x)))

\zxy J x

zxy

= ••• = zxy ] |m[zxx • {Hessz(x + e,y)- Hessz(x ,y)}

~{zxx(x + £,y) - zxx(x,y)} -Hessz]

_ z\x ( Hess z
zxy V zxx x

The step omitted is a simple though tiresome technical exercise. D

PROOF OF THEOREM 1: By applying Lemma 1 we obtain the fibration of the
domain D on rectilinear generators along which zx is constant. The normal vector
to such a generator at (#o,t/o) *s (zxx(xo,yo), zxy(x0,y0)) and since this direction is
invariable on the generator, zxy : zxx is constant on the generator. The condition
zxx / 0 implies the transversality of the generators to the x-axis and therefore the
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general statement zxy/zxx{x,y) € C 1 can be reduced to zxy/zxx{x,0) € C 1 , that is,
now we need to prove the statement along the x-axis only.

The latter fact is easily derived from the following identity:

(6) z

Indeed, the function ip(£) = zx(£, 1) is C 1 and is invertible (zxx(x, 1) ^ 0); therefore
t/>-1 G C 1 and because of (6)

The identity (6) itself simply reflects the fact of constancy of zx along a generator:

the generator through (xo ,0) has normal (zxx(xo>O), zxy(xo,O)) and therefore passes

through the point (xo — (zxy/zxx)(x0,0), l ) . D

3. G E O M E T R I C PARALLELS

In this section we outline the geometric proof of Theorem 2 (of Hartman and
Nirenberg [3]) comparing it at the same time with our proof of Theorem 1.

F I R S T TEMPTATION. Considering Theorem 2 from a geometrical point of view it would
be natural to single out at each point the asymptotic direction (which is dx : dy =

—zxy : zxx) and find the integral lines of that distribution. For C 2 smooth function z

it leads to the differential equation

m dy - Zxx (r ,A

the right hand side of which is only continuous and hence we can not even claim the
existence and uniqueness of the integral lines. (One needs the right hand side to be
Lipschitzian in y.)

F I R S T INTEGRALS. Therefore, following Hadamard [2, pp.398-399] (who probably in
turn followed Darboux) we notice that the differential equation (7) possesses a first
integral—the function zx (that is, zx is constant along the solution of (7)). Besides
that the function zy is a first integral as well. Indeed,

zxx -dx + zxy-dy = 0 (by (7)),

zyx -dx + zyy-dy = 0 (by (1)).

Thereby the study of asymptotic lines given by the equation (7) has been reduced to
a more pleasant problem of studying the level curves of the function zx. Note, the
condition zxx ^ 0 guarantees the absence of singularities on these curves.
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T H E STABILITY OF TANGENT PLANE ALONG THE LINES ZX = const. The condition
zx — const means the constancy of the basis tangent vector rx = (1,0, zx) in the
asymptotic direction. The constancy of both basis tangent vectors rx and ry means the
stability of the tangent plane (and then the normal) in these directions. Consequently
the lines zx = const possess vanishing normal curvature. Moreover, the tangent plane
at the point (xo, yo) is tangent to the surface F along the whole line zx = ZX{XQ, X/Q) =
const.

T H E SURFACE F IS THE ENVELOPE OF A 1-PARAMETER FAMILY OF PLANES. These
planes can be obtained as the tangent planes to F along an arbitrary curve on F which
is transversal to the lines zx = const.

T H E LEVEL CURVES OF THE FUNCTION ZX POSSESS VANISHING geodesic curva-

ture. This is the most technically demanding step of the proof. We used here Lemma
1 while Hadamard and his successors employed the theorem of the envelope of 1-
parameter family of planes [4, p.770]. The geometric picture is as follows: two in-
finitesimally close planes from the family must intersect along a curve lying on the
surface; but the line of intersection of two planes is straight.

CHANGE OF VARIABLES. NOW having proved the level curves of zx are straight lines,
we develop the following C 1 smooth change of variables:

The new radius vector r(u, v) = r(x(u,v),y(u,v)) is C 1 smooth and for a fixed u =
UQ the radius vector r(uo, v) draws a generator. A vector field b(u) which gives the
direction of these generators can be chosen as b(u) = r(u,l) — r(u,0), which is C1

smooth. In our proof this step corresponds to the identity (6).
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