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Abstract

Let F be a non-discrete non-Archimedean locally compact field and OF the ring of
integers in F . The main results of this paper are the classification of ergodic probability
measures on the space Mat(N, F ) of infinite matrices with entries in F with respect
to the natural action of the group GL(∞,OF ) × GL(∞,OF ) and the classification,
for non-dyadic F , of ergodic probability measures on the space Sym(N, F ) of infinite
symmetric matrices with respect to the natural action of the group GL(∞,OF ).

1. Introduction

Given a group action on a topological space, it is natural to try to describe the corresponding
space of ergodic invariant probability measures. For some very classical actions, such as, for
example, that of the shift on the space of infinite binary sequences, the space of ergodic
measures is huge and does not seem to admit a reasonable description. On the other hand, for
a number of natural actions of infinite-dimensional groups, a complete classification is possible.
For example, De Finetti’s Theorem (1937) claims that for the action of the infinite symmetric
group on the space of infinite binary sequences, all ergodic probability measures are Bernoulli,
and Schoenberg’s Theorem (1951) claims that for the action of the infinite orthogonal group on
the space of infinite R-valued sequences, all ergodic probability measures are Gaussian. In both
these examples, the space of ergodic probability measures is one dimensional. Pickrell [Pic87,
Pic90, Pic91] and, by a different method, Olshanski and Vershik [OV96], classified all ergodic
unitarily invariant measures on the space of infinite Hermitian matrices. In this case, an ergodic
measure is determined by infinitely many parameters.

In this paper, we study classification of ergodic measures for actions related to the following
inductive limit group

GL(∞,OF ) := lim
−→

GL(n,OF ), (1)

where OF is the ring of integers in a non-discrete locally compact non-Archimedean field F
and GL(n,OF ) is the compact group of invertible n×n matrices over OF . Denote by Mat(N, F )
(respectively Sym(N, F )) the space of infinite matrices (respectively infinite symmetric matrices)
over F . Our main results are:
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Ergodic measures on infinite matrices

(i) the classification of the ergodic probability measures for the group action of GL(∞,OF )×
GL(∞,OF ) on Mat(N, F ) defined by

((g1, g2),M) 7→ g1Mg−1
2 , g1, g2 ∈ GL(∞,OF ), M ∈ Mat(N, F );

(ii) the classification of the ergodic probability measures for the group action of GL(∞,OF ) on
Sym(N, F ) defined by

(g,M) 7→ gMgt, g ∈ GL(∞,OF ), S ∈ Sym(N, F ),

where gt is the transposition of g.

We proceed to the precise formulation. Let F be a non-discrete locally compact non-
Archimedean field (for example, the field of p-adic numbers). Let | · | be the absolute value
on F . The ring OF of integers in F is given by {x ∈ F : |x| 6 1}. The unique maximal and
principal ideal of OF is given by {x ∈ F : |x| < 1}. Throughout the paper, we fix any generator
$ of {x ∈ F : |x| < 1}, that is, {x ∈ F : |x| < 1} = $OF . The quotient OF /$OF is a finite field
with q elements.

Define the inductively compact group GL(∞,OF ) by (1). Set

Mat(N, F ) := {X = (Xij)i,j∈N | Xij ∈ F}.
Let Mat(∞, F ) denote the subspace of Mat(N, F ) consisting of matrices whose all but a finite
number of coefficients are zero. Define also

Sym(N, F ) := {X ∈ Mat(N, F ) | Xij = Xji,∀i, j ∈ N},
and let Sym(∞, F ) := Sym(N, F ) ∩Mat(∞, F ).

Throughout the paper, by the usual identification Mat(N, F ) ' FN×N, we equip Mat(N, F )
with the Tychonoff’s product topology. The set Sym(N, F ) is equipped with the induced topology
by the natural embedding Sym(N, F ) ⊂ Mat(N, F ).

1.1 Classification of ergodic measures on Mat(N, F )
Let ∆ be the set of non-increasing sequences in Z ∪ {−∞}, that is,

∆ := {k = (kj)
∞
j=1 | kj ∈ Z ∪ {−∞}; k1 > k2 > · · · }. (2)

By the inclusion ∆ ⊂ (Z ∪ {−∞})N, we equip ∆ with the induced topology of the Tychonoff’s
product topology on (Z ∪ {−∞})N.

To each sequence k ∈ ∆, we now assign an ergodic GL(∞,OF ) × GL(∞,OF )-invariant
probability measure on Mat(N, F ). Let

X
(n)
i , Y

(n)
i , Zij , i, j, n = 1, 2, . . .

be independent random variables, each sampled with respect to the normalized Haar measure
on the compact additive group OF . In what follows, we use the convention $∞ = 0.

Definition 1.1. Given an element k ∈ ∆, let

µk := L(Mk)

be the probability distribution of the infinite random matrix Mk defined as follows. Write k :=
limn→∞ kn ∈ Z ∪ {−∞} and set

Mk :=

[ ∑
n: kn>k

$−knX
(n)
i Y

(n)
j +$−kZij

]
i,j∈N

.
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Remark 1.2. For the constant sequence k = (−∞, . . . ,−∞, . . .) ∈ ∆, using the convention
$∞ = 0, the corresponding matrix Mk defined in Definition 1.1 is the zero matrix O ∈Mat(N, F )
and hence the measure µk is the Dirac measure at the point O ∈ Mat(N, F ).

Let Perg(Mat(N, F )) be the space of ergodic GL(∞,OF )×GL(∞,OF )-invariant probability
measures on Mat(N, F ), endowed with the induced weak topology. The classification of
Perg(Mat(N, F )) is given by the following.

Theorem 1.3. The map k 7→ µk is a homeomorphism between ∆ and Perg(Mat(N, F )).

Remark 1.4. By Theorem 1.3, the space Perg(Mat(N, F )) is weakly closed in the space of all
Borel measures on Mat(N, F ) and is σ-compact; moreover, any measure µk ∈ Perg(Mat(N, F )) is
compactly supported.

Let us explain Theorem 1.3 in more detail. We have the following elementary ergodic
measures.

– (Haar type measures) For any k ∈ Z, the normalized Haar measure on Mat(N, $−kOF ) is
GL(∞,OF )×GL(∞,OF )-ergodic.

– (Non-symmetric Wishart type measures) Let X1, Y1, X2, Y2, . . . be independent and
uniformly distributed on OF . For any k ∈ Z, the probability distribution of the random
matrix

[$−kXiYj ]i,j∈N

is GL(∞,OF )×GL(∞,OF )-ergodic.

Theorem 1.3 implies that any ergodic GL(∞,OF )×GL(∞,OF )-invariant probability measure on
Mat(N, F ) can be obtained as a possibly infinite convolution of the above two types of elementary
ones.

1.2 Classification of ergodic measures on Sym(N, F )
In what follows, when dealing with the ergodic measures on Sym(N, F ), we always assume that
the field F is non-dyadic, that is, the cardinality of the field of residue class OF /$OF is not a
power of 2.

The group of units of OF is given by O×F := {x ∈ F : |x| = 1}. Denote by (O×F )2 the subgroup
of O×F defined by

(O×F )2 := {x ∈ O×F : there exists a ∈ F such that x = a2}.
If F is non-dyadic, then the quotient O×F /(O×F )2 has two elements. Throughout the paper, we
fix a non-square unit ε ∈ O×F \ (O×F )2.

We now explicitly describe the parametrization of ergodic GL(∞,OF )-invariant probability
measures on Sym(N, F ).

Recall the definition (2) of the set ∆ of non-increasing sequences in Z ∪ {−∞}. A sequence
(kj)j∈N ∈ ∆ is called finite if kj = −∞ for all sufficiently large j. In this case, either k1 = −∞,
and then we identity the sequence with an empty sequence, or j0 := max{j | kj ∈ Z} ∈ N, and

then we identify (kj)j∈N with (kj)
j0
j=1 and j0 is called the length of the sequence. Conversely, for

any finite non-increasing sequence (kj)
n
j=1 in Z, we identify it with the element in ∆ by adding

infinitely many −∞ at the end of (kj)
n
j=1.

For any k ∈ Z, let Z>k denote the set of integers strictly larger than k. We introduce the
following four subsets of ∆:
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Ergodic measures on infinite matrices

– ∆[k], the set of non-increasing sequences of finite length in Z>k;
– ∆][k], the set of strictly decreasing sequences in Z>k (which are automatically of finite

length);

– ∆[−∞], the set of non-increasing sequences in Z of finite length or of infinite length tending
to −∞;

– ∆][−∞], the set of strictly decreasing sequences of finite or infinite length in Z.

Note that for any k ∈ Z ∪ {−∞}, the following relations hold:

∆][k] ⊂ ∆[k], ∆][k] ⊂ ∆][−∞] and ∆][k] ⊂ ∆[−∞].

We introduce the parameter space

Ω :=
⊔

k∈Z∪{−∞}

{k} ×∆[k]×∆][k], (3)

where {k} is the singleton with a single element k. The space Ω is equipped with the topology
induced by the inclusion:

Ω ⊂ (Z ∪ {−∞})× (Z ∪ {−∞})N × (Z ∪ {−∞})N.

To each element h ∈ Ω, we assign an ergodic GL(∞,OF )-invariant probability measure on
Sym(N, F ) as follows. Let

X
(n)
i , Y

(n)
i , Hij , i 6 j, n = 1, 2, . . .

be independent random variables uniformly distributed on OF . In particular, define

H = [Hij ]i,j∈N (4)

by setting Hij = Hji if i > j, then H is an infinite symmetric random matrix sampled uniformly
from Sym(N,OF ).

Definition 1.5. For any h ∈ Ω given by

h = (k; k,k′), with k ∈ Z ∪ {−∞}, k ∈ ∆[k], k′ ∈ ∆][k],

we define

νh := L(Sh),

as the probability distribution of the infinite symmetric random matrix Sh defined as follows.
First let

Wk :=

[ ∞∑
n=1

$−knX
(n)
i X

(n)
j

]
i,j∈N

, Wk′ :=

[ ∞∑
n=1

$−k
′
nY

(n)
i Y

(n)
j

]
i,j∈N

,

and then set

Sh := Wk + εWk′ +$−kH.

Remark 1.6. For the element h = (−∞; ∅,∅), where ∅ means the empty sequence in Z, the
corresponding matrix Sh defined in Definition 1.5 is the zero matrix O ∈ Sym(N, F ) and hence
the measure νh is the Dirac measure at the point O ∈ Sym(N, F ).
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Remark 1.7. The strictly decreasing assumption on the sequences k′ ∈ ∆][k] is imposed for the
uniqueness of parametrization. The reason is the following:

L
([ 2∑

n=1

X
(n)
i X

(n)
j

]
i,j∈N

)
= L

(
ε

[ 2∑
n=1

X
(n)
i X

(n)
j

]
i,j∈N

)
. (5)

For the detail, see Remark 4.8 and the proof of Proposition 5.3 below.

Let Perg(Sym(N, F )) be the space of ergodic GL(∞,OF )-invariant probability measures on
Sym(N, F ), endowed with the induced weak topology. The classification of Perg(Sym(N, F )) is
given by the following.

Theorem 1.8. Assume that F is non-dyadic. Then the map h 7→ νh is a homeomorphism
between Ω and Perg(Sym(N, F )).

Remark 1.9. By Theorem 1.8, the space Perg(Sym(N, F )) is weakly closed in the space of all
Borel measures on Sym(N, F ) and is σ-compact. Moreover, any measure νh ∈ Perg(Sym(N, F ))
is compactly supported.

Theorem 1.8 can be explained as follows. We have the following elementary ergodic measures.

– (Haar type measures) For any k ∈ Z, the normalized Haar measure on Sym(N, $−kOF ) is
GL(∞,OF )-ergodic.

– (Symmetric Wishart type measures) Let X1, X2, . . . be independent copies of F -valued
random variables, all of which are uniformly distributed on OF . For any k ∈ Z, the
distributions of the infinite rank-one random matrices

[$−kXiXj ]i,j∈N and [ε$−kXiXj ]i,j∈N

are GL(∞,OF )-ergodic.

Theorem 1.8 implies that any ergodic GL(∞,OF )-invariant probability measure on Sym(N, F )
can be obtained as a possibly infinite convolution of the above two types of elementary ones.

1.3 Characteristic functions of ergodic measures

Let χ ∈ F̂ be a fixed character of F such that

χ|OF
≡ 1 and χ is not constant on $−1OF . (6)

Given a Borel probability measure µ on Mat(N, F ), its characteristic function, or Fourier
transform, µ̂ is defined on Mat(∞, F ) by the formula

µ̂(A) :=

∫
Mat(N,F )

χ(tr(AM))µ(dM), A ∈ Mat(∞, F ).

Similarly, given a Borel probability measure ν on Sym(N, F ), its characteristic function ν̂ is
defined on Sym(∞, F ) by the formula

ν̂(A) :=

∫
Sym(N,F )

χ(tr(AS)) ν(dS), A ∈ Sym(∞, F ).
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Let Mat(n, F ) be the space of n×n matrices with entries in F . Every A ∈Mat(n, F ) can be
written (see Lemma 2.4 below) in the form

A = a · diag($−k1 , . . . , $−kn) · b, a, b ∈ GL(n,OF ), ki ∈ Z ∪ {−∞}.

These numbers k1, k2, . . . , kn, taken with multiplicities, are uniquely determined by A and are
called the singular numbers of A. The collection of the singular numbers of the matrix A is
denoted by Sing(A).

After the computation of characteristic functions for the probability measures in the list of
measures defined in Definition 1.1 (see Proposition 4.1 below), Theorem 1.3 can be reformulated
in the following form.

Theorem 1.10. The characteristic functions of ergodic GL(∞,OF ) × GL(∞,OF )-invariant
probability measures on Mat(N, F ) are exactly of the form

ϕ(A) =
∏

`∈Sing(A)

exp

(
−log q ·

∞∑
j=1

(kj + `)1{kj+`>1}

)
, A ∈ Mat(∞, F ),

where k = (kj)j∈N ∈ ∆ is the parameter sequence.

For formulating a similar statement in the symmetric case, we need to introduce a function
θ : F → C by

θ(x) :=

∫
OF

χ(z2 · x) dz. (7)

Properties of the function θ are summarized in Proposition 4.5 below.
Let Sym(n, F ) be the space of n× n symmetric matrices with entries in F . Note that if the

field F is non-dyadic, then any A ∈ Sym(n, F ) can be written (see Lemma 2.7 below) in the form

A = g · diag(x1, . . . , xn) · gt, g ∈ GL(n,OF ).

After the computation of characteristic functions for the probability measures in the list of
measures defined in Definition 1.5 (see Proposition 4.4), Theorem 1.8 can be reformulated in the
following form.

Theorem 1.11. Assume that F is non-dyadic. Then the characteristic functions of the ergodic
GL(∞,OF )-invariant probability measures on Sym(N, F ) are exactly given by

Φ(diag(x1, . . . , xm, 0, . . .)) =

m∏
i=1

[
1OF

($−kxi)

∞∏
j=1

θ($−kjxi)

∞∏
j=1

θ(ε$−k
′
jxi)

]
,

where h = (k; (kj)j∈N, (k
′
j)j∈N) is a parameter in Ω introduced in (3).

1.4 Spherical representations
Our classification theorems, Theorems 1.3 and 1.8, can equivalently be formulated as a
classification of spherical representations of analogues, in our context, of the infinite dimensional
Cartan motion groups

Mat(∞, F ) o (GL(∞,OF )×GL(∞,OF )) and Sym(∞, F ) o GL(∞,OF )

respectively. We explain this in more detail for Sym(∞, F ) o GL(∞,OF ).
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Recall that Sym(n, F ) o GL(n,OF ) is the semi-direct product of the additive group
Sym(n, F ) and the general linear group GL(n,OF ). Elements of Sym(n, F ) o GL(n,OF ) are
pairs (A, g), A ∈ Sym(n, F ), g ∈ GL(n,OF ) and the rule of multiplication is given by

(A, g) · (B, h) = (A+ gBgt, gh).

