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An Automorphic Theta Module for
Quaternionic Exceptional Groups
Wee Teck Gan

Abstract. We construct an automorphic realization of the global minimal representation of quaternionic ex-
ceptional groups, using the theory of Eisenstein series, and use this for the study of theta correspondences.

1 Introduction

Let F = Q be the rational number field, and let D be either a definite quaternion algebra
H, or a definite octonion algebra O over F. To such a D, there corresponds an exceptional
group H of relative rank 4, and type E7 or E8 accordingly. In H, there is a reductive dual
pair G × G ′. Here G is a split group of type G2, and G ′ is the automorphism group of the
Jordan algebra J of 3-by-3 hermitian matrices with coefficients in D, which is anisotropic
over F. In this paper, we study the global theta correspondence which arises from the dual
pair G×G ′. The local analogue of this correspondence has been studied in [MS] and [SG],
and the reason for writing F in place of Q is the expectation that the results here hold for
any totally real number field.

The first part of the paper is devoted to the construction of an automorphic realization
of the global minimal representation Π of H, and follows the approach of [GRS1] for the
split case. Let P be the Heisenberg parabolic subgroup of H, with modulus character δP.

For a standard section fs ∈ IndH(A)
P(A) δ

1
2 +s
P , let E(g, fs) be the usual Eisenstein series. Then we

have:

Theorem 1.1 For any standard section fs, E(g, fs) has at most a simple pole at s = s0 (for
a certain specific s0). This pole is actually attained by some standard section. Moreover, the
space Θ of automorphic forms spanned by the residues of E(g, fs) at s = s0 is an irreducible
square-integrable automorphic representation isomorphic to Π.

The proof of this theorem follows the method of [GRS1]; the main difference being that,
unlike the split case, the local representation Πv may be non-spherical here for some place
v. Though the above result is to be expected, we find it useful and necessary to have the
details properly worked out, because of the importance of the automorphic theta module
Θ in the theory of automorphic forms. For example, combined with the results of [Li1]
and [Li2], the existence of Θ implies the non-vanishing of L2-cohomology groups in low
degrees of certain locally symmetric spaces. We remark also that an automorphic theta
module was constructed in [R] for the rank 2 form of E6 associated to a 9-dimensional
division algebra.
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In the second part of the paper, we study the theta lifts of automorphic forms from
G ′ to G using Θ. If π is an automorphic representation of G ′, let Θ(π) be its theta lift,
which is a subspace of the space of automorphic forms on G. We characterize those π for
whichΘ(π) is non-zero and cuspidal in terms of period integrals over certain (anisotropic)
subgroups of G ′, in the spirit of [GRS2] and [GrS]. More precisely, each totally real étale
cubic algebra E determines a subgroup CE of G ′; also let C be the stabilizer in G ′ of a
primitive idempotent in J. Then we have:

Theorem 1.2 Let π be a non-trivial automorphic representation of G′. Then Θ(π) is non-
zero and cuspidal if and only if the following two conditions hold:

(i) π is not C-distinguished;
(ii) π is CE-distinguished for some totally real étale cubic algebra E.

Essentially, the groups CE are related to certain generic Fourier coefficients of the theta
lift, whereas the group C is related to degenerate Fourier coefficients.

When D = H, G ′ is an inner form of PGSp6, and the functoriality principle predicts
that an automorphic representation π of G ′ is a functorial lift from G if and only if its Spin
L-function L(s, π, Spin) has a pole at s = 1. On the other hand, in [MS] and [SG], the
local theta correspondence is found to be a functorial lifting. In view of Theorem 1.2, one
expects that L(s, π, Spin) has a pole at s = 1 if and only if π is CE-distinguished for some E.
Can this be established independently?

General Notations

In this paper, F will denote the rational number field Q . A place of F will be denoted by v,
with Fv the corresponding completion of F. Let ζv be the local zeta factor of F at v. Hence,

ζv(s) =

{
(1− p−s)−1, if v = p is finite;

π−
s
2 · Γ( s

2 ), if v is real.