The group Sym(∞, F ) o GL(∞,OF ) is defined in a similar way and is of course the inductive
limit of the sequence Sym(n, F ) o GL(n,OF ). The groups Sym(∞, F ) and GL(∞,OF ) are
canonically identified with subgroups of Sym(∞, F ) o GL(∞,OF ) by the following embeddings

A 7→ (A, 1) and g 7→ (0, g),

where A ∈ Sym(∞, F ) and g ∈ GL(∞,OF ).
A unitary representation ρ of Sym(∞, F ) o GL(∞,OF ) in a Hilbert space H(ρ) is called

spherical if it is irreducible and the subspace H(ρ)GL(∞,OF ) of GL(∞,OF )-invariant vectors in
H(ρ) is non-trivial; in which case, by irreducibility, the subspace H(ρ)GL(∞,OF ) has dimension
one. A vector h ∈ H(ρ)GL(∞,OF ) of norm 1 is called a spherical vector of ρ and the function

ϕρ(g) := (ρ(g)h, h), g ∈ GL(∞,OF )

is called the spherical function of ρ. The spherical function ϕρ is an invariant of the spherical
representation ρ and it uniquely determines ρ. As a bi-invariant function with respect to the
subgroup GL(∞,OF ) ⊂ Sym(∞, F ) o GL(∞,OF ), the function ϕρ is uniquely determined by
its restriction ϕρ|Sym(∞,F ).

Given an ergodic GL(∞,OF )-invariant probability measure ν on Sym(N, F ), one may define
a spherical representation ρν in the Hilbert space L2(Sym(N, F ), ν) as follows:

(ρ(g)ξ)(S) = ξ(g−1S), g ∈ GL(∞,OF ),

(ρ(A)ξ)(S) = χ(tr(AS))ξ(S), A ∈ Sym(∞, F ),

where ξ ∈ L2(Sym(N, F ), ν) and S ∈ Sym(N, F ). The spherical vector can be chosen as the
constant function ξ0(S) ≡ 1.

Proposition 1.12. The map ν 7→ ρν defines a bijection between the set of ergodic GL(∞,OF )-
invariant probability measures on Sym(N, F ) and the set of spherical representations of the group
Sym(∞, F ) o GL(∞,OF ).

The proof of Proposition 1.12 is the same as that of Olshanski and Vershik [OV96, Proposition
1.5].

1.5 An outline of the argument
Our argument relies on the Vershik–Kerov ergodic method in the spirit of Olshanski and
Vershik [OV96]. The implementation of individual steps is, however, quite different. In the case
of measures on Mat(N, F ) and the case of measures on Sym(N, F ), the main steps are:

– explicit construction of ergodic measures, see Definitions 1.1 and 1.5;

– the asymptotic formulae for the analogues of Harish-Chandra–Izykson–Zuber orbital
integrals, see Theorem 7.1, Theorem 7.4 in the case of measures on Mat(N, F ) and
Theorem 7.5, Theorem 7.6 in the case of measures on Sym(N, F ) ;

– proof of completeness of the lists of ergodic measures, see Theorems 8.8 and 8.14 respectively.
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We now explain our method in greater detail in the case of measures on Sym(N, F ).

(1) The Vershik–Kerov method: approximation of ergodic measures by orbital measures. While
we follow the general scheme of Vershik and Kerov, a number of details are different.

Given x ∈ Sym(N, F ) and n ∈ N, let mGL(n,OF )(x) denote the unique GL(n,OF )-invariant
probability measure on Sym(N, F ) supported on the orbit GL(n,OF ) · x ⊂ Sym(N, F ). Let
ORB∞(Sym(N, F )) be the class of probability measures ν on Sym(N, F ) verifying the condition:
there exists a sequence of positive integers n1 < n2 < · · · and a sequence (νnk

)k∈N of probability
measures with νnk

being a GL(nk,OF )-orbital measure supported on Sym(nk, F ) ⊂ Sym(N, F ),
such that νnk

converges weakly to ν.
As a variant of Vershik’s Theorem (see Theorem 6.3 below), we obtain the following inclusion:

Perg(Sym(N, F )) ⊂ ORB∞(Sym(N, F )).

Note that, a priori, we do not know whether the inverse inclusion holds.

(2) Main ingredients: Classification of ORB∞(Sym(N, F )).
(i) Computation of orbital integrals. To describe ORB∞(Sym(N, F )), we need to understand

the asymptotic behaviour of the characteristic functions of orbital measures of the compact
groups GL(n,OF ). Recalling the assumption on the character χ ∈ F̂ in (6), we obtain an
asymptotic formula for the following orbital integral:∫

GL(n,OF )
χ(tr(g · diag(x1, . . . , xn) · gt · diag(a1, . . . , ar, 0, . . .))) dg, (8)

where dg is the normalized Haar measure of GL(n,OF ). The formula we obtain for the integral (8)
is uniformly asymptotically multiplicative, that is, the orbital integral (8) has the same asymptotic
behaviour, uniformly on the choices of x1, . . . , xn, as the following product of much simpler orbital
integrals:

r∏
j=1

∫
GL(n,OF )

χ(tr(g · diag(x1, . . . , xn) · gt · diag(aj , 0, 0, . . .))) dg.

See Theorem 7.6 for the details.
Explicit computation of the above orbital integral requires some Fourier analysis on the field

F and quite a few combinatorial arguments in which we compute the cardinality of various sets
of matrices over the finite field Fq.

(ii) Multiplicativity of characteristic functions for limits of orbital measures. An immediate
consequence of the uniform asymptotic multiplicativity for the orbital integral (8) is that for
any ν ∈ ORB∞(Sym(N, F )), its characteristic function ν̂ possesses an exact multiplicativity
property, that is, for any r ∈ N and any x1, . . . , xr ∈ F ,

ν̂(diag(x1, . . . , xr, 0, 0, . . .)) =

r∏
j=1

ν̂(xje11), (9)

where e11 is the elementary matrix whose (1, 1)-coefficient is 1. This multiplicativity result implies
in particular that the classification of the class ORB∞(Sym(N, F )) is reduced to the classification
of the class of functions on F defined by x 7→ ν̂(xe11).

(3) Ergodicity: Proof of the inclusion:

ORB∞(Sym(N, F )) ⊂ Perg(Sym(N, F )).
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Our direct proof of ergodicity for all measures in ORB∞(Sym(N, F )) uses an argument of
Okounkov and Olshanski [OO98]: ergodicity for measures in ORB∞(Sym(N, F )) is derived from
the De Finetti Theorem, see Theorem 3.10 below for the details. This approach of proving
ergodicity can be also applied to different situations, such as that of Olshanski and Vershik
in [OV96].

(4) Proof of the equality

Perg(Sym(N, F )) = {νh : h ∈ Ω}. (10)

By comparing the characteristic functions ν̂h for all the measures νh with h ∈ Ω and that of
measures in ORB∞(Sym(N, F )), we obtain the equality

ORB∞(Sym(N, F )) = {νh : h ∈ Ω}.

Combining this equality with the results obtained in the previous steps, we finally get the desired
equality (10).

1.6 Organization of the paper
The exposition, which we tried to make essentially self-contained, is organized as follows.

In § 2, we recall the definition of ergodic measures and the necessary definitions related
to non-discrete locally compact non-Archimedean fields, linear groups over them and Fourier
transforms in this setting.

In § 3, we prove that all the measures on Mat(N, F ) from the family {µk | k ∈ ∆} introduced
in Definition 1.1 are GL(∞,OF )×GL(∞,OF )-invariant and ergodic and that all the measures
on Sym(N, F ) from the family {νh | h ∈ Ω} introduced in Definition 1.5 are GL(∞,OF )-invariant
and ergodic.

In § 4, we give explicit formulae for characteristic functions of measures from the two families
{µk : k ∈ ∆} and {νh : h ∈ Ω}.

In § 5, we prove that the parametrization maps k 7→ µk from ∆ to Perg(Mat(N, F )) and
h 7→ νh from Ω to Perg(Sym(N, F )) are injective.

In § 6, we introduce orbital measures and recall the Vershik–Kerov ergodic method for dealing
with ergodic measures for inductively compact groups.

In § 7, we obtain the asymptotic formula for orbital integrals of the type (8).
In § 8, we complete the classifications by proving that the parametrization maps k 7→ µk and

h 7→ νh are surjective.
In § 9, we show that the parametrization maps k 7→ µk and h 7→ νh are homeomorphisms

between corresponding topological spaces.
Proofs of some routine technical lemmata are given in Appendix A.

2. Preliminaries

2.1 Ergodic measures
2.1.1 Ergodicity. Let X be a Polish space, that is, it is homeomorphic to a complete metric

space that has a countable dense subset. Denote by P(X ) the set of Borel probability measures
on X . Denote by Cb(X ) the space of bounded continuous complex-valued functions on X . Recall
that a sequence (µn)n∈N in P(X ) is said to converge weakly to µ ∈ P(X ) and is denoted by
µn =⇒ µ if for any f ∈ Cb(X ), we have

lim
n→∞

∫
X
f(x)µn(dx) =

∫
X
f(x)µ(dx).
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Given a group action of a group G on X , we denote by PGinv(X ) the set of G-invariant Borel

probability measures on X . By definition, a G-invariant Borel probability measure µ ∈ PGinv(X )

is ergodic, if for any G-invariant Borel subset A ⊂ X , either µ(A) = 0 or µ(X \A) = 0. The

totality of ergodic G-invariant probability measures on X is denoted by PGerg(X ). If the group

action is clear from the context, we denote PGinv(X ) and PGerg(X ) simply by Pinv(X ) and Perg(X )

respectively.

2.1.2 Indecomposability and ergodicity. Using the notation as before, a measure µ ∈ PGinv(X )

is called indecomposable in PGinv(X ) if the equality µ = αµ1 + (1 − α)µ2 with α ∈ (0, 1), µ1,

µ2 ∈ PGinv(X ), implies µ = µ1 = µ2. Recall that a Borel subset A ⊂ X is called almost G-invariant

with respect to a measure µ ∈ PGinv(X ) if for every g ∈ G, we have µ(A∆g.A) = 0, where

g.A = {g.x : x ∈ A} and A∆g.A = (A\ g.A) ∪ (g.A\A).

A Borel probability measure µ ∈ PGinv(X ) is indecomposable in PGinv(X ) if and only if any

Borel subset A ⊂ X which is almost G-invariant with respect to the measure µ satisfies either

µ(A) = 0 or µ(X \A) = 0 (see [Bog69, Fom50] and [Buf14, Proposition 1]).

Indecomposable Borel probability measures in PGinv(X ) are a fortiori ergodic. For actions of

general groups, ergodic probability measures may fail to be indecomposable, see [Buf14, § 5] for

a counterexample of Kolmogorov. Nevertheless, it is proved in [Buf14, Proposition 2] that for

action of inductively compact groups, and thus including the actions in our main Theorems 1.3

and 1.8, etc, the notions of indecomposability and ergodicity coincide.

Note that for the action of countable groups, the notions of indecomposability and ergodicity

coincide. Indeed, if G is a countable group and µ ∈ PGerg(X ), then for any G-almost invariant Borel

subset A⊂ X with respect to the measure µ, the Borel subset
⋂
g∈G g.A is G-invariant and hence,

by the ergodicity of µ, we have µ(
⋂
g∈G g.A) ∈ {0, 1}. Since A is G-almost invariant with respect

to µ and since G is countable, we also have µ(A∆
⋂
g∈G g.A) = 0. Therefore, µ(A) ∈ {0, 1}. This

proves that µ is indecomposable.

2.2 Fields and integers

Let F be a non-discrete locally compact non-Archimedean field. The classification of local fields

(see, e.g., Ramakrishnan and Valenza’s book [RV99, Theorem 4-12]) implies that F is isomorphic

to one of the following fields:

– a finite extension of the field Qp of p-adic numbers for some prime p;

– the field of formal Laurent series over a finite field.

Let | · | be the absolute value on F and denote by d(·, ·) the ultrametric on F defined by
d(x, y) = |x− y|. The ring of integers in F is given by

OF := {x ∈ F : |x| 6 1}.

The subset m := {x ∈ F : |x| < 1} is the unique maximal ideal of OF . The ideal m is principal.

Any generator of m is called a uniformizer of F . Throughout the paper, we fix any uniformizer

$ of F , that is, m = $OF . The field OF /$OF is finite with q = pf elements for a prime number

p and a positive integer f ∈ N. If q = 2f , then we say that F is dyadic, otherwise, we say that

F is non-dyadic.
We write Fq := OF /$OF . The quotient map is denoted by

π : OF → Fq = OF /$OF .
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Fix a complete set of representatives Cq ⊂ OF of cosets of $OF in OF and assume that 0 ∈ Cq.
The restriction of the quotient map π on the finite set Cq is a bijection:

π : Cq
bijection−−−−−→ Fq. (11)

Any element of F is uniquely expanded as a convergent series in F :

x =

∞∑
n=v

an$
n (v ∈ Z, an ∈ Cq, av 6= 0). (12)

If x ∈ F is given by the series (12), then we define the F -valuation of x by ordF (x) := v. By

convention, we set ordF (0) =∞. The absolute value and the F -valuation of any element x ∈ F
are related by the formula |x| = q−ordF (x).

2.3 Group actions
Let GL(n, F ) and GL(n,OF ) denote the groups of invertible n × n matrices over F and OF
respectively. The group GL(n,OF ) is embedded naturally into GL(n+ 1,OF ) by

a ∈ GL(n,OF ) 7→
(
a 0

0 1

)
∈ GL(n+ 1,OF ). (13)

Define an inductive limit group

GL(∞,OF ) := lim
−→

GL(n,OF ).

Equivalently, GL(∞,OF ) is the group of infinite invertible matrices g = (gij)i,j∈N over OF such

that gij = δij if i+ j is large enough.

Let Mat(n, F ) and Mat(n,OF ) denote the spaces of all n × n matrices over F and OF
respectively. Define

Mat(N, F ) := {X = (Xij)i,j∈N | Xij ∈ F}.

Let Mat(∞, F ) denote the subspace of Mat(N, F ) consisting of matrices whose all but a finite
number of coefficients are zeros. Define also

Sym(n, F ) := {X ∈ Mat(n, F ) | Xij = Xji,∀1 6 i, j 6 n},
Sym(N, F ) := {X ∈ Mat(N, F ) | Xij = Xji,∀i, j ∈ N}.

Set Sym(∞, F ) := Sym(N, F ) ∩Mat(∞, F ).

Two natural group actions under consideration in this paper are:

– the group action of GL(∞,OF )×GL(∞,OF ) on Mat(N, F ) defined by

((g1, g2),M) 7→ g1Mg−1
2 , g1, g2 ∈ GL(∞,OF ), M ∈ Mat(N, F );

– the group action of GL(∞,OF ) on Sym(N, F ) defined by

(g,M) 7→ gMgt, g ∈ GL(∞,OF ), S ∈ Sym(N, F ),

where gt is the transposition of g.
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2.4 Conventions
Given a finite set B, we denote by #B its cardinality.

Let (Σ,B,m) be a measurable space equipped with a positive measure m and let f be a real
or complex valued integrable function defined on Σ. If A ⊂ Σ is measurable and 0 < m(A) <∞,
then we write

−
∫
A
f(x) dm(x) :=

1

m(A)

∫
A
f(x) dm(x). (14)

For any random variable Y , we denote its distribution by L(Y ).
We establish conventions concerning the empty set ∅. Let (ri)i∈I be a family of real numbers

(or complex numbers for the last two formulae). We set

inf
i∈∅

ri = +∞, sup
i∈∅

ri = −∞,
∑
i∈∅

ri = 0,
∏
i∈∅

ri = 1.

The following conventions will also be used.

– As elements in F , $∞ = $+∞ = 0 ∈ F .

– As elements in R ∪ {+∞}, q∞ = q+∞ = +∞ and q−∞ = 0 ∈ R.

2.5 Haar measure on GL(n,OF )
For any n ∈ N, denote by dvoln the Haar measure on Fn normalized by the condition
voln(OnF ) = 1. If there is no confusion, we will use the simplified notation vol(·) for voln(·).

Remark 2.1. The Haar measure voln on Fn is preserved by any linear map represented by a
matrix from the group GL(n,OF ).

For any n, we fix a Haar measure vol(·) on Mat(n, F ) normalized by vol(Mat(n,OF )) = 1.
Up to a multiplicative constant, the Haar measure on the locally compact group GL(n, F ) is
uniquely given (see, e.g., Neretin [Ner13]) by

|det(M)|−n · vol(dM). (15)

Let GL(n,Fq) be the group of invertible n× n matrices over Fq. Set

GL(n, Cq) := {t = (tij)16i,j6n ∈ GL(n,OF ) : tij ∈ Cq}.

Proposition 2.2. A standard partition of GL(n,OF ) is given by

GL(n,OF ) =
⊔

t∈GL(n,Cq)

(t+ Mat(n,$OF )). (16)

In particular, we have

vol(GL(n,OF )) =

n∏
j=1

(1− q−j). (17)

Proof. By definition, a = (aij)16i,j6n ∈ GL(n,OF ) implies that aij ∈ OF and |det(a)| = 1. Now
take any x ∈ Mat(n,$OF ). First, we have a + x ∈ Mat(n,OF ). Second, write x = $y with
y ∈ Mat(n,OF ). By definition, there exists z ∈ OF , such that det(a + x) = det(a) + $z. Since
|$z| 6 q−1, by ultrametricity, we obtain |det(a+x)| = |det(a) +$z| = 1, whence a+x ∈ GL(n,
OF ) and the set on the right-hand side of (16) is contained in GL(n,OF ). Conversely, since Cq
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is a complete set of representatives of the cosets of $OF in OF , for any A ∈ GL(n,OF ), there

exists a unique t ∈ GL(n, Cq), such that A ≡ t(mod $OF ). This completes the proof of (16).
Recalling that

#GL(n, Cq) = #GL(n,Fq) =

n−1∏
j=0

(qn − qj),

we arrive at (17). 2

By Proposition 2.2, GL(n,OF ) is an open subgroup of GL(n, F ). It follows that the
restriction on GL(n,OF ) of the Haar measure (15) on GL(n, F ) is a Haar measure on GL(n,OF ).
Consequently, the normalized Haar measure on GL(n,OF ) is given by

vol(·)∏n
j=1(1− q−j) . (18)

Let T (n) be sampled uniformly from the finite set GL(n, Cq); let V (n) be sampled with

respect to the normalized Haar measure on Mat(n,$OF ) and independent of T (n).

Proposition 2.3. The random matrix T (n) + V (n) is a Haar random matrix on GL(n,OF );

that is, the distribution law L(T (n) + V (n)) coincides with the normalized Haar measure on

GL(n,OF ).

Proof. The proof follows immediately from Proposition 2.2 and the formula (18) for the

normalized Haar measure on GL(n,OF ). 2

2.6 Diagonalization in Mat(n, F )
Lemma 2.4 (See, e.g., Neretin [Ner13, § 1.3]). Every matrix A ∈ Mat(n, F ) can be written in
the form

A = a · diag($−k1 , $−k2 , . . . , $−kn) · b, (a, b ∈ GL(n,OF )), (19)

where k1 > k2 > · · · > kn > −∞ and diag($−k1 , $−k2 , . . . , $−kn) is the diagonal matrix with

diagonal coefficients $−k1 , $−k2 , . . . , $−kn . Moreover, the n-tuple (k1, k2, . . . , kn) is uniquely

determined by the matrix A.

2.7 Square-units in F
The group of units of the ring OF is given by O×F := {x ∈ F : |x| = 1}. Let (O×F )2 be the subgroup
of O×F defined by

(O×F )2 := {x ∈ O×F : there exists a ∈ F such that x = a2}.

Let C×q denote the set Cq \ {0} and define

(C×q )2 := {a ∈ C×q | there exists y ∈ F such that a = y2}.

Write

(F×q )2 := {a ∈ F×q | there exists c ∈ F×q such that a = c2}.
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Lemma 2.5. Assume that F is non-dyadic. Then

(O×F )2 =
⊔

a∈(C×q )2

(a+$OF ). (20)

Consequently, the map π in (11) induces a bijection:

π : (C×q )2 bijection−−−−−→ (F×q )2. (21)

Proof. Since F is non-dyadic, we have |2| = 1. For any x = α2 ∈ (O×F )2, since Cq is a complete
set of representatives for OF /$OF , there exists a ∈ C×q , such that x ≡ a(mod $OF ), that is,

|x− a| < 1. (22)

Take any b ∈ O×F such that |b− x| < 1 = |2α|2. Then the polynomial Pb(X) = X2 − b ∈ OF [X]
satisfies

|Pb(α)| < |P ′b(α)|2. (23)

By Hensel’s lemma (see Cassels [Cas86, pp. 49–51]), the inequality (23) implies that there exists
β ∈ F such that

Pb(β) = β2 − b = 0 and |β − α| 6 |Pb(α)|
|P ′b(α)| < |P

′
b(α)| = 1. (24)

In particular, we have

{b ∈ O×F : |b− x| < 1} = x+$OF ⊂ (O×F )2. (25)

Combining (22) and (25), we get a ∈ (O×F )2. Hence

(O×F )2 ⊂
⊔

a∈(C×q )2

(a+$OF ).

Conversely, since (C×q )2 ⊂ (O×F )2, for any a ∈ (C×q )2, replacing x by a in the above argument, the

inclusion (25) implies a+$OF ⊂ (O×F )2. Hence⊔
a∈(C×q )2

(a+$OF ) ⊂ (O×F )2. 2

Remark 2.6. Recall that if F is non-dyadic, then the quotient group O×F /(O×F )2 has two elements.

2.8 Diagonalization in Sym(n, F )
In what follows, we fix a non-square unit ε ∈ O×F \ (O×F )2. By Remark 2.6, the following set

T := {$−k | k ∈ Z} t {$−kε | k ∈ Z} t {0} (26)

is a complete set of representatives for the quotient F/(O×F )2.

Lemma 2.7. Assume that F is non-dyadic. Then any symmetric matrix A ∈ Sym(n, F ) can be
written in the form

A = g · diag(x1, . . . , xn) · gt, x1, . . . , xn ∈ T , g ∈ GL(n,OF ).
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Proof. Since T is a complete set of representatives for the quotient F/(O×F )2, it suffices to

show that any symmetric matrix A ∈ Sym(n, F ) is diagonalizable. Assume that A is not a zero

matrix. We claim that, up to passing A to gAgt for some g ∈ GL(n,OF ), we may assume that

the (1, 1)-coefficient of A has maximal absolute value.

Case 1: Assume first that there exists 1 6 i0 6 n, such that |Ai0i0 | = max16i,j6n |Aij |. If i0 = 1,

then there is nothing to prove. Otherwise, take g =M(1i0), where M(1i0) is the permutation matrix

associated with the transposition (1i0). Then the matrix gAgt has Ai0i0 as its (1, 1)-coefficient.

Case 2: Now assume that there exists i0 < j0 such that

|Ai0j0 | = max
16i,j6n

|Aij | > max
16i6n

|Aii|. (27)

Let us do operations on the submatrix indexed by {i0, j0} × {i0, j0} as follows:[
2Ai0j0 +Ai0i0 +Aj0j0 Ai0j0 +Aj0j0

Ai0j0 +Aj0j0 Aj0j0

]
=

[
1 1

0 1

] [
Ai0i0 Ai0j0
Ai0j0 Aj0j0

] [
1 0

1 1

]
.

Since F is non-dyadic and non-Archimedean, (27) implies

|2Ai0j0 +Ai0i0 +Aj0j0 | = |Ai0j0 +Aj0j0 | = |Ai0j0 |.

This shows that we can reduce the second case to the first case where a diagonal coefficient has

maximal absolute value.
Now assume that

A =

[
x ct

c A1

]
, c ∈ Fn−1,

such that x attains the maximal absolute value of all coefficients of A. Then x−1c ∈ On−1
F and

we have [
1 0

−x−1c 1

] [
x ct

c A1

] [
1 −x−1ct

0 1

]
=

[
x 0

0 A1 − x−1cct

]
.

By continuing the above procedure on the submatrix A1 − x−1cct, we prove finally that A is

diagonalizable. 2

Remark 2.8. The assumption that F is non-dyadic is necessary in Lemma 2.7. Indeed, if[
λ1 0

0 λ2

]
=

[
a b

c d

] [
0 1

1 0

] [
a c

b d

]
,

[
a c

b d

]
∈ GL(2,OF ),

then

bc+ ad = 0, ad− bc ∈ O×F .

It follows that 2ad ∈ O×F and hence 2 ∈ O×F . This implies that F is non-dyadic.
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2.9 Characteristic functions

Denote by F̂ the Pontryagin dual of the additive group F . Elements in F̂ are called characters
of F . Throughout the paper, we fix a non-trivial character χ ∈ F̂ such that

χ|OF
≡ 1 and χ is not constant on $−1OF . (28)

For any y ∈ F , define a character χy ∈ F̂ by χy(x) = χ(yx). The map y 7→ χy from F to F̂
defines a group isomorphism.

We write explicitly characteristic functions of probability measures in the following situations.

(i) If µ is a Borel probability measure on Fm, then µ̂ is defined on Fm by

µ̂(y) :=

∫
Fm

χ(x · y)µ (dx),

where x · y :=
∑m

j=1 xjyj .

(ii) If µ is a Borel probability measure on Mat(n, F ), then µ̂ is defined on Mat(n, F ) by

µ̂(A) :=

∫
Mat(n,F )

χ(tr(AM))µ (dM).

(iii) If µ is a Borel probability measure on Mat(N, F ), then µ̂ is defined on Mat(∞, F ) by

µ̂(A) :=

∫
Mat(N,F )

χ(tr(AM))µ (dM). (29)

(iv) If ν is a Borel probability measure on Sym(n, F ), then ν̂ is defined on Sym(n, F ) by

ν̂(A) :=

∫
Sym(n,F )

χ(tr(AS))ν(dS).

(v) If ν is a Borel probability measure on Sym(N, F ), then ν̂ is defined on Sym(∞, F ) by

ν̂(A) :=

∫
Sym(N,F )

χ(tr(AS))ν(dS).

Since the corresponding groups are locally compact, Theorem 31.5 in Hewitt and Ross [HR70,
p. 212] implies that in cases (i), (ii) and (iv), the characteristic function µ̂ determines µ uniquely.
The same statement holds for cases (iii) and (v). Indeed, although the additive groups Mat(N, F )
and Mat(∞, F ) are not locally compact and we can not apply the result on locally compact groups
directly, we may use the fact that any Borel probability measure µ on Mat(N, F ) is uniquely
determined by its finite dimensional projections (Cut∞n )∗(µ) and (29) contains all information

for ̂(Cut∞n )∗(µ), n = 1, 2, . . . . Case (v) is treated similarly.

Remark 2.9. If µ is a probability measure on Mat(n, F ) which is invariant under the action of
the group GL(n,OF )×GL(n,OF ), then for any a, b ∈ GL(n,OF ), we have

µ̂(a · diag($−k1 , $−k2 , . . . , $−kn) · b) = µ̂(diag($−k1 , $−k2 , . . . , $−kn)). (30)

Similarly, if ν is a GL(n,OF )-invariant probability measure on Sym(n, F ), then for any g ∈GL(n,
OF ), we have

ν̂(g · diag(x1, . . . , xn) · gt) = ν̂(diag(x1, . . . , xn)). (31)

Similar statements hold for GL(∞,OF )×GL(∞,OF )-invariant probability measures on Mat(N,
F ) and for GL(∞,OF )-invariant probability measures on Sym(N, F ).
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Let m ∈ N. Given any Borel probability measures µ1, . . . , µm on Mat(N, F ) (respectively
Sym(N, F )), their convolution µ1 ∗ · · · ∗µm is defined as follows: let M1, . . . ,Mm be independent
random matrices such that L(Mi) = µi, i = 1, . . . ,m and set

µ1 ∗ · · · ∗ µm := L(M1 + · · ·+Mm).

The characteristic function of µ1 ∗ · · · ∗ µm is given by the formula

(µ1 ∗ · · · ∗ µm)∧ =
m∏
i=1

µ̂i. (32)

3. Invariance and ergodicity

In this section, we prove that all the measures on Mat(N, F ) from the family {µk = L(Mk) | k ∈
∆} introduced in Definition 1.1 are GL(∞,OF )×GL(∞,OF )-invariant and ergodic and that all
the measures on Sym(N, F ) from the family {νh = L(Sh) | h ∈ Ω} introduced in Definition 1.5
are GL(∞,OF )-invariant and ergodic.

3.1 GL(∞,OF )×GL(∞,OF )-invariance for probability measures µk
Proposition 3.1. For any k ∈ ∆, the probability measure µk on Mat(N, F ) is GL(∞,OF ) ×
GL(∞,OF )-invariant.

Recall that the normalized integral −
∫

is introduced in (14).

Remark 3.2. For any n > 1, we have

−
∫
$−nOF

χ(x) dx = 0. (33)

Indeed, for any fixed n > 1, the character χ defines a non-trivial character χ̃ of the finite group
Γn := $−nOF /OF by

χ̃(γ) := χ(x) (if γ = x+OF , x ∈ $−nOF ).

By orthogonality of the character χ̃ and the trivial character, we have

−
∫
$−nOF

χ(x) dx =
1

#Γn

∑
γ∈Γn

χ̃(γ) = 0,

and (33) is proved.

Lemma 3.3. For any y ∈ F and any l ∈ Z, we have

−
∫
$lOF

χ(xy) dx = 1$−lOF
(y). (34)

Proof. First assume that y ∈ $−lOF . Then for any x ∈ $lOF , we have xy ∈ OF . Consequently,
by (28), we have −

∫
$lOF

χ(xy) dx = 1. Now assume that y /∈ $−lOF . Since the Haar measure

dvol on F is invariant under the multiplication action by any element u ∈ O×F , without loss of
generality, we may assume that y = $k with k 6 −l − 1. By (33), we have

−
∫
$lOF

χ(xy) dx = −
∫
$lOF

χ($kx) dx = −
∫
OF

χ($k+lz) dz = 0.

This completes the proof of (34). 2
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Lemma 3.4. For any m ∈ N, the distribution of the random vector (X
(1)
i )mi=1 is GL(m,OF )-

invariant.

Proof. Write X = (X
(1)
i )mi=1. It suffices to prove that for any A ∈ GL(m,OF ) and any y = (y1,

. . . , ym) ∈ Fm, we have

E[χ(X · y)] = E[χ((AX) · y)]. (35)

By the independence between X
(1)
i : i = 1, . . . ,m and Lemma 3.3, we have

E[χ(X · y)] =
n∏
j=1

E[χ(Xjyj)] =
n∏
j=1

1OF
(yj) = 1Om

F
(y).

Similarly,

E[χ((AX) · y)] = E[χ(X · (Aty))] = 1Om
F

(Aty) = 1Om
F

(y).

Hence we get (35). The proof of Lemma 3.4 is completed. 2

Proof of Proposition 3.1. It suffices to prove that the following probability measures

L[X
(1)
i Y

(1)
j ]i,j∈N and L([Zij ]i,j∈N)

are GL(∞,OF ) × GL(∞,OF )-invariant. The invariance of both measures follows immediately
from Lemma 3.4. 2

3.2 GL(∞,OF )×GL(∞,OF )-ergodicity for probability measures µk
Theorem 3.5. For any k ∈∆, the probability measure µk on Mat(N, F ) is GL(∞,OF )×GL(∞,
OF )-ergodic.

The map M 7→ (Mii)i∈N from Mat(N, F ) to FN induces an affine map

Ψ : P(Mat(N, F )) → P(FN).

Let S(n) denote the group of permutations of the set {1, 2, . . . , n} and set S(∞) :=
⋃
n∈N S(n).

The group S(∞) acts naturally on FN by permutations of coordinates.

Lemma 3.6. For any µ ∈ Pinv(Mat(N, F )), we have Ψ(µ) ∈ PS(∞)
inv (FN). Moreover, the restriction

map

Ψ : Pinv(Mat(N, F )) → PS(∞)
inv (FN) (36)

is an affine embedding.

Proof. Let µ ∈ Pinv(Mat(N, F )). For any σ ∈ S(∞), the associated permutation matrix Mσ,
defined by

Mσ(i, j) := 1σ(i)=j ,

is an element in GL(∞,OF ). By the invariance of µ under the multiplication by all permutation

matrices Mσ, σ ∈ S(∞) on left and on right, it is easy to see that Ψ(µ) ∈ PS(∞)
inv (FN).
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Now we show that the map (36) is injective. By the definition of pushforward map, the
Fourier transform of Ψ(µ) is given as follows: for any x1, . . . , xr ∈ F ,

Ψ̂(µ)((x1, . . . , xr, 0, 0, . . .)) = µ̂(diag(x1, . . . , xr, 0, 0, . . .)). (37)

By Remark 2.9, µ̂ is determined by

µ̂(diag(x1, . . . , xr, 0, 0, . . .)), x1, . . . , xr ∈ F.

Now, the equality (37) implies that µ̂ and hence µ itself is determined uniquely by Ψ(µ). The
injectivity of the map (36) is proved. 2

In what follows, for any convex set C, we denote by Ext(C) the set of extreme points of C.

Remark 3.7. Recall here the definition of indecomposability in § 2.1.2. Since S(∞) is countable,
we have

Ext(PS(∞)
inv (XN)) = PS(∞)

erg (XN).

Proof of Theorem 3.5. By construction, for any k ∈ ∆, the measure Ψ(µk) is Bernoulli. Indeed,
the definition

µk = L
([ ∑

n:kn>k

$−knX
(n)
i Y

(n)
j +$−kZij

]
i,j∈N

)
implies that the diagonal marginal measure Ψ(µk) is

Ψ(µk) = L
(( ∑

n:kn>k

$−knX
(n)
i Y

(n)
i +$−kZii

)
i∈N

)
,

and our original assumption, that all X
(n)
i , Y

(n)
i , Zii are independent sampled with respect to the

normalized Haar measure on the compact additive group OF , implies that the measure Ψ(µk)
is Bernoulli. Consequently, by the De Finetti Theorem, Ψ(µk) is S(∞)-ergodic. Therefore, by
Remark 3.7,

Ψ(µk) ∈ PS(∞)
erg (FN) = Ext(PS(∞)

inv (FN)).

It is clear that for any convex subset C of Ext(PS(∞)
inv (FN)), we have

C ∩ Ext(PS(∞)
inv (FN)) ⊂ Ext(C).

Taking C = Ψ(Pinv(Mat(N, F ))), we see that

Ψ(µk) ∈ Ext(Ψ(Pinv(Mat(N, F )))). (38)

By Lemma 3.6, Ψ is an affine embedding. Hence

Ext(Ψ(Pinv(Mat(N, F )))) = Ψ(Ext(Pinv(Mat(N, F )))).

The relation (38) implies µk ∈ Ext(Pinv(Mat(N, F ))). Since indecomposability implies ergodicity,
we get the desired relation µk ∈ Perg(Mat(N, F )). 2
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3.3 GL(∞,OF )-invariance for probability measures νh
Proposition 3.8. For any h ∈ Ω, the probability measure νh on Sym(N, F ) is GL(∞,OF )-
invariant.

Lemma 3.9. The normalized Haar measure on Sym(n,OF ) is invariant under the natural action
of the group GL(n,OF ).

Proof. For any g ∈ GL(n,OF ), the linear map

Sym(n,OF ) −→ Sym(n,OF )

S 7→ gSgt
(39)

is invertible. Clearly, if we use the group identification

Sym(n,OF ) ' O(n2+n)/2
F ,

then the linear map (39) is represented by an invertible matrix from GL((n2 + n)/2,OF ). Hence
by Remark 2.1, it preserves the normalized Haar measure. 2

Proof of Proposition 3.8. It suffices to prove the GL(∞,OF )-invariance of the following
probability measures on Sym(N, F ):

L([X
(1)
i X

(1)
j ]i,j∈N) and L([Hij ]i,j∈N).

The GL(∞,OF )-invariance of L([X
(1)
i X

(1)
j ]i,j∈N) follows immediately from Lemma 3.4, while the

GL(∞,OF )-invariance of L([Hij ]i,j∈N) follows from Lemma 3.9. 2

3.4 GL(∞,OF )-ergodicity for probability measures νh
Theorem 3.10. For any h ∈ Ω, the probability measure νh on Sym(N, F ) is GL(∞,OF )-ergodic.

The map S 7→ (Sii)i∈N from Sym(N, F ) to FN induces an affine map

Φ : P(Sym(N, F )) → P(FN).

Lemma 3.11. For any ν ∈ Pinv(Sym(N, F )), we have Φ(ν) ∈ PS(∞)
inv (FN). Moreover, the restric-

tion map

Φ : Pinv(Sym(N, F )) → PS(∞)
inv (FN)

is an affine embedding.

Proof. The proof is similar to that of Lemma 3.6. 2

Proof of Theorem 3.10. The proof is similar to that of Theorem 3.5 by using Lemma 3.11 instead
of Lemma 3.6. 2

4. Explicit computation of characteristic functions

In this section, we give explicit formulae for characteristic functions of measures from the two
families {µk : k ∈ ∆} and {νh : h ∈ Ω}.
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4.1 Measures on Mat(N, F )
By the elementary observation (30), for studying the characteristic functions of µk, it suffices to
compute

µ̂k(diag($−`1 , . . . , $−`r , 0, 0, . . .))

for any r ∈ N and any `1, . . . , `r ∈ Z.

Proposition 4.1. For any k = (kn)n∈N ∈ ∆ and any ` ∈ Z, we have

µ̂k($−`e11) = exp

(
−log q ·

∞∑
j=1

(kj + `)1{kj+`>1}

)
. (40)

More generally, for any `1, . . . , `r ∈ Z, we have

µ̂k(diag($−`1 , . . . , $−`r , 0, 0, . . .)) =
r∏
i=1

µ̂k($−`ie11). (41)

Introduce a function Θ : F → C by

Θ(x) =

∫
OF×OF

χ(z1z2 · x) dz1 dz2. (42)

Lemma 4.2. The function Θ is given by

Θ(x) = q−`1{`>1} , |x| = q`.

Proof. Let |x| = q`. Then there exists u ∈ O×F , such that x = $−`u. By rotation invariance,
Θ(x) = Θ($−`). Now by Lemma 3.3,

Θ($−`) = E[χ($−`X
(1)
1 Y

(1)
1 )] = E(E[χ($−`X

(1)
1 Y

(1)
1 ) | Y (1)

1 ])

= E(1OF
($−`Y

(1)
1 )) = P(|Y (1)

1 | 6 q−`) = q−`1{`>1} . 2

Remark 4.3. In the formulae below, for graphical convenience, we write exp(−log q · `1{`>1})

instead of q−`1{`>1} .

Proof of Proposition 4.1. The identity (41) follows from the independence between all diagonal
coefficient of Mk. So we only need to prove the identity (40).

First assume that k = (kn)n∈N ∈ ∆ is such that limn→∞ kn = −∞. By the independence

between all X
(n)
1 and Y

(n)
1 , n ∈ N, we have

µ̂k($−`e11) = E
[
χ

(
tr

([ ∞∑
n=1

$−knX
(n)
i Y

(n)
j

]
i,j∈N

$−`e11

))]
= E

[
χ

( ∞∑
n=1

$−kn−`X
(n)
1 Y

(n)
1

)]
=

∞∏
n=1

E[χ($−kn−`X
(n)
1 Y

(n)
1 )].

By Lemma 4.2, we get

µ̂k($−`e11) =

∞∏
n=1

exp(−log q · (kn + `)1{kn+`>1})

= exp

(
−log q ·

∞∑
n=1

(kn + `)1{kn+`>1}

)
.
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Now assume that there exists m ∈ N ∪ {0} and k ∈ Z, such that

k1 > · · · > km > k and kn = k for any n > m+ 1.

By previous computation and the formula (32) for the characteristic functions of convolutions
of probability measures, we only need to consider the case when k = (kn)n∈N is such that

kn = k ∈ Z for any n ∈ N.

In this case, µk = L($−kZ) with Z an infinite random matrix sampled uniformly from Mat(N,
OF ). Hence by Lemma 3.3, we obtain

µ̂k($−`e11) = E[χ($−`−kZ11)] = 1OF
($−`−k) = 1{k+`60}.

But if kn = k for any n ∈ N, we have

1{k+`60} = exp

(
−log q ·

∞∑
n=1

(kn + `)1{kn+`>1}

)
. (43)

This proves the identity (40) in the second case and we complete the proof of Proposition 4.1. 2

4.2 Measures on Sym(N, F )
By the elementary observation (31), for studying the characteristic function of νh, it suffices to
compute

ν̂h(diag(x1, . . . , xr, 0, 0, . . .))

for any r ∈ N and any x1, . . . , xr ∈ F .
Recall the definition (7) for the function θ:

θ(x) =

∫
OF

χ(z2 · x) dz.

Proposition 4.4. Let h = (k; k, k′) ∈ Ω. Then for any x ∈ F , we have

ν̂h(xe11) = 1OF
($−kx) ·

∞∏
n=1

θ($−knx)

∞∏
n=1

θ(ε$−k
′
nx). (44)

More generally, for any r ∈ N and any x1, . . . , xr ∈ F , we have

ν̂h(diag(x1, . . . , xr, 0, 0, . . .)) =
r∏
i=1

ν̂h(xie11). (45)

Define a function L2 : O×F → {−1, 1} by setting L2(u) = 1 if u is a square element in O×F
and setting L2(u) = −1 if u is a non-square element in O×F . Write

%q :=

{
1 if q ≡ 1(mod 4),

i if q ≡ 3(mod 4).
(46)

Recall that for any x ∈ F , we have |x| = q−ordF (x).
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Proposition 4.5. The function θ : F → C is continuous and satisfies the following properties.

(i) If |x| 6 1, then θ(x) = 1.

(ii) If |x| > 1 and ordF (x) ≡ 0(mod 2), then θ(x) = |x|−1/2.

(iii) If |x| > 1 and ordF (x) ≡ 1(mod 2), then by writing x = $−`u with ` ∈ N and u ∈ O×F , we
have

θ(x) = sχ%q ·
L2(u)

|x|1/2 , (47)

where sχ ∈ {−1, 1} depends on the choice of χ.

In particular, θ satisfies the following property:

θ(x)2 = θ(εx)2 6= 0 for all x ∈ F. (48)

Moreover, if x = $−`u with ` ∈ Z ∪ {−∞} and u ∈ O×F
|θ(x)|2 = exp(−log |x| · 1|x|>1) = exp(−` log q · 1{`>1}). (49)

Let us postpone the proof of Proposition 4.5 to § 10.

Remark 4.6. Proposition 4.5 is related to the calculations of the Gaussian integrals in Neretin
[Ner11, § 11.1] and Vladimirov et al. [VVZ94, ch. V] in the particular case when the field F is
the field Qp of p-adic numbers.

Lemma 4.7. Fix an element a ∈ F . Then for any k = (kj)j∈N ∈ ∆, the infinite product

∞∏
j=1

θ(a ·$−kj ) (50)

converges. Moreover, if limj→∞ kj = k ∈ Z, then

∞∏
j=1

θ(a ·$−kj ) = 1OF
(a ·$−k) ·

∏
j∈{n|kn>k}

θ(a ·$−kj ). (51)

Proof. Let k = (kj)j∈N ∈ ∆. Since k is a non-increasing sequence, we have

|a ·$−k1 | > |a ·$−k2 | > · · · > |a ·$−kj | · · · .

Then either there exists j0 ∈ N, such that |a ·$−kj | 6 1 for all j > j0 or |a ·$−kj | > 1 for all
j ∈ N. Consequently, the infinite product (50) either is a finite product or equals 0. The identity
(51) follows immediately form (49). 2

Proof of Proposition 4.4. The identity (45) follows from the independence between all diagonal
coefficient of Sh. So we only need to prove the identity (44).

Case 1: h = (−∞;k,k′), k ∈ ∆[−∞], k′ ∈ ∆][−∞].
In this case, we have

νh = L(Wk + εWk′) = L(Wk) ∗ L(εWk′).
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Thus for proving (45), it suffices to prove it for the probability measures L(Wk) and L(εWk′).
For instance, we have

L̂(Wk)(xe11) = E
[
χ

(
tr

([ ∞∑
n=1

$−knX
(n)
i X

(n)
j

]
i,j∈N

xe11

))]
= E

[
χ

( ∞∑
n=1

$−kn(X
(n)
1 )2x

)]
= E

[ ∞∏
n=1

χ($−kn(X
(n)
1 )2x)

]
.

Then by dominated convergence theorem and the independence between all X
(n)
1 , n ∈ N, we get

L̂(Wk)(xe11) =
∞∏
n=1

E[χ($−kn(X
(n)
1 )2x)] =

∞∏
n=1

θ($−knx).

Similar computation works for L(εWk′).

Case 2: There exists k ∈ Z and h = (k; k,k′), k ∈ ∆[k],k′ ∈ ∆][k].
In this case, we have

νh = L(Wk + εWk′ +$−kH) = L(Wk) ∗ L(εWk′) ∗ L($−kH).

By (32), for proving (45), it suffices to prove it for the probability measures

L(Wk), L(εWk′) and L($−kH).

By the computation in Case 1, we only need to verify (45) for L($−kH). A simple computation
yields the desired identity

̂L($−kH)(xe11) = E[χ(tr($−kHxe11))] = E[χ($−kH11x)] = 1OF
($−kx). 2

Remark 4.8. Let us prove the identity (5) mentioned in Remark 1.7. Write

σ1 := L
([ 2∑

n=1

X
(n)
i X

(n)
j

]
i,j∈N

)
, σ2 := L

(
ε

[ 2∑
n=1

X
(n)
i X

(n)
j

]
i,j∈N

)
.

Note that σ1, σ2 are both GL(∞,OF )-invariant. Since for any x ∈ F , we have θ(x)2 = θ(εx)2.
Consequently

σ̂1(diag(x1, . . . , xr, 0, . . .)) =
r∏
i=1

θ(xi)
2 =

r∏
i=1

θ(εxi)
2 = σ̂2(diag(x1, . . . , xr, 0, . . .)).

It follows that σ1 = σ2.

5. Uniqueness of parametrization

In this section, we will prove two uniqueness results, Propositions 5.1 and 5.3.
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5.1 Measures on Mat(N, F )

Proposition 5.1. Let k, k̃ ∈ ∆. Then µk = µk̃ if and only if k = k̃.

Lemma 5.2. The map

k = (kj)j∈N 7→
( ∞∑
j=1

(kj + `)1{kj+`>1}

)
`∈Z

from ∆ to (Z ∪ {+∞})Z is injective.

Proof. We need to show that if k = (kj)j∈N and k̃ = (k̃j)j∈N are two distinct elements in ∆, then
there exists ` ∈ Z, such that

∞∑
j=1

(kj + `)1{kj+`>1} 6=
∞∑
j=1

(k̃j + `)1{k̃j+`>1}. (52)

By assumption, there exists j0 ∈ N, such that

kj = k̃j for any 1 6 j < j0 and kj0 6= k̃j0 . (53)

By symmetry, let us assume that kj0 > k̃j0 . Under this assumption (whether k̃j0 equals to −∞
or not), we will have kj0 ∈ Z. Now by taking ` = 1− kj0 ∈ Z, we have{

kj + ` = k̃j + ` > 1 for any 1 6 j < j0,

kj0 + ` = 1 and k̃j0 + ` 6 0.

Consequently,
∞∑
j=1

(kj + `)1{kj+`>1} >
j0∑
j=1

(kj + `) = 1 +

j0−1∑
j=1

(kj + `),

while
∞∑
j=1

(k̃j + `)1{k̃j+`>1} =

j0−1∑
j=1

(k̃j + `) =

j0−1∑
j=1

(kj + `).

Thus we prove that the inequality (52) holds for ` = 1− kj0 . 2

Proof of Proposition 5.1. Proposition 5.1 follows from Proposition 4.1, Lemma 5.2 and the fact

any probability measure on Mat(N, F ) is uniquely determined by its characteristic function. 2

5.2 Measures on Sym(N, F )

Proposition 5.3. Let h, h̃ ∈ Ω. Then νh = ν
h̃

if and only if h = h̃.

Remark 5.4. Any element k = (kj)j∈N ∈ ∆ is uniquely determined by the bi-infinite sequence in
N ∪ {∞}:

(#{j ∈ N | kj = `})`∈Z.
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Proof of Proposition 5.3. Let h = (k; k, k′) and h̃ = (k̃; k̃, k̃′) be two elements in Ω such that
νh = ν

h̃
. By Proposition 4.4, this is equivalent to the following identity: for any x ∈ F ,

1OF
($−kx) ·

∞∏
n=1

θ($−knx)
∞∏
n=1

θ(ε$−k
′
nx) = 1OF

($−k̃x) ·
∞∏
n=1

θ($−k̃nx)
∞∏
n=1

θ(ε$−k̃
′
nx). (54)

Recall the identity (49). By taking the modulus and square of both sides of (54) and substituting
x = $−`u with ` ∈ Z and u ∈ O×F , we obtain

1{k+`60} · q−
∑∞

n=1(kn+`)1{kn+`>1}−
∑∞

n=1(k′n+`)1{k′n+`>1}

= 1{k̃+`60} · q
−
∑∞

n=1(k̃n+`)1{k̃n+`>1}−
∑∞

n=1(k̃′n+`)1{k̃′n+`>1} . (55)

Claim 1: k = k̃.
Indeed, if k = −∞, then the left-hand side of the identity (55) never vanishes. Consequently,

so does the right-hand side. It follows that k̃ = −∞. If k ∈ Z. Then the left-hand side of the
identity (55) vanishes at ` = 1 − k. Consequently, so does the right-hand side of (55) vanishes

both at ` = 1 − k. It follows that k̃ + 1 − k > 0 or equivalently k̃ > k. By symmetry, we have
k = k̃.

Claim 2: (k,k′) = (k̃, k̃′).
For simplifying notation, let us define k∗, k̃∗ ∈ ∆ as follows: if k = k̃ = −∞, then set k∗ := k,

k̃∗ := k̃; if k = k̃ ∈ Z, then both k and k̃ are finite sequences in Z>k, set k∗ and k̃∗ by adding
infinitely many k. Clearly, for proving (k,k′) = (k̃, k̃′), it suffices to prove that (k∗,k′) = (k̃∗, k̃′).
By Remark 5.4, it suffices to prove that for any l ∈ Z,

#{n ∈ N | k∗n = l} = #{n ∈ N | k̃∗n = l},
#{n ∈ N | k′n = l} = #{n ∈ N | k̃′n = l}. (56)

Applying (43) to 1{k+`60} and 1{k̃+`60}, we may write (54) as

q
−
∑∞

n=1(k∗n+`)1{k∗n+`>1}−
∑∞

n=1(k′n+`)1{k′n+`>1} = q
−
∑∞

n=1(k̃∗n+`)1{k̃∗n+`>1}−
∑∞

n=1(k̃′n+`)1{k̃′n+`>1} . (57)

By Lemma 5.2 and Remark 5.4, the equality (57) implies that for any l ∈ Z, we have

#{n ∈ N | k∗n = l}+ #{n ∈ N | k′n = l} = #{n ∈ N | k̃∗n = l}+ #{n ∈ N | k̃′n = l}. (58)

The identity (58) implies in particular that the two identities in (56) hold or are violated
simultaneously. Now assume by contradiction that there exists l0 ∈ Z, such that the identities in
(56) are violated. Obviously, such l0 verifies

k < l0 6 max{kn, k̃n, k′n, k̃′n} < +∞.

Now let lmax ∈ Z be the largest l0 such that the identities in (56) are violated. Substituting
x = $lmax−1u with u ∈ O×F into the identity (54), we obtain

∞∏
n1=1

θ($−kn1$lmax−1u)

∞∏
n2=1

θ(ε$−k
′
n2$lmax−1u)

=
∞∏

m1=1

θ($−k̃m1$lmax−1u)
∞∏

m2=1

θ(ε$−k̃
′
m2$lmax−1u). (59)

2507

https://doi.org/10.1112/S0010437X17007412 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007412


A. I. Bufetov and Y. Qiu

By the assumption of lmax, we know that for any l > lmax,

#{n ∈ N | k∗n = l} = #{n ∈ N | k̃∗n = l},
#{n ∈ N | k′n = l} = #{n ∈ N | k̃′n = l}. (60)

Since lmax > k, by definition of k∗ and k̃∗ we also have for any l > lmax,

#{n ∈ N | k∗n = l} = #{n ∈ N | kn = l},
#{n ∈ N | k̃∗n = l} = #{n ∈ N | k̃n = l}. (61)

By Proposition 4.5, the function θ never vanishes. Hence by the identities (60) and (61), we
can remove simultaneously all those terms concerning kn1 > lmax, k

′
n2
> lmax and k̃m1 > lmax,

k̃′m2
> lmax from both sides of identity (59). Again by Proposition 4.5, for any kn1 < lmax,

k′n2
< lmax and k̃m1 < lmax, k̃

′
m2

< lmax, we have

θ($−kn1$lmax−1u) = θ(ε$−k
′
n2$lmax−1u) = θ($−k̃m1$lmax−1u) = θ(ε$−k̃

′
m2$lmax−1u) = 1.

Consequently, we may remove simultaneously all those terms concerning kn1 < lmax, k
′
n2
< lmax

and k̃m1 < lmax, k̃
′
m2

< lmax from both sides of identity (59) as well. Then we arrive at the
identity

θ($−1u)D · θ(ε$−1u)D
′

= θ($−1u)D̃ · θ(ε$−1u)D̃
′
, (62)

where

D := #{n ∈ N | kn = lmax} and D′ := #{n ∈ N | k′n = lmax},
D̃ := #{n ∈ N | k̃n = lmax} and D̃′ := #{n ∈ N | k̃′n = lmax}.

By definitions for ∆[k] and ∆][k], we must have

D, D̃ ∈ N ∪ {0} and D′, D̃′ ∈ {0, 1}. (63)

The identity (58) now implies that

D +D′ = D̃ + D̃′. (64)

By definition of lmax, we have D 6= D′. Without loss of generality, we may assume that D′ = 0
and D̃′ = 1. Then the identity (62) becomes

θ($−1u)D = θ($−1u)D̃ · θ(ε$−1u). (65)

But now D = D̃ + 1 and since θ never vanishes, the identity (65) is equivalent to

θ($−1u) = θ(ε$−1u).

Since |$−1u| > 1, ordF ($−1u) = −1 ≡ 1(mod 2) and L2(ε) = −1, by Proposition 4.5, we have

θ(ε$−1u) = −θ($−1u). Consequently, we would have θ($−1u) = θ(ε$−1u) = 0. This contradicts

to the non-vanishing property of θ. Hence we complete the proof of Claim 2.

Combining Claims 1 and 2, we complete the proof of Proposition 5.3. 2
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6. Ergodic measures as limits of orbital measures: the Vershik–Kerov
ergodic method

In this section, we recall the Vershik–Kerov ergodic method for dealing with ergodic measures
for inductively compact groups. The general setting is as follows. Let

K(1) ⊂ K(2) ⊂ · · · ⊂ K(n) ⊂ · · · ⊂ K(∞),

be an increasing chain of topological groups such that for any n ∈ N, the group K(n) is compact
and K(∞) is the inductive limit:

K(∞) = lim
−→

K(n).

For any n ∈ N, let mK(n) denote the normalized Haar measure of K(n). Fix a group action of
K(∞) on a Polish space X .

Definition 6.1 (Orbital measures). For any x ∈ X and any n ∈ N, we define the K(n)-orbital
measure generated by x, denoted by mK(n)(x), as the unique K(n)-invariant probability measure
on X supported on the K(n)-orbit K(n) · x := {g · x | g ∈ K(n)}. In other words, mK(n)(x) is
the image of mK(n) under the map g 7→ g · x from K(n) to X .

Definition 6.2. Let LK(∞)(X ) ⊂ P(X ) be the set of probability measures µ on X such that
there exists x ∈ X verifying mK(n)(x) =⇒ µ.

Theorem 6.3 (Vershik [Ver74, Theorem 1]). The following inclusion holds:

PK(∞)
erg (X ) ⊂ LK(∞)(X ). (66)

More precisely, if µ is an ergodic K(∞)-invariant Borel probability measure on X , then for
µ-almost every point x ∈ X , the weak convergence mK(n)(x) =⇒ µ holds.

Vershik’s method in [Ver74] was further developed in a series of papers [VK81a, VK81b,
KV86, OV96] by Kerov et al.

Remark 6.4. In general, the converse inclusion LK(∞)(X ) ⊂ PK(∞)
erg (X ) does not hold. There

is however a simple situation, see the note [Qiu17], where PK(∞)
erg (X ) always coincides with

LK(∞)(X ).

For simplifying notation, in what follows, we write

L (Mat(N, F )) := L GL(∞,OF )×GL(∞,OF )(Mat(N, F )),

L (Sym(N, F )) := L GL(∞,OF )(Sym(N, F )).

For any n ∈ N, we set

ORBn(Mat(n, F )) := {mGL(n,OF )×GL(n,OF )(M) |M ∈ Mat(n, F )}.

By identifying Mat(n, F ) in a natural way with the subset of Mat(N, F ), we have
P(Mat(n, F )) ⊂ P(Mat(N, F )). In particular,

ORBn(Mat(n, F )) ⊂ P(Mat(N, F )).
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Definition 6.5. Let ORB∞(Mat(N, F )) denote the set of probability measures µ on Mat(N, F )
such that there exists a subsequence of positive integers n1 < n2 < · · · and a sequence (µnk

)k∈N
of orbital measures with µnk

∈ ORBnk
(Mat(nk, F )), so that

µnk
=⇒ µ.

Similarly, in the symmetric case, for any n ∈ N, we set

ORBn(Sym(n, F )) := {mGL(n,OF )(S) | S ∈ Sym(n, F )}.

By identifying Sym(n, F ) in a natural way with a subspace of Sym(N, F ), we have

ORBn(Sym(n, F )) ⊂ P(Sym(N, F )).

Definition 6.6. Let ORB∞(Sym(N, F )) denote the set of probability measures ν on Sym(N, F )
such that there exists a subsequence of positive integers n1 < n2 < · · · and a sequence (νnk

)k∈N
of orbital measures with νnk

∈ ORBnk
(Sym(nk, F )), so that

νnk
=⇒ ν.

Remark 6.7. It is easy to see that we have

ORB∞(Mat(N, F )) ⊂ Pinv(Mat(N, F )),

ORB∞(Sym(N, F )) ⊂ Pinv(Sym(N, F )).

Proposition 6.8. The following two inclusions hold:

L (Mat(N, F )) ⊂ ORB∞(Mat(N, F )), (67)

L (Sym(N, F )) ⊂ ORB∞(Sym(N, F )). (68)

Proof. For any n,m ∈ N such that m > n, let

Cut∞n : Mat(N, F ) → Mat(n, F ),

Cutmn : Mat(m,F ) → Mat(n, F )

be the maps of cutting the n× n left-upper corner.
For simplifying notation, write

K(n) := GL(n,OF )×GL(n,OF ). (69)

Let µ ∈ L (Mat(N, F )). By definition, there exists an infinite matrix X0 ∈ Mat(N, F ) and a
subsequence (nk)k∈N of positive integers such that

mK(nk)(X0) =⇒ µ.

This is equivalent to saying that for any N ∈ N, we have

(Cut∞N )∗[mK(nk)(X0)] =⇒ (Cut∞N )∗(µ). (70)

Take
Xk = Cut∞nk

(X0) ∈ Mat(nk, F ).

Then we have
mK(nk)(Xk) =⇒ µ.
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Indeed, it suffices to prove that for any N ∈ N, we have

(Cut∞N )∗[mK(nk)(Xk)] =⇒ (Cut∞N )∗(µ). (71)

For any k ∈ N, we clearly have

(Cut∞nk
)∗[mK(nk)(Xk)] = (Cut∞nk

)∗[mK(nk)(X0)]. (72)

But if nk > N , we have Cut∞N ◦Cut∞nk
= Cut∞N . Combining with (72), we see that, once nk > N ,

we have

(Cut∞N )∗[mK(nk)(Xk)] = (Cut∞N )∗[mK(nk)(X0)].

Now it is clear that (70) implies (71). The first inclusion (67) is proved. The proof of the second
inclusion (68) is the same. 2

7. Asymptotic multiplicativity for orbital integrals

7.1 GL(n,OF )×GL(n,OF )-orbital integrals
Recall Definition 42 and Lemma 4.2:

Θ(x) =

∫
OF×OF

χ(z1z2 · x) dz1 dz2 = q−`1{`>1} , |x| = q`.

In what follows, we use the notation (69).

Theorem 7.1. Let n, r ∈ N be such that r 6 n. Suppose that D and A are two diagonal matrices
given by

D = diag(x1, . . . , xn), A = diag(a1, . . . , ar, 0, . . . , 0)

where x1, . . . , xn, a1, . . . , ar ∈ F . Then∣∣∣∣∫
K(n)

χ(tr(g1Dg2A)) dg1 dg2 −
r∏
i=1

n∏
j=1

Θ(aixj)

∣∣∣∣ 6 2

(
1−

r−1∏
w=0

(1− qw−n)

)2

, (73)

where dg1 dg2 is the normalized Haar measure on K(n).
In particular, for any a ∈ F , we have∣∣∣∣∫

K(n)
χ(a · tr(g1Dg2e11)) dg1 dg2 −

n∏
j=1

Θ(axj)

∣∣∣∣ 6 2q−2n. (74)

Remark 7.2. Obviously, we have∫
K(n)

χ(tr(g1Dg2A)) dg1 dg2 =

∫
K(n)

χ(tr(g1Dg
−1
2 A)) dg1 dg2.

The following elementary lemma will be useful.

Lemma 7.3. Let r 6 n be two positive integers. Define

S(r × n) := {M ∈ Mat(r × n, Cq) | rankFq(M(mod $OF )) = r}.

2511

https://doi.org/10.1112/S0010437X17007412 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007412


A. I. Bufetov and Y. Qiu

Then we have

#S(r × n) =
r−1∏
w=0

(qn − qw). (75)

For any rectangular matrix M ∈ S(r × n), we have

#{t ∈ GL(n, Cq) | tij = Mij ,∀1 6 i 6 r, 1 6 j 6 n} =
n−w−1∏
w=0

(qn − qr+w).

In particular, the above cardinality does not depend on the choice of M ∈ S(r × n).

Proof of Theorem 7.1. Fix n, r ∈ N and fix the two diagonal matrices D and A. Let T = T (n),
T ′ = T ′(n) be two independent copies of random matrices sampled uniformly from the finite set
GL(n, Cq), and let V = V (n), V ′ = V ′(n) be two independent random matrices sampled uniformly
from Mat(n,$OF ) and independent of T, T ′. By Proposition 2.3, we have∫

K(n)
χ(tr(g1Dg2A)) dg1 dg2 = E[χ(tr((T + V )D(T ′ + V ′)A))].

Since the transposed random matrix (T ′+V ′)t and the original random matrix T ′+V ′ have the
same distribution, we have

E[χ(tr((T + V )D(T ′ + V ′)A))]

= E[χ(tr((T + V )D(T ′ + V ′)tA))]

= E
[
χ

( r∑
i=1

n∑
j=1

(Tij + Vij)(T
′
ij + V ′ij)aixj

)]

=
1

[#GL(n, Cq)]2
∑

t,t′∈GL(n,Cq)

E
[
χ

( r∑
i=1

n∑
j=1

(tij + Vij)(t
′
ij + V ′ij)aixj

)]
.

By Lemma 7.3, we obtain

E[χ(tr((T + V )D(T ′ + V ′)A))]

=
1

[#S(r × n)]2

∑
M,M ′∈S(r×n)

E
[
χ

( r∑
i=1

n∑
j=1

(Mij + Vij)(M
′
ij + V ′ji)aixj

)]
.