The ring of adeles of F will be denoted by A. As in the introduction, D will denote either
a definite quaternion algebra H, or a definite octonion algebra O over F. Let SL(D) be the
group of norm 1 elements of D. Set Dv := D ⊗ Fv, and let S be the finite set of places v
where Dv is ramified. Hence, if D = H, S contains the real place and has even cardinality,
whereas for D = O, S contains just the real place. For v /∈ S, set:

ζDv (s) =

{
ζv(s) · ζv(s− 1), if D = H;

ζv(s) · ζv(s− 3), if D = O.

For any algebraic group H over F, we shall write H for H(F) and Hv for H(Fv). If v
is finite, an element of X•(Hv) ⊗Z C, where X•(Hv) is the group of rational characters of
Hv, gives rise to an unramified character of Hv, taking values in C×. Hence we shall often
identify an unramified character of Hv with an element of X•(Hv) ⊗Z C. Similarly, an
element of X•(H)⊗Z C gives rise to an unramified character of H(A), which is trivial on H.
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Assume now that H is reductive. Let P0 = M0 · N0 be a fixed minimal parabolic sub-
group, with modulus character δ0 : P0 → R×+ . Let A ⊂ M0 be a maximal split torus of H,
Φ the set of roots of H relative to A, and Φ+ the set of positive roots determined by P0.

Let ∆ ⊂ Φ+ be the set of simple roots, and let W := NH(A)/M0 be the (relative) Weyl
group. For anyα ∈ Φ, α∨ will denote the corresponding coroot, and Uα the corresponding
root subgroup. Moreover, let 〈·, ·〉 be the canonical pairing between the roots and the
coroots. Sometimes 〈·, ·〉 will also denote the Killing form of various Lie algebras. We hope
that this will not cause any confusion.

For a standard parabolic subgroup P = M · N of H, let ∆M ⊂ ∆ be the set of simple
roots of its Levi factor M,ΦM the corresponding root system and WM the Weyl group of M.
The opposite parabolic is denoted by P = M ·N, and the modulus character of P by δP. For
each v, let Kv be a maximal compact subgroup of Hv, which is special if v is finite, so that
the Iwasawa decomposition holds: Hv = P0,v ·Kv. Then for almost all v, Kv is hyperspecial,
and K =

∏
v Kv is a maximal compact subgroup of H(A).

Suppose that H is not split over F, but Hv is split. Then, in such cases, P0,v is no longer
the minimal parabolic subgroup. Let Bv be a fixed Borel subgroup of Hv contained in
P0,v, with modulus character δBv , and let Bv ⊃ Tv ⊃ Av be a maximal torus. If Φ0 is the
(absolute) root system of Hv relative to Tv, then we have a canonical map, Φ0 −→ Φ, given
by restriction of characters. For β ∈ Φ0 and α ∈ Φ, we write β �→ α if β restricts to α
under the above map.

2 Quaternionic Exceptional Groups

In this section, we describe the groups which we will study in this paper. For more details,
see [SG, Section 3].

Let J be the Jordan algebra of 3-by-3 hermitian matrices with coefficients in D. Then
the dimension of J is:

d =

{
15, if D = H;

27, if D = O.
(2.1)

There is a cubic form det on J, giving rise to a symmetric trilinear form (·, ·, ·) normalized
by (X,X,X) = det(X), and a symmetric bilinear trace form (·, ·), given by: (X,Y ) =
Tr(XY ). Then, for X,Y ∈ J, we have the element X × Y ∈ J, uniquely determined by:

(X × Y,Z) = 3(X,Y,Z)(2.2)

for all Z ∈ J. Recall that X has rank one if X �= 0 but X × X = 0. Equivalently, X2 =
Tr(X)X. Note that if F is a totally real number field, as is our case, there are no rank one
elements with trace zero.

Let L be the algebraic group of linear transformations on J which preserve the determi-
nant form det. Then

L ∼=

{
SL3(D)/µ2, if D = H;

Esc
6,2, if D = O.