For simplifying notation, for any pair of rectangular matrices M,M ′ ∈ Mat(r × n, Cq), we write

F (M,M ′) := E
[
χ

( r∑
i=1

n∑
j=1

(Mij + Vij)(M
′
ij + V ′ji)aixj

)]
.

Then we may write

E[χ(tr((T + V )D(T ′ + V ′)A))] =
1

[#S(r × n)]2

[ ∑
M,M ′∈Mat(r×n,Cq)

F (M,M ′) + E1

]
︸ ︷︷ ︸

denoted by I

,

where

E1 := −
∑

M,M ′∈Mat(r×n,Cq) \S(r×n)

F (M,M ′).

2512

https://doi.org/10.1112/S0010437X17007412 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007412


Ergodic measures on infinite matrices

Note that if Mij and Vij are sampled independently and uniformly from the finite set Cq and
from the compact additive group $OF respectively, then Mij + Vij is uniformly distributed on
OF . It follows that

r∏
i=1

n∏
j=1

Θ(aixj) =
1

[#Mat(r × n, Cq)]2
∑

M,M ′∈Mat(r×n,Cq)

F (M,M ′).

Consequently,

E[χ(tr((T + V )D(T ′ + V ′)A))] =
I

[#Mat(r × n, Cq)]2
+ E2

=
r∏
i=1

n∏
j=1

Θ(aixj) +
E1

[#Mat(r × n, Cq)]2
+ E2,

where

E2 :=
I

[#S(r × n)]2
− I

[#Mat(r × n, Cq)]2
.

Now let us estimate these error terms. By the obvious estimate |F (M,M ′)| 6 1, we have

|E1| 6 [#(Mat(r × n, Cq) \S(r × n))]2.

Note that |I| 6 [#S(r × n)]2. Hence

|E2| = |I|
(

1

[#S(r × n)]2
− 1

[#Mat(r × n, Cq)]2
)

6

(
#Mat(r × n, Cq)−#S(r × n)

#Mat(r × n, Cq)

)2

.

Taking (75) into account, we get∣∣∣∣E[χ(tr((T + V )D(T ′ + V ′)A))]−
r∏
i=1

n∏
j=1

Θ(aixj)

∣∣∣∣
6

|E1|
[#Mat(r × n, Cq)]2

+ |E2|

6 2

(
#Mat(r × n, Cq)−#S(r × n)

#Mat(r × n, Cq)

)2

6 2

(
1−

r−1∏
w=0

(1− qw−n)

)2

. 2

Theorem 7.4 (Uniform asymptotic multiplicativity). Let n, r ∈ N be such that r 6 n. Suppose
that D and A are two diagonal matrices given by

D = diag(x1, . . . , xn), A = diag(a1, . . . , ar, 0, . . . , 0),

where x1, . . . , xn, a1, . . . , ar ∈ F . Then∣∣∣∣∫
K(n)

χ(tr(g1Dg2A)) dg1 dg2 −
r∏
i=1

∫
K(n)

χ(ai · tr(g1Dg2e11)) dg1 dg2

∣∣∣∣
6 2

(
1−

r−1∏
w=0

(1− qw−n)

)2

+ 2rq−2n. (76)
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Proof. By inequalities (73) and (74), we have∫
K(n)

χ(tr(g1Dg2A)) dg1 dg2 =
r∏
i=1

n∏
j=1

Θ(aixj) + ε0

=
r∏
i=1

(∫
K(n)

χ(ai · tr(g1Dg2e11)) dg1 dg2 + εi︸ ︷︷ ︸
=
∏n

j=1 Θ(aixj)

)
+ ε0,

with the errors ε0, ε1, . . . , εr controlled by

|ε0| 6 2

(
1−

r−1∏
w=0

(1− qw−n)

)2

and |εi| 6 2q−2n, i = 1, . . . , r.

Using the elementary inequalities |∏n
j=1 Θ(aixj)| 6 1 and by a simple computation, we get∣∣∣∣∫

K(n)
χ(tr(g1Dg2A)) dg1 dg2 −

r∏
i=1

∫
K(n)

χ(ai · tr(g1Dg2e11)) dg1 dg2

∣∣∣∣
6 ε0 + ε1 + · · ·+ εr

6 2

(
1−

r−1∏
w=0

(1− qw−n)

)2

+ 2rq−2n. 2

7.2 GL(n,OF )-orbital integrals
Recall the definition (7) for the function θ : F → C.

Theorem 7.5. Let n, r ∈ N be such that r 6 n. Given two diagonal matrices D and A,

D = diag(x1, . . . , xn), A = diag(a1, . . . , ar, 0, . . . , 0),

where x1, . . . , xn, a1, . . . , ar ∈ F , we have∣∣∣∣∫
GL(n,OF )

χ(tr(gDgtA)) dg −
r∏
i=1

n∏
j=1

θ(aixj)

∣∣∣∣ 6 2 ·
(

1−
r−1∏
w=0

(1− qw−n)

)
. (77)

In particular, for any a ∈ F , we have∣∣∣∣∫
GL(n,OF )

χ(a · tr(gDgte11)) dg −
n∏
j=1

θ(a · xj)
∣∣∣∣ 6 2q−n. (78)

Proof. Fix n, r ∈ N and fix the two diagonal matrices D and A. Let T = T (n) be a random
matrix uniformly distributed on the finite set GL(n,Fq), and let V = V (n) be a random matrix
uniformly distributed on Mat(n,$OF ) and independent of T . By Proposition 2.3, we have∫

GL(n,OF )
χ(tr(gDgtA)) dg = E

[
χ

( r∑
i=1

n∑
j=1

aixj(Tij + Vij)
2

)]
.

By similar arguments as in the proof of Theorem 7.1, we may get the desired inequality (77).
The second inequality (78) follows immediately by taking e = 1 and a1 = a. 2
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Theorem 7.6 (Uniform asymptotic multiplicativity). Let n, r ∈ N be such that r 6 n. Given
two diagonal matrices D and A,

D = diag(x1, . . . , xn), A = diag(a1, . . . , ar, 0, . . . , 0),

where x1, . . . , xn, a1, . . . , ae ∈ F , we have∣∣∣∣∫
GL(n,OF )

χ(tr(gDgtA)) dg −
r∏
i=1

∫
GL(n,OF )

χ(ai tr(gDgte11)) dg

∣∣∣∣
6 2

(
1−

r−1∏
w=0

(1− qw−n)

)
+ 2rq−n.

Proof. The proof is similar to that of Theorem 7.4. 2

8. The completion of the classification of ergodic measures

8.1 The case of Perg(Mat(N, F ))
Theorem 8.1 (Multiplicativity theorem for orbital limit measures). Assume that µ is an
element in ORB∞(Mat(N, F )). Then for any r ∈ N and for any finite sequence x1, . . . , xr
in F , we have

µ̂(diag(x1, . . . , xr, 0, 0, . . .)) =
r∏
j=1

µ̂(xje11). (79)

In particular, we have

ORB∞(Mat(N, F )) = Perg(Mat(N, F )).

Proof. Let µ ∈ ORB∞(Mat(N, F )). Then by definition, there exists an increasing sequence
(nk)k∈N in N and a sequence (µnk

)k∈N of orbital measures with µnk
∈ ORBnk

(Mat(nk, F )),
such that

µnk
=⇒ µ as k →∞. (80)

Take any x1, . . . , xr ∈ F . By the inequality (76), we have

lim
k→∞

∣∣∣∣µ̂nk
(diag(x1, . . . , xr, 0, . . .))−

r∏
j=1

µ̂nk
(xje11)

∣∣∣∣ = 0. (81)

Combining (80) and (81), we get the desired identity (79).
By Vershik’s Theorem 6.3 and Proposition 6.8, to obtain (81), we only need to prove the

inclusion

ORB∞(Mat(N, F )) ⊂ Perg(Mat(N, F )). (82)

Recall the definition (36) of the affine map Ψ:

Ψ : Pinv(Mat(N, F )) → PS(∞)
inv (FN).

The identity (79) implies that for any µ ∈ ORB∞(Mat(N, F )), the marginal measure on the
diagonal matrices Ψ(µ) is a Bernoulli measure on FN. Consequently, by exactly the same
argument as in the proof of Theorem 3.5, we can prove the desired inclusion (82). 2
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An immediate consequence of Theorem 8.1 and the argument as in the proof of Theorem 8.1
is the following Ismagilov–Olshanski multiplicativity in our setting.

Corollary 8.2 (Ismagilov–Olshanski multiplicativity). An invariant probability measure µ ∈
Pinv(Mat(N, F )) is ergodic if and only if for any r ∈ N and for any finite sequence x1, . . . , xr in
F , we have

µ̂(diag(x1, . . . , xr, 0, 0, . . .)) =
r∏
j=1

µ̂(xje11).

Remark 8.3. The reader may compare our method with the methods used in, for instance,
Olshansk and Vershik [OV96]. The Olshanski–Vershik argument relies on the Ismagilov–
Olshanski multiplicativity: the multiplicativity of the characteristic function is equivalent to the
ergodicity of the corresponding probability measure. In different contexts, this multiplicativity
is established, e.g., by Ismagilov [Ism69, Ism70], Nessonov [Nes86], Voiculescu [Voi76],
Olshanski [Ol’78], Stratila and Voiculescu [SV82], Pickrell [Pic90], Vershik and Kerov [VK90],
Olshanski [Ol’90].

In our situation, the Ismagilov–Olshanski multiplicativity follows as a corollary.

Now we may concentrate on the classification of ORB∞(Mat(N, F )). For this purpose,
we need to study the weak convergence of probability measures on Mat(N, F ). The following
standard proposition implies that the weak convergence of probability measures on Mat(N, F )
is equivalent to the locally uniform convergence of corresponding characteristic functions. For
completeness, we include its proof in Appendix A.

Proposition 8.4. A sequence of invariant probability measures (µn)n∈N in Pinv(Mat(N, F ))
converges weakly to an invariant probability measure µ ∈ Pinv(Mat(N, F )) if and only if for any
r ∈ N and any `1, . . . , `r ∈ Z, we have

µ̂(diag($−`1 , . . . , $−`r , 0, . . .)) = lim
n→∞

µ̂n(diag($−`1 , . . . , $−`r , 0, . . .))

and the convergence is uniform on any subset of type

{(`1, . . . , `r) | `1, . . . , `r ∈ Z6C}.

Lemma 8.5. Let µ be a Borel probability measure on Mat(N, F ). The function x ∈ F 7→
µ̂(xe11) ∈ C is uniformly continuous. In particular, we have

lim
`→−∞

µ̂($−`e11) = 1.

Proof. Note that the function x 7→ µ̂(xe11) is the characteristic function of the marginal
probability measure (Cut∞1 )∗µ on F . The uniform continuity of this function then follows
immediately, see, e.g., Hewitt and Ross [HR70, Theorem 31.5, p. 212]. 2

Lemma 8.6. Assume that we are given a sequence of probability measures (µn)n∈N, such that
µn ∈ ORBn(Mat(n, F )). A necessary and sufficient condition for this sequence to be tight is the
following.

(C1) There exists γ ∈ Z, such that the supports supp(µn) are all contained in the following
compact subset of Mat(N, F ):

{X ∈ Mat(N, F ) | |Xij | 6 qγ , ∀i, j ∈ N}.
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Proof. The above condition (C1) is clearly sufficient for the sequence to be tight. Now suppose
that the sequence (µn)n∈N is tight. By assumption, suppose that µn is the GL(n,OF ) × GL(n,
OF )-orbital measure supported on an orbit generated by Xn ∈ Mat(n,OF ). By Lemma 2.4, we
may assume that

Xn = diag(x
(n)
1 , . . . , x(n)

n ), |x(n)
1 | > · · · > |x(n)

n |.
Assume by contradiction that the condition (C1) is not satisfied. Then there exists a subsequence
(nk)k∈N of positive integers, such that

lim
k→∞

|x(nk)
1 | =∞. (83)

Passing to a subsequence if necessary, we may assume that there exists a probability measure µ
on Mat(N, F ), such that µnk

=⇒ µ. By Lemma 8.5, for any a ∈ F , we have

lim
|a|→0

lim
k→∞

µ̂nk
(ae11) = lim

|a|→0
µ̂(ae11) = 1.

That is,

lim
|a|→0

lim
k→∞

∫
K(nk)

χ(a · tr(g1Xnk
g2e11)) dg1 dg2 = 1. (84)

By (74), the relation (84) implies that

lim
|a|→0

lim
k→∞

nk∏
j=1

Θ(a · x(nk)
j ) = 1. (85)

Since |Θ(x)| 6 1, for any a ∈ F×, we have

lim
k→∞

∣∣∣∣ nk∏
j=1

Θ(a · x(nk)
j )

∣∣∣∣ 6 lim
k→∞

|Θ(a · x(nk)
1 )| = 0.

This contradicts to (85). Thus the condition (C1) is necessary for the sequence (µn)n∈N to be
tight. 2

Recall that

∆ = {k = (kj)
∞
j=1 | kj ∈ Z ∪ {−∞}; k1 > k2 > · · · },

as a subset of (Z ∪ {−∞})N, is assumed to be equipped with the subspace topology of Tychonoff’s
product topology on (Z ∪ {−∞})N.

Lemma 8.7. Let ` ∈ Z. Then

k 7→ f(k) :=
∞∑
j=1

(kj + `)1{kj+`>1}

defines a continuous map from ∆ to Z ∪ {+∞}.

Proof. It suffices to prove Lemma 8.7 for ` = 0. We want to prove that k 7→ f(k) is continuous

at some point k(0) = (k
(0)
j )j∈N ∈ ∆.

Case 1: f(k(0)) = +∞. This means that k
(0)
j > 1 for any j ∈ N. Consequently, for any A ∈ R, we

may take n large enough so that
∑n

j=1 k
(0)
j > A. Then for any k ∈ ∆ sufficiently close to k(0),

we have kj = k
(0)
j for j = 1, . . . , n. For such k, we have f(k) >

∑n
j=1 kj > A.
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Case 2: f(k(0)) < +∞. Then choose n so that

k
(0)
1 > · · · > k

(0)
n−1 > 0 > k(0)

n > · · · .

For any k ∈ ∆ sufficiently close to k(0), we have kj = k
(0)
j for j = 1, . . . , n − 1 and kn 6 0. For

such k, we have f(k) =
∑n−1

j=1 kj = f(k(0)).
The proof of Lemma 8.7 is completed. 2

Theorem 8.8. The map k 7→ µk induces a bijection between ∆ and Perg(Mat(N, F )).

Proof. The injectivity of the map k 7→ µk from ∆ to Perg(Mat(N, F )) has already been proved
in Proposition 5.1. We only need to prove that the map is also surjective.

Let µ ∈ Perg(Mat(N, F )). By Theorem 8.1, µ ∈ ORB∞(Mat(N, F )). Consequently, there
exists a sequence (nl)l∈N of positive integers and a sequence (µnl

)l∈N of orbital measures such
that µnl

∈ ORBnl
(Mat(nl, F )) and

µnl
=⇒ µ as l →∞. (86)

By Lemma 2.4, we may assume that µnl
is the K(nl)-orbital measure supported on the orbit

K(nl) ·Xnl
with

Xnl
= diag($−k

(nl)
1 , . . . , $−k

(nl)
nl ), k

(nl)
1 > · · · > k(nl)

nl
> −∞.

By Lemma 8.6, the convergence (86) implies that supl∈N k
(nl)
1 <∞. Consequently, passing to a

subsequence of (nl)l∈N if necessary, we may assume that for any j ∈ N, there exists kj ∈ Z∪ {−∞}
such that

lim
l→∞

k
(nl)
j = kj . (87)

The convergence (86) and the relation (74) now imply that, for any ` ∈ Z, we have

µ̂($−`e11) = lim
l→∞

∞∏
j=1

Θ($−`$−k
(nl)

j )

= lim
l→∞

exp

(
−log q ·

∞∑
j=1

(k
(nl)
j + `)1

{k(nl)

j +`>1}

)
.

By Lemma 8.7 and (87), we get

µ̂($−`e11) = exp

(
−log q ·

∞∑
j=1

(kj + `)1{kj+`>1}

)
. (88)

Let us define k := (kj)j∈N ∈ ∆. Comparing (99) with the formula (40) in Proposition 4.1, we get

µ̂($−`e11) = µ̂k($−`e11) for all ` ∈ Z. (89)

But by the multiplicativity of µ̂ established in Theorem 8.9 and the multiplicativity of µ̂k
established in Proposition 4.1, the above identity (89) implies µ = µk.

The proof of Theorem 8.8 is completed. 2
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8.2 The case of Perg(Sym(N, F ))
Theorem 8.9 (Multiplicativity theorem for orbital limit measures). Let ν be an element in
ORB∞(Sym(N, F )). Then for any r ∈ N and for any finite sequence (x1, . . . , xr) in F , we
have

ν̂(diag(x1, . . . , xr, 0, 0, . . .)) =
r∏
j=1

ν̂(xie11).

In particular, we have

ORB∞(Sym(N, F )) = Perg(Sym(N, F )).

Proof. The proof is similar to that of Theorem 8.1. 2

Corollary 8.10 (Ismagilov–Olshanski multiplicativity). An invariant probability measure µ ∈
Pinv(Sym(N, F )) is ergodic if and only if for any r ∈ N and for any finite sequence x1, . . . , xr in
F , we have

ν̂(diag(x1, . . . , xr, 0, 0, . . .)) =
r∏
j=1

ν̂(xje11).

Lemma 8.11. Let ν be a Borel probability measure on Sym(N, F ). Then we have

lim
|x|→0

ν̂(xe11) = 1.

Proof. The proof is similar to that of Lemma 8.5. 2

Lemma 8.12. Assume that we are given a sequence of probability measures (νn)n∈N, such that
νn ∈ ORBn(Sym(N, F )). The necessary and sufficient condition for this sequence to be tight is
the following.

(C2) There exists γ ∈ Z, such that the supports supp(νn) are all contained in the following
compact subset of Sym(N, F ):

{X ∈ Sym(N, F ) | |Xij | 6 qγ ,∀i, j ∈ N}.

Proof. The above condition (C2) is clearly sufficient for the sequence to be tight. Now suppose
that the sequence is tight, we shall prove that (C2) is satisfied. By assumption, suppose that
νn is the GL(n,OF )-orbital measure supported on the orbit GL(n,OF ) ·Xn. By Lemma 2.7, we
may assume that

Xn = diag(x
(n)
1 , . . . , x(n)

n ), |x(n)
1 | > · · · > |x(n)

n |.
Now we argue by contradiction. If the condition is not satisfied, then there exists a subsequence
(nk)k∈N of positive integers such that

lim
k→∞

|x(nk)
1 | =∞. (90)

Passing to a subsequence if necessary, we may assume that there exists a probability measure ν
on Sym(N, F ), such that νnk

=⇒ ν. By Lemma 8.11, for any a ∈ F , we have

lim
|a|→0

lim
k→∞

ν̂nk
(ae11) = lim

|a|→0
ν̂(ae11) = 1.
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That is,

lim
|a|→0

lim
k→∞

∫
GL(nk,OF )

χ(a · tr(gXnk
gte11)) dg = 1. (91)

By (78) in Theorem 7.5, the relation (91) implies that

lim
|a|→0

lim
k→∞

nk∏
j=1

θ(a · x(nk)
j ) = 1. (92)

Using the elementary inequality |θ(x)| 6 1 and (90) and Proposition 4.5, for any a ∈ F×, we
have

lim
k→∞

∣∣∣∣ nk∏
j=1

θ(a · x(nk)
j )

∣∣∣∣ 6 lim
k→∞

|θ(a · x(nk)
1 )| = 0.

This contradicts to (92). Thus the condition (C2) is necessary for the sequence (νn)n∈N to be
tight. 2

8.2.1 Classification of Perg(Sym(N, F )). Recall that by Lemma 4.7, for any a ∈ F and any
k = (kj)j∈N ∈ ∆, we may define an infinite product

∏∞
j=1 θ(a ·$−kj ).

Lemma 8.13. Let a ∈ F be a fixed element. Then

k = (kj)j∈N 7→
∞∏
j=1

θ(a ·$−kj )

defines a continuous map from ∆ to C.

Proof. If a = 0, the assertion is obvious. Now assume that |a| = qγ with γ ∈ Z. Suppose that

k(n) = (k
(n)
j )j∈N converges to k = (kj)j∈N. That is, for any j ∈ N ,

lim
n→∞

k
(n)
j = kj . (93)

We need to show that

lim
n→∞

∞∏
j=1

θ(a ·$−k
(n)
j ) =

∞∏
j=1

θ(a ·$−kj ). (94)

First write k := limj→∞ kj ∈ Z ∪ {−∞}.
Case 1: k + γ 6 0.

In this case, there exists j0 ∈ N, such that kj0 + γ 6 0. Since Z ∪ {−∞} is a discrete space,
by (93), there exists n0 ∈ N, such that for any n > n0,

sup
j>j0

(k
(n)
j + γ) = k

(n)
j0

+ γ 6 0. (95)

Hence by property (i) in Proposition 4.5, for any j > j0 and n > n0, we have

θ(a ·$−k
(n)
j ) = θ(a ·$−kj ) = 1.

Consequently, we have

lim
n→∞

∞∏
j=1

θ(a ·$−k
(n)
j ) = lim

n→∞

j0−1∏
j=1

θ(a ·$−k
(n)
j ) =

j0−1∏
j=1

θ(a ·$−kj ) =
∞∏
j=1

θ(a ·$−kj ).
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Case 2: k + γ > 0.
In this case, by the previous argument, we have

∞∏
j=1

θ(a ·$−kj ) = 0.

By (93), for any N ∈ N, there exists n0 ∈ N, such that for any n > n0 and any 1 6 j 6 j0 +N ,

we have k
(n)
j = kj . This implies

lim sup
n→∞

∣∣∣∣ ∞∏
j=1

θ(a ·$−k
(n)
j )

∣∣∣∣ 6 lim sup
N→∞

(
lim sup
n→∞

∣∣∣∣j0+N∏
j=1

θ(a ·$−k
(n)
j )

∣∣∣∣)

6 lim sup
N→∞

∣∣∣∣j0+N∏
j=1

θ(a ·$−kj )
∣∣∣∣ =

∣∣∣∣ ∞∏
j=1

θ(a ·$−kj )
∣∣∣∣ = 0.

Hence the desired relation (94) holds. 2

Theorem 8.14. Assume that F is non-dyadic. Then the map h 7→ νh induces a bijection between
Ω and Perg(Sym(N, F )).

Proof. The injectivity of the map h 7→ νh from Ω to Perg(Sym(N, F )) has already been proved
in Proposition 5.3. We only need to prove that the map is also surjective.

Assume that ν ∈ Perg(Sym(N, F )). Since

Perg(Sym(N, F )) = ORB∞(Sym(N, F )),

there exists a sequence (νnl
)l∈N of orbital measures satisfying νnl

∈ ORBnl
(Sym(nl, F )) such

that

νnl
=⇒ ν as l →∞. (96)

By Lemma 2.7, we may assume that νnl
is the GL(nl,OF )-orbital measure supported on the

orbit GL(nl,OF ) ·Xnl
with

Xnl
= diag(x

(nl)
1 , . . . , x(nl)

nl
), x

(nl)
1 , . . . , x(nl)

nl
∈ T ,

where T is given in (26). If for any multi-set1 B with elements in F , we denote by B∗ the
multi-set of non-zero elements of B. Then there exist

k(nl) = (k
(nl)
j )j∈N, k′(nl) = (k

′(nl)
j )j∈N ∈ ∆

such that the following two multi-sets coincide:

{x(nl)
1 , . . . , x(nl)

nl
}∗ = ({$−k

(nl)

j | j ∈ N} ∪ {ε$−k
′(nl)

j | j ∈ N})∗.

By Lemma 8.12, the weak convergence (96) implies that

sup
l∈N

k
(nl)
1 <∞ and sup

l∈N
k
′(nl)
1 <∞.

1 By multi-set, we mean that the multiplicities of elements are respected. In particular, if B is a multi-set, then
B ∪B will be a multi-set, such that the multiplicities for each element is multiplied by 2.
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Consequently, passing to a subsequence if necessary, we may assume that for any j ∈ N, there
exist kj , k

′
j ∈ Z ∪ {−∞} and we have

lim
l→∞

k
(nl)
j = kj , lim

l→∞
k
′(nl)
j = k′j . (97)

Now by the weak convergence (96) and the relation (78), for any x ∈ F , we have

ν̂(xe11) = lim
n→∞

∞∏
j=1

θ(x$−k
(n)
j )

∞∏
j=1

θ(xε$−k
′(n)
j )

= lim
l→∞

∞∏
j=1

θ(x$−k
(nl)

j )
∞∏
j=1

θ(xε$−k
′(nl)

j ).

By the continuity of the map in Lemma 8.13 and (97), we get

ν̂(xe11) =
∞∏
j=1

θ(x$−kj )
∞∏
j=1

θ(xε$−k
′
j ). (98)

Now by using the identity θ(x$−kj )2 = θ(xε$−k
′
j )2 for any x ∈ F and j ∈ N and by moving

certain elements (in Z and with multiplicities larger than 1) from (k′j)j∈N to the sequence (kj)j∈N,

we get a new non-increasing sequence (k̃j)j∈N and a new strictly decreasing sequence (k̃′j)j∈N of
finite or infinite lengths in Z ∪ {−∞} such that the identity (98) is transformed to

ν̂(xe11) =
∞∏
j=1

θ(x$−k̃j )
∞∏
j=1

θ(xε$−k̃
′
j ). (99)

Assume first that limj→∞ k̃j = −∞. Then

h = (−∞; (k̃j)j∈N, (k̃
′
j)j∈N)

is an element in Ω. Comparing (99) with the formula in Proposition 4.4, we get

ν̂(xe11) = ν̂h(xe11) for all x ∈ F.
But by the multiplicativity of ν̂ established in Theorem 8.9 and the multiplicativity of ν̂h
established in Proposition 4.4, the above identity implies ν = νh.

Assume now that limj→∞ k̃j = k ∈ Z. Then using the relation (51), we have

∞∏
j=1

θ(x$−k̃j ) = 1OF
(x$−k)

∏
j∈{n|k̃n>k}

θ(x$−k̃j ). (100)

Moreover, we also have

1OF
(x$−k)

∞∏
j=1

θ(xε$−k̃
′
j ) = 1OF

(x$−k)
∏

j∈{n|k̃′n>k}

θ(xε$−k̃
′
j ). (101)

It suffices to check for x ∈ F such that |x$−k| 6 1. For k̃′j such that k̃′j 6 k (if they exist), we

have |xε$−k̃′j | = |x$−kε$k−k̃′j | 6 1. Hence θ(xε$−k̃
′
j ) = 1 by property (i) in Proposition 4.5.

The identity (101) is proved. Write

k̂j :=

{
k̃j if k̃j > k,

−∞ if k̃j = k
and k̂′j :=

{
k̃′j if k̃′j > k,

−∞ if k̃′j 6 k.
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Now, h = (k; (k̂j)j∈N, (k̂
′
j)j∈N), being an element in {k} × ∆[k] × ∆][k], is an element of Ω.

Combining (99)–(101), we obtain

ν̂(xe11) =
∞∏
j=1

θ(x$−k̃j )
∞∏
j=1

θ(xε$−k̃
′
j )

= 1OF
(x$−k)

[ ∏
j∈{n|k̃n>k}

θ(x$−k̃j )

][ ∏
j∈{n|k̃′n>k}

θ(xε$−k̃
′
j )

]
.

In this case, we also have

ν̂(xe11) = ν̂h(xe11) for all x ∈ F.
By the same argument as above in using the multiplicativities of ν̂ and ν̂h, we get ν = νh.

The proof of Theorem 8.14 is completed. 2

9. Properties of the parametrization

9.1 The parametrizations are homeomorphisms
Proof of Theorem 1.3. By Theorem 8.8, we only need to prove that the map k 7→ µk from ∆ to
Perg(Mat(N, F )) and its inverse are both continuous. Note that since ∆ and Perg(Mat(N, F )) are
metrizable, their topologies are determined by convergence of sequences.

If a sequence (k(n))n∈N converges in ∆ to a point k(0) ∈ ∆, then

sup
n,j

k
(n)
j <∞. (102)

Consequently, the family of the measures µk(n) , all being supported on a common compact subset
of Mat(N, F ), is tight. Thus to prove that µk(n) converges weakly to µk(0) , it suffices to prove
that the latter one is the unique accumulation point of the former family of measures. Now let
µ be an accumulation point of the sequence (µk(n))n∈N. By definition, there exists a subsequence
(nj)j∈N such that

µ = lim
j→∞

µk(nj) .

Since k(n) −→ k(0), by explicit formula (40) in Proposition 4.1 and Lemma 8.7, the characteristic
function of µ is given by

µ̂(diag($−`1 , . . . , $−`r , 0, 0, . . .))

= lim
j→∞

µ̂k(nj)(diag($−`1 , . . . , $−`r , 0, 0, . . .))

= µ̂k(0)(diag($−`1 , . . . , $−`r , 0, 0, . . .)), (`j ∈ Z).

This implies that we have µ = µk(0) .
Conversely, if µk(n) converges to µk(0) . By using the same argument as in the proof of

Lemma 8.6, we can still get the relation (102). Again by compactness argument, it suffices to show
that k(0) is the unique accumulation point for the sequence k(n). But if k is an accumulation
point of k(n), then µk is an accumulation point of µk(n) , whence µk = µk(0) . Combining with
Proposition 5.1 we have k = k(0).

The proof of Theorem 1.3 is completed. 2

Proof of Theorem 1.8. By Theorem 8.14, we only need to prove that the map h 7→ νh from Ω
to Perg(Sym(N, F )) and its inverse are both continuous. The proof of this part is similar to that
of Theorem 1.3 as above. 2
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9.2 The parametrizations are semi-group homomorphisms
On ∆ is equipped with an Abelian semi-group structure. Given any two points k = (kn)n∈N and
k′ = (k′n)n∈N in ∆, we define k⊕∆ k′ as follows.

(i) If inf kn = inf k′n =−∞, then we define k⊕∆k′ ∈∆ to be the non-increasing rearrangement

of the sequence (k̃n)n∈N, where

k̃2n−1 := kn and k̃2n := k′n (n = 1, 2, . . .).

(ii) If k = max{inf kn, inf k′n} ∈ Z, then we define k ⊕ k′ ∈ ∆ to be the non-increasing
rearrangement of the sequence (k∗n)n∈N, that is any sequence exhausting the integers larger than
k and from k and k′, repeated with corresponding multiplicity. For instance, if k = (6, 2, 2,−3,
−3,−3,−3, . . .),k′ = (4, 3, 0,−1,−∞, · · ·), then we define

k⊕∆ k′ = (6, 4, 3, 2, 2, 0,−1,−3,−3,−3,−3, . . .).

Clearly, we have the following.

Proposition 9.1. The map k 7→ µk defines a semi-group isomorphism between (∆,⊕∆) and
(Perg(Mat(N, F )), ∗). More precisely, we have

µk ∗ µk′ = µk⊕∆k′ .

An Abelian semigroup structure ⊕Ω on Ω such that h → νh defines semi-groups isomorphism
between (Ω,⊕Ω) and (Perg(Sym(N, F )), ∗) is introduced in the same way.

10. Proof of Proposition 4.5

In this section, we always assume that F is non-dyadic. We will use the following change of
variables in the integration over a local field. To introduce the formula for change of variables,
we need the notion of F -analytic functions. A function ϕ : U → V , with U, V open subsets of F ,
is called F -analytic, if in some neighbourhood of any point in U it is given by a convergent power
series, it is called F -bi-analytic, if ϕ is invertible such that both ϕ : U → V and ϕ−1 : V → U
are F -analytic.

Theorem 10.1 (Change of variables, see Schoissengeier [Sch92]). Let ϕ : U → V be a F -bi-
analytic function. Then for any integrable function f : U → C, we have∫

U
f(ϕ(x))|ϕ′(x)| dx =

∫
V
f(y) dy,

where ϕ′ is the formal derivative of ϕ.

We will also need the following classical result from number theory concerning Gauss sums
for finite field Fq. For the reader’s convenience, we include its standard proof in Appendix A.

Denote by λ2 the unique multiplicative character for F×q of order 2, that is,

λ2(a) =

{
1 if a ∈ (F×q )2,

−1 if a /∈ (F×q )2.

By convention, we extend the definition of λ2 to the whole finite field Fq by setting λ2(0) = 0.

Denote the set of additive characters of Fq by F̂q. Given any τ ∈ F̂q\{1} (that is, τ is
a non-trivial character of Fq) and any a ∈ Fq, denote by τa the character of Fq defined by
τa(x) = τ(a · x). It is a standard fact that the map a 7→ τa is an group isomorphism between Fq

and F̂q.

2524

https://doi.org/10.1112/S0010437X17007412 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007412


Ergodic measures on infinite matrices

Lemma 10.2 (Gauss sums). Fix an element τ ∈ F̂q\{1}. Then for any a ∈ F×q , we have∑
x∈Fq

τa(x
2) = λ2(a) ·

∑
x∈Fq

τ(x2). (103)

Moreover, { ∑
x∈Fq

τa(x
2)

∣∣∣∣ a ∈ F×q

}
= {%q

√
q,−%q

√
q}.

Denote by O∗F the set of non-zero elements in OF and denote by (O∗F )2 the square elements
in O∗F , that is,

(O∗F )2 := {a ∈ O∗F : there exists b ∈ F such that a = b2}.
Denote the square function x 7→ x2 by ψ(x) = x2.

Proposition 10.3. There exists a partition

O∗F = U1 t U2,

such that the square function ψ(x) = x2 induces two F -bi-analytic functions:

ψ : Ui → (O∗F )2, i = 1, 2.

Recall that by Lemma 2.5, the group (O×F )2 is a disjoint union of (q − 1)/2 balls of radius
q−1:

(O×F )2 =
⊔

a∈(C×q )2

(a+$OF ).

Lemma 10.4. Any element a ∈ (O×F )2 has two square roots α1, α2 ∈ O×F such that (α1 +$OF )∩
(α2 +$OF ) = ∅ and we have

ψ(αi +$OF ) ⊂ a+$OF , i = 1, 2. (104)

Moreover, we have two bijective maps:

αi +$OF
x 7→ψ(x)=x2

−−−−−−−→ a+$OF , i = 1, 2. (105)

Proof. For any a ∈ (O×F )2, there exist exactly two elements α1, α2 ∈ O×F , such that

α1 = −α2 and α2
1 = α2

2 = a.

Hence |α1 − α2| = |2α| = |α| = 1 and

(α1 +$OF ) ∩ (α2 +$OF ) = ∅.

For any z ∈ OF and i = 1, 2, we have

(αi +$z)2 = a+$(2zαi +$z2) ∈ a+$OF .

This proves (104).
By Hensel’s lemma (24), for i = 1, 2, if a′ ∈ a + $OF , then there exists α′i ∈ αi + $OF

such that (α′i)
2 = a′. Hence the maps (105) for i = 1, 2 are both surjective. Now fix i ∈ {1, 2}.
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If δ1, δ2 ∈ αi+$OF are such that δ2
1 = δ2

2 , then either δ1 = δ2 or δ1 = −δ2. However, if δ1 = −δ2,
then

|δ1 − δ2| = |2δ1| = |2||δ1| = 1.

This contradicts to the following estimate:

|δ1 − δ2| = |(δ1 − αi)− (δ2 − αi)| 6 max(|δ1 − αi|, |δ2 − αi|) 6 q−1.

Hence we must have β1 = β2. This proves the injectivity of the map (105). 2

Proof of Proposition 10.3. Clearly, we have

O∗F =

∞⊔
k=0

$kO×F and (O∗F )2 =

∞⊔
k=0

$2k(O×F )2.

For any k = 0, 1, . . ., the square map ϕ maps $kO×F surjectively into $2k(O×F )2. For proving
Proposition 10.3, it suffices to prove that for any k = 0, 1, . . ., the set $kO×F can be divided
into two parts, such that the square map ψ maps each part surjectively into $2k(O×F )2 and the
restriction of ψ on each part is F -bi-analytic.

We only need to prove this assertion for k = 0, since the other k > 1 can be reduced to the case
k = 0 by a suitable dilation. By Lemma 10.4, O×F can be divided into two parts O×F = V1 t V2,
such that the two maps ψ : Vi → (O×F )2, i = 1, 2 are both bijective. The analyticity of the inverse
maps (ψ|Vi)−1 follows from the Inverse Mapping Theorem in non-Archimedean setting, see, e.g.,
Abhyankar [Abh64, p. 87]. 2

Corollary 10.5. For any integrable function f : OF → C, we have∫
OF

f(z2)|z| dz = 2

∫
(O∗F )2

f(y) dy. (106)

Proof. Note that since F is non-dyadic, 2 ∈ O×F . Using the notation in Proposition 10.3 and
Theorem 10.1∫

OF

f(z2)|z| dz =

∫
O∗F

f(ψ(z))|ψ′(z)| dz =
2∑
i=1

∫
Ui

f(ψ(z))|ψ′(z)| dz = 2

∫
(O∗F )2

f(y) dy. 2

Proof of Proposition 4.5. Property (i) in Proposition 4.5 is trivial. We proceed with the proof of
properties (ii) and (iii).

For any x ∈ F ∗, define

f(z) =
1

|z|1/2χ(xz).

Then by substituting f into the identity (106), we get

θ(x) =

∫
OF

χ(xz2) dz =

∫
OF

f(z2)|2z| dz

= 2

∫
(O∗F )2

f(y) dy = 2

∫
(O∗F )2

1

|y|1/2χ(xy) dy. (107)

Define

g(y) :=
2

|y|1/2 1(O∗F )2(y). (108)
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It is a standard fact that g ∈ L1(F, dx). The identity (107) can now be rewritten as

θ(x) = ĝ(x).

Since we have

(O∗F )2 =
∞⊔
k=0

$2k(O×F )2 =
∞⊔
k=0

⊔
a∈(C×q )2

($2ka+$2k+1OF ),

the function g defined by formula (108) can be written in the form

g(y) = 2

∞∑
k=0

qk
∑

a∈(C×q )2

1$2ka+$2k+1OF
(y).

Consequently, we have

θ(x) = ĝ(x) = 2
∞∑
k=0

q−k−11$−2k−1OF
(x)

∑
a∈(C×q )2

χ($2kax). (109)

Property (ii) in Proposition 4.5. If ordF (x) = −2k0 with k0 > 1, then x = $−2k0u with u ∈ O×F .
Substituting x = $−2k0u into (109) and using the assumption (28) on χ, we obtain

θ(x) = 2
∞∑

k=k0

q−k−1
∑

a∈(C×q )2

χ(a$2k−2k0u)

= 2
∞∑

k=k0

q−k−1 · q − 1

2
= q−k0 = |x|−1/2.

We thus complete the proof of property (ii) in Proposition 4.5.

Property (iii) in Proposition 4.5. If ordF (x) = −2k0 − 1 with k0 > 0, then x = $−2k0−1u with
u ∈ O×F . By substituting x = $−2k0−1u into (109) and using the fact that a$2k−2k0−1u ∈ OF
for any a ∈ (C×q )2, k > k0 + 1 and the assumption (28) on the choice of χ, we obtain

θ(x) = 2
∞∑

k=k0

q−k−1
∑

a∈(C×q )2

χ(a$2k−2k0−1u)

= 2q−k0−1
∑

a∈(C×q )2

χ(a$−1u) + 2
∞∑

k=k0+1

q−k−1 · q − 1

2

= q−k0−1

(
2
∑

a∈(C×q )2

χ(a$−1u) + 1

)
. (110)

Now define a function z 7→ χ(z$−1u) for z ∈ OF . Since this function takes same value on every
coset of $OF in OF , we define a non-trivial additive character τ on Fq = OF /$OF by the
following formula:

τ(z +$OF ) := χ(z$−1u).
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Thus we have

θ(x) = q−k0−1

(
2
∑

a∈(C×q )2

τ(a+$OF ) + 1

)
= q−k0−1

∑
z+$OF∈Fq

τ(z2 +$OF ). (111)

Indeed, the second equality in (111) follows from the fact that for every element in a ∈ (C×q )2,
there exist exactly two distinct square roots: z +$OF and −z +$OF , that is,

(z +$OF )2 ≡ (−z +$OF )2 ≡ z2 +$OF ≡ a+$OF (mod $OF ).

Now by applying Theorem 10.2, we have

|θ(x)| = q−k0−(1/2) = |x|−1/2.

Now assume that v ∈ O×F \(O×F )2. Then by changing x to vx (equivalently, changing u to v · u)
in (110) and applying (103), we obtain

θ(vx) = q−k0−1

(
2
∑

a∈(C×q )2

χ(a$−1vu) + 1

)

= q−k0−1

(
2
∑

a∈(C×q )2

τ(v · a+$OF ) + 1

)
= q−k0−1

∑
z+$OF∈Fq

τ(v · z2 +$OF ) = −θ(x).

We thus complete the proof of property (iii) in Proposition 4.5. 2
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Appendix A

A.1 Proof of Proposition 8.4
Lemma A.1. Let m ∈ N be a positive integer. Suppose that (σn)n∈N is a sequence of probability
measures on Fm, such that

lim
n→∞

σ̂n(x) = φ(x) for all x ∈ Fm.

Assume that the function φ is continuous at the origin 0 ∈ Fm. Then there exists a probability
measure σ on Fm, such that σ̂(x) = φ(x) and

σn =⇒ σ as n →∞. (A.1)
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Proof. First we show that under the hypothesis of Lemma A.1, the sequence of probability
measures (σn)n∈N is tight. By using Fubini’s theorem and Lemma 3.3, for any k ∈ N, we have

−
∫

($kOF )m
(1− σ̂n(x)) dvol(x)

= −
∫

($kOF )m
dvol(x)

∫
Fm

(1− χ(x · z)) dσn(z)

=

∫
Fm

dσn(z) −
∫

($kOF )m
(1− χ(x · z)) dvol(x)

=

∫
Fm

(1− 1($−kOF )m(z)) dσn(z)

= σn({z ∈ Fm : ‖z‖ > qk}).

By bounded convergence theorem, we have

−
∫

($kOF )m
(1− σ̂n(x)) dvol(x)

n→∞−−−→ −
∫

($kOF )m
(1− φ(x)) dvol(x).

By assumption, φ is continuous at 0. Since φ(0) = 1, for any ε > 0 there exists k large enough
such that

−
∫

($kOF )m
(1− φ(x)) dvol(x) 6 ε/2.

Fix such an integer k ∈ N, and choose n0 ∈ N such that for any n > n0, we have

−
∫

($kOF )m
(1− σ̂n(x)) dvol(x) 6 ε.

That is, for any n > n0, we have σn({z ∈ Fm : ‖z‖ > qk}) 6 ε. Note that we may choose k′ large
enough such that

sup
16n6n0

σn({z ∈ Fm : ‖z‖ > qk
′}) 6 ε.

Hence by taking K = max(k, k′), we get

sup
n∈N

σn({z ∈ Fm : ‖z‖ > qK}) 6 ε.

This proves the tightness of the sequence (σn)n∈N.
Now, for proving (A.1), we only need to show that any weakly convergent subsequence

(σnk
)k∈N has the same limit point σ. Indeed, assume that σnk

=⇒ σ. Then

σ̂(x) = lim
k→∞

σ̂nk
(x) = φ(x),

which does not depend on the choice of the subsequence. We now complete the proof by using
the fact that the measure is uniquely determined by its characteristic function. 2

Lemma A.2. Let m ∈ N be a positive integer. Suppose that (σn)n∈N and σ are probability
measures on Fm. Then σn =⇒ σ as n →∞ if and only if σ̂n(x) converges uniformly to σ̂(x) for
x in any compact subset of Fm.
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Proof. Assume first that σ̂n(x) converges uniformly to σ̂(x) on any compact subset of Fm. Then,
by Lemma A.1, σn =⇒ σ as n →∞.

Conversely, assume that σn =⇒ σ as n → ∞. For any x ∈ Fm, the function z 7→ χ(x · z)
is bounded and continuous, hence σ̂n(x) converges to σ̂(x). By the Arzelà–Ascoli theorem, for
proving the uniform convergence of σ̂n on any compact subset, it suffices to prove the sequence of
characteristic functions σ̂n is equicontinuous on any compact subset of Fm. In fact, let us prove
that these characteristic functions are equicontinuous on the whole space Fm. For any ε > 0,
since the sequence (σn)n∈N of probability measures is tight, there exists k ∈ N large enough, such
that

sup
n∈N

σn({z ∈ Fm : ‖z‖ > qk}) 6 ε/2.

Now if y ∈ Fm is such that ‖y‖ 6 q−k, then for any x ∈ Fm, we have

|σ̂n(x+ y)− σ̂n(x)| 6
∫
Fm

|χ(y · z)− 1| dσn(z)

6 2σn({z ∈ Fm : ‖z‖ > qk}) 6 ε.

This proves the equicontinuity of the sequence (σ̂n)n∈N and completes the proof of Lemma A.2.
2

Now we may prove Proposition 8.4 by using the following two points.

– Characteristic functions µ̂n and µ̂ are all invariant under the action of the group K(∞) =
GL(∞,OF )×GL(∞,OF ).

– Checking the convergence µn =⇒ µ is equivalent to checking, for all r ∈ N, the convergence
(Cut∞r )∗µn =⇒ (Cut∞r )∗µ.

A.2 Proof of Lemma 10.2
Let a ∈ F×q . First we claim that ∑

x∈Fq

τa(x
2) =

∑
x∈Fq

λ2(x)τa(x). (A.2)

Indeed, ∑
x∈Fq

λ2(x)τa(x) =
∑
x∈Fq

(∑
y∈Fq

1{y2=x}(y)− 1

)
τa(x)

=
∑
y∈Fq

∑
x∈Fq

1{y2=x}(y)τa(x)−
∑
y∈Fq

τa(x) =
∑
y∈Fq

τa(y
2).

Consequently, by using the fact that λ2 is a multiplicative character of F×q , we have∑
x∈Fq

τa(x
2) =

∑
x∈Fq

λ2(x)τ(ax) =
∑
x∈Fq

λ2(a−1y)τ(y)

= λ2(a−1)
∑
x∈Fq

λ2(y)τ(y) = λ2(a) ·
∑
x∈Fq

τ(x2).

Hence the identity (103) is proved.
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Let us now show that |∑x∈Fq
τa(x

2)| = √q. Indeed, by (A.2), we have∣∣∣∣∑
x∈Fq

τa(x
2)

∣∣∣∣2 =
∑

x,y∈Fq

λ2(x)λ2(y)τa(x)τa(y)

=
∑
x∈F×q

∑
y∈Fq

λ2(x)λ2(y)τa(y − x).

For fixed x ∈ F×q , by change of variables y = xz, we get∣∣∣∣∑
x∈Fq

τa(x
2)

∣∣∣∣2 =
∑
x∈F×q

∑
z∈Fq

λ2(x)λ2(xz)τa(xz − x)

=
∑
z∈Fq

∑
x∈F×q

λ2(z)τa(xz − x)

= (q − 1) +
∑

z∈Fq\{1}

λ2(z)
∑
x∈F×q

τa(x(z − 1))

= (q − 1)−
∑

z∈Fq\{1}

λ2(z) = q.

For concluding the proof, we need to show that∑
x∈Fq

τ(x2) ∈ %q · R. (A.3)

However, if −1 /∈ (F×q )2, then λ2(a) = −1 and we have∑
x∈Fq

τ(x2) =
∑
x∈Fq

τ(−x2) =
∑
x∈Fq

τ−1(x2) = −
∑
x∈Fq

τ(x2).

It follows that
∑

x∈Fq
τ(x2) ∈ iR. By similar argument, we can show that if −1 ∈ (F×q )2, then∑

x∈Fq
τ(x2) ∈ R. By definition of %q and the cyclic structure of the group F×q , we get the desired

relation (A.3).
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