(2.3)
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Here, Esc
6,2 is a simply-connected group of type E6 and relative rank 2.

Now associated to D is a simple adjoint algebraic group H of relative rank 4, and type E7

(respectively E8) if D = H (respectively O). The Satake diagram of H is:

E7(H)

❜ ❜ ❜ ❜ ❜ ❜� �

�

E8(O)

❜ ❜ ❜ ❜ ❜ ❜ ❜� � �

�

Moreover, the relative Dynkin diagram is of type F4:

❝ ❝ ❝ ❝ ❝

α1 α2 α3 α4−α0

Here α0 denotes the highest root. In particular,

α0 = 2α1 + 3α2 + 4α3 + 2α4.(2.4)

For simplicity, we shall represent a root
∑4

i=1 aiαi as a 4-tuple (a1, a2, a3, a4). Let wi be the
simple reflection in W corresponding to the simple root αi . If w ∈W has a minimal length
expression w = wi1 · wi2 · · · · · wik , then we shall write w = (i1, i2, . . . , ik).

Let P = M ·N be the Heisenberg maximal parabolic subgroup of H, which corresponds
to the vertex α1 in the relative Dynkin diagram. In particular, its unipotent radical N is a
Heisenberg group with center Z, and the abelian group V = N/Z has a natural structure
of a symplectic vector space. Let V = N/Z, where Z is the center of N. Then there is a
natural identification [MS, Section 6]

V ∼= F ⊕ J ⊕ J ⊕ F.(2.5)

The Levi factor M has derived group M1 of type D6 (respectively E7) if D = H (re-
spectively O). The action of M1 on V is the half-spin representation of dimension 32 if
D = H, and the 56-dimensional miniscule representation if D = O. Moreover, the min-
imal non-trivial M-orbit Ω is the orbit of a highest weight vector, which can be chosen to
be:

v0 = (0, 0, 0, 1) ∈ F ⊕ J ⊕ J ⊕ F.(2.6)

Let Q be the stabilizer in M1 of the line spanned by v0. Then Q is a maximal parabolic
subgroup of M1, and is the intersection of M1 with the maximal parabolic subgroup of H
corresponding to the vertex α2. It has an abelian unipotent radical U ∼= J, and the derived
group of its Levi factor is isomorphic to the group L introduced earlier in (2.3).

Now, we have [MS, Lemma 7.5]:
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Lemma 2.7 Q has 4 orbits on Ω, which are given by:

O0 = {(0, 0, 0, d) : d ∈ F×},

O1 = {(0, 0,Y, d) : rank(Y ) = 1 and d ∈ F},

O2 = {
(
0,Y, 2B× Y, (B,B,Y )

)
: rank(Y ) = 1 and B ∈ J},

O3 = {a
(
1,Z,Z × Z, det(Z)

)
: a ∈ F× and Z ∈ J}.

Now note that the characters of the compact group V \V (A) can be parametrized by V
as follows. Fix a non-trivial character ψ =

∏
v ψv of F \ A. The Killing form 〈·, ·〉 induces

a non-degenerate pairing of V with V . Then, for x ∈ V , the corresponding character ψx is
given by:

ψx(n) = ψ(〈x, n〉).

Similarly, the characters of Nv can be parametrized by V v using the Killing form and ψv.
Henceforth, we shall regard the elements of Ω as characters of V \V (A).

Finally, the modulus character of P is unramified, and is given by:

δP = (2 + d)α0,(2.8)

when regarded as an element of X•(A) ⊗Z C. Similarly, the modulus character of P0, the
minimal parabolic, is given by:

δ0 = (4 + 2d)α1 + (6 + 4d)α2 +

(
16 +

16

3
d

)
α3 +

(
12 +

8

3
d

)
α4.(2.9)

3 Local Minimal Representation

We now summarize some important facts about the local minimal representationΠv of Hv,
and refer the reader to [GrW], [S], [R2] and [T] for more details.

For any s ∈ C, consider the degenerate principal series representation:

Iv(s) = IndHv
Pv
δ

1
2 +s
P(3.1)

where for v real, Iv(s) denotes the Harish-Chandra module of the corresponding smooth
representation Iv(s)∞. Also, let

s0 =

{
11
34 , if D = H;
19
58 , if D = O.
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Now we have:

Proposition 3.2

(i) If v is the real place, then Πv is a quotient of Iv(s0), and occurs with multiplicity one in
Iv(s0).

(ii) If v /∈ S, then Πv is spherical and is the unique irreducible quotient of Iv(s0). Moreover,
if ψ is a character of Nv, then (v �= 2 if D = O)

dim(Πv)Nv ,ψ =

{
1, if ψ ∈ Ωv;

0, otherwise.

(iii) If v ∈ S is finite, then Iv(s0) has a unique irreducible quotient. If, further, v �= 2, then
dim(Πv)Nv ,ψ is as given in (ii) above.

Remarks In (i), we suspect, but do not know, thatΠ∞ is the unique irreducible quotient of
I∞(s0). We shall see later that in (iii), the unique irreducible quotient of Iv(s0) is exactlyΠv.

4 Eisenstein Series and Intertwining Operators

Now we can begin the construction of the automorphic theta module, i.e., an embedding
of Π =

⊗̂
vΠv into the space of automorphic forms A(H) on H. The above results about

the local minimal representations suggest that we should consider the global induced rep-
resentation:

I(s) = IndH(A)
P(A) δ

1
2 +s
P =

⊗̂
v
Iv(s),(4.1)

where the restricted tensor product is formed using the unique Kv-spherical vector Γv,s,
normalized by Γv,s(1) = 1. Indeed, as a corollary of Proposition 3.2, we have:

Proposition 4.2 The global induced representation I(s0) =
⊗̂

vIv(s0) has a unique irre-
ducible quotient Π ′, with Π ′∞ ∼= Π∞.

The following lemma is straightforward:

Lemma 4.3

(1) Let χs : P0(A) −→ C× be the unramified character given by:

χs = δ
1
2 +s
P · δ

− 1
2

0 .

Then

I(s) ⊂ IndH(A)
P0(A) χs · δ

1
2
0 := I0(χs).
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(2) If Hv is split, let

χ0
s = δ

1
2 +s
P · δ

− 1
2

Bv
.

Then

Iv(s) ⊂ IndHv
Bv
χ0

s · δ
1
2
Bv
.

Now let fs =
⊗

v fv,s be a standard section of I(s). For Re(s) sufficiently large, we form
the Eisenstein series:

E(g, fs) :=
∑
γ∈P\H

fs(γg), g ∈ H(A),(4.4)

which admits a meromorphic continuation to the whole complex plane, and defines an
automorphic form of H at a point s of holomorphy. We are interested in the analytic be-
haviour of E(g, fs) at s = s0, which is the same as that of its constant term EP0 (g, fs) along
P0. By a standard computation [MW, p. 92],

EP0 (g, fs) =
∑
w∈Ψ

M(w, χs)( fs)(g)(4.5)

where

Ψ = {w ∈W : w∆M ⊂ Φ
+}(4.6)

is the set of distinguished coset representatives for P0 \H/P, and for any w ∈W ,

M(w, χs) : I0(χs) −→ I0

(
w(χs)

)
(4.7)

is the standard intertwining operator, which, for Re(s) sufficiently large, is given by:

M(w, χs)( fs)(g) =
∏

v

Mv(w, χs)( fv,s)(gv)

=
∏

v

∫
Uw,v

fv,s(w−1uvgv) duv

(4.8)

with

Uw :=
∏

α>0,w−1α<0

Uα.(4.9)

Here, we have chosen a representative of w ∈ W in H, and denoted it by w as well. The
global operator does not depend on the choice of this representative, but the local operators
Mv(w, χs) do. However, the local operators corresponding to two different choices differ up
to multiplication by a non-vanishing entire function of s, so that their analytic properties
are the same. In fact, by choosing the maximal compact subgroup K suitably, we can and
do normalize this choice by requiring that w ∈ Kv for all v /∈ S.
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For this normalized choice of w, there is a meromorphic function cv(w, s) such that

Mv(w, χs)(Γv,s) = cv(w, s)Γv,w(χs)(4.10)

where Γv,w(χs) is the normalized spherical vector in I0,v

(
w(χs)

)
. This function, which is

called the c-function, was computed by Gindinkin-Karpelevich in the real case, and by
Langlands [L] in the p-adic case. See also [R, Lemmas 6 and 7]. We have:

Proposition 4.11 Suppose that Hv is split. Then

cv(w, s) =
∏

α>0,wα<0

cv(α, s),

where, if α is a long root,

cv(α, s) =
ζv(〈χs, α

∨〉)

ζv(〈χs, α∨〉 + 1)
,

and if α is a short root,

∏
β 	→α

ζv(〈χ0
s , β

∨〉)

ζv(〈χ0
s , β

∨〉 + 1)
.

In the second case, the product is taken over all roots β ∈ Φ0 which project onto α ∈ Φ, and
χ0

s is the unramified character of Bv defined in Lemma 4.3 (2).

5 An Automorphic Theta Module

Now let fs =
⊗

v fv,s be a factorizable standard section, such that fv,s is the normalized
spherical vector Γv,s for all v /∈ S. Then we want to understand the analytic properties of
E(g, fs) at s = s0. By (4.5), it suffices to understand the analytic properties of M(w, χs)( fs),
for w ∈ Ψ. The previous proposition allows us to evaluate

MS(w, χs)( fs)(1) =
∏
v /∈S

cv(w, s) := cS(w, s).

For w ∈ Ψ, which has cardinality 24, let:

Φw = {α ∈ Φ
+ : wα < 0} ⊂ Φ+

� Φ+
M .(5.1)
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α α∨ cv(α, s) for D = H cv(α, s) for D = O

(1,0,0,0) (1,0,0,0) ζv(17s + 15
2 )/ζv(17s + 17

2 ) ζv(29s + 27
2 )/ζv(29s + 29

2 )

(1,1,0,0) (1,1,0,0) ζv(17s + 13
2 )/ζv(17s + 15

2 ) ζv(29s + 25
2 )/ζv(29s + 27

2 )

(1,1,2,0) (1,1,1,0) ζv(17s + 5
2 )/ζv(17s + 7

2 ) ζv(29s + 9
2 )/ζv(29s + 11

2 )

(1,2,2,0) (1,2,1,0) ζv(17s + 3
2 )/ζv(17s + 5

2 ) ζv(29s + 7
2 )/ζv(29s + 9

2 )

(1,1,2,2) (1,1,1,1) ζv(17s− 3
2 )/ζv(17s− 1

2 ) ζv(29s− 7
2 )/ζv(29s− 5

2 )

(1,2,2,2) (1,2,1,1) ζv(17s− 5
2 )/ζv(17s− 3

2 ) ζv(29s− 9
2 )/ζv(29s− 7

2 )

(1,2,4,2) (1,2,2,1) ζv(17s− 13
2 )/ζv(17s− 11

2 ) ζv(29s− 25
2 )/ζv(29s− 23

2 )

(1,3,4,2) (1,3,2,1) ζv(17s− 15
2 )/ζv(17s− 13

2 ) ζv(29s− 27
2 )/ζv(29s− 25

2 )

(2,3,4,2) (2,3,2,1) ζv(34s)/ζv(34s + 1) ζv(58s)/ζv(58s + 1)

Table 1: Long Roots

To use Proposition 4.11, we need to enumerate the set Φw and compute cv(α, s). The
values of cv(α, s) are given in Table 1 for the 9 long roots inΦ+

�Φ+
M , and in Table 2 for the

6 short roots.

Let

cS(α, s) =
∏
v /∈S

cv(α, s),

ζS(s) =
∏
v /∈S

ζv(s).
(5.2)
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α α∨ cv(α, s) for D = H cv(α, s) for D = O

(1,1,1,0) (2,2,1,0) ζDv (17s + 9
2 )/ζDv (17s + 13

2 ) ζDv (29s + 17
2 )/ζDv (29s + 25

2 )

(1,1,1,1) (2,2,1,1) ζDv (17s + 5
2 )/ζDv (17s + 9

2 ) ζDv (29s + 9
2 )/ζDv (29s + 17

2 )

(1,1,2,1) (2,2,2,1) ζDv (17s + 1
2 )/ζDv (17s + 5

2 ) ζDv (29s + 1
2 )/ζDv (29s + 9

2 )

(1,2,2,1) (2,4,2,1) ζDv (17s− 1
2 )/ζDv (17s + 3

2 ) ζDv (29s− 1
2 )/ζDv (29s + 7

2 )

(1,2,3,1) (2,4,3,1) ζDv (17s− 5
2 )/ζDv (17s− 1

2 ) ζDv (29s− 9
2 )/ζDv (29s− 1

2 )

(1,2,3,2) (2,4,3,2) ζDv (17s− 9
2 )/ζDv (17s− 5

2 ) ζDv (29s− 17
2 )/ζDv (29s− 9

2 )

Table 2: Short Roots

From the above results, one sees that when D = H, cS(α, s) is finite and non-zero at s = s0

except possibly for the following α’s:

α cS(α, s) Behaviour at s = s0

α(0) = (1,3,4,2) ζS(−2)/ζS(−1) Zero of order 1

α(1) = (1,2,4,2) ζS(−1)/ζS(0) Pole of order |S| − 1

α(2) = (1,2,3,2)
(
ζS(1) · ζS(0)

)
/
(
ζS(3) · ζS(2)

)
Zero of order |S| − 2

As for the case D = O, cS(α, s) is finite and non-zero at s = s0 except for the follow-
ing α’s:

α cS(α, s) Behaviour at s = s0

α(0) = (1,3,4,2) ζS(−4)/ζS(−3) Zero of order 1

α(1) = (1,2,4,2) ζS(−3)/ζS(−2) Pole of order 1
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Recall that:

cv(w, s) =
∏
α∈Φw

cv(α, s).(5.3)

For those w ∈ Ψ, such that Φw does not contain any of the roots α(i), i = 0, 1, 2, the
function cS(w, s) =

∏
α∈Φw

cS(α, s) is thus finite and non-zero at s = s0. The only w’s not
accounted for are:

w0 = (1, 2, 3, 2, 1, 4, 3, 2, 1, 3, 2, 4, 3, 2, 1),

w−1 = (2, 3, 2, 1, 4, 3, 2, 1, 3, 2, 4, 3, 2, 1),

w−2 = (3, 2, 1, 4, 3, 2, 1, 3, 2, 4, 3, 2, 1).

(5.4)

For these, we list the set Φw:

Φw0 = Φ
+ − Φ+

M ,

Φw−1 = Φw0 − {α(0)},

Φw−2 = Φw0 − {α(0), α(1)}.

Now we have:

Lemma 5.5

(i) cS(w−2, s) is holomorphic at s = s0; indeed it has a zero of order |S| − 2 if D = H.
(ii) cS(w0, s) is finite and non-zero at s = s0.
(iii) cS(w−1, s) has a pole of order 1 at s = s0.

It remains now to analyze the finitely many terms Mv(w, χs)( fv,s) for v ∈ S. Using
the functional equation for intertwining operators, we can write Mv(w, χs) as a product
of simple intertwining operators, i.e., those corresponding to simple reflections. Using the
well-known analytic properties of intertwining operators for rank 1 groups, we deduce that
if w �= wi , i = 0,−1, the integral defining Mv(w, χs)( fv,s) converges at s = s0, for any choice
of fv,s. Thus, for w �= wi , i = 0,−1, M(w, χs)( fs) is holomorphic at s = s0.

Similarly, we deduce that, at s = s0, Mv(w−1, χs) is holomorphic for all v ∈ S, whereas
Mv(w0, χs) is holomorphic for v finite, and can have a pole of order ≤ 1 at the real place.
Now we have the following crucial lemma:

Lemma 5.6 For v ∈ S, the intertwining operator

Mv(w−1, χs0 ) : Iv(s0) −→ I0,v

(
w−1(χs0 )

)
is not identically zero.
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Proof First, note that the double coset Pvw0Pv = Pvw0Nv is open in Hv, and any element
g ∈ Pvw0Pv has a unique expression g = pw0n with p ∈ Pv and n ∈ Nv.

For v real, we let φ be a smooth real-valued non-negative function on Nv with compact
support, and set

fs(g) =

{
δ(p)

1
2 +sφ(n), if g = pw0n;

0, otherwise.

Then fs ∈ Iv(s)∞ is an entire section, though not standard. By results of Vogan and Wal-
lach [Wa, Chapter 10], Mv(w−1, χs0 ) is an intertwining operator defined on Iv(s0)∞, and
is continuous with respect to the natural Fréchet topology on the smooth representations.
Now, for Re(s) sufficiently large, and g = w−1w0,

Mv(w−1, χs)( fs)(g) =

∫
g−1Uw−1 g

fs(w0u) du

=

∫
g−1Uw−1 g

φ(u) du

since g−1Uw−1 g ⊂ Nv. For a suitable choice of φ, we can certainly ensure that this last
integral is non-zero. Since it is also independent of s, the meromorphic function

s �→ Mv(w−1, χs)( fs)(g)

is constant and non-zero. Since Iv(s0) is dense in Iv(s0)∞, we deduce that Mv(w−1, χs0 )
must be non-zero on some Kv-finite vector. This proves the lemma for v real.

Now assume that v ∈ S is finite. Let fs ∈ I(s) be defined by:

fs(g) =

{
δ(p)

1
2 +s, if g = pw0n ∈ Pvw0(Nv ∩ Kv);

0, otherwise.

Then fs is a standard section, and the same argument as above proves the lemma.

Corollary 5.7

(i) For v ∈ S finite, Mv(w0, χs) is holomorphic at s = s0 and Mv(w0, χs0 ) is not identically
zero on Iv(s0).

(ii) For v real, Mv(w0, χs) has a pole of order at most 1 at s = s0, and this pole is attained for
some vector in Iv(s0).

Proof This follows from the factorization

Mv(w0, χs) = Mv

(
w1,w−1(χs)

)
◦Mv(w−1, χs),

the lemma above and the well-known analytic properties of SL2-intertwining operators.
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Now we have:

Theorem 5.8 For any standard section fs ∈ I(s), the Eisenstein series E(g, fs) has at most a
simple pole at s = s0. Moreover, this pole is actually attained for some standard section fs with
fv,s = Γv,s for all v /∈ S. Let

θ : I(s0)→ A(H)

f �→ Ress=s0 E(g, fs)
(5.9)

and letΘ be its image. ThenΘ is an irreducible square-integrable automorphic representation
isomorphic to Π.

Proof If the standard section fs is such that fv,s = Γv,s for all v /∈ S, then we have seen that
E(g, fs) has at most a simple pole at s = s0. Now we claim that this is true for any other
standard sections as well. Suppose not; then for any decomposable fs such that E(g, fs) has
a pole at s = s0 of order greater than 1, let

S f := {v /∈ S : fv,s is not spherical}.

Hence, S f is non-empty. Choose fs such that S f is minimal, and suppose that v0 ∈ S f .
Then consider:

Iv0 (s0)→ A(H)

φ �→ lims→s0 (s− s0)kE(g, φs)

where φs is the unique standard section satisfying:

φs0 = φ⊗
(⊗

v �=v0

fv,s0

)

and k > 1 is the highest order of pole attained by E(g, φs) at s = s0 for all such φs. Such
a k exists since Iv0 (s0) has finite length. By the definition of k, this map is a non-zero Hv0 -
intertwining map, and by the minimality of S f , it vanishes on the spherical vector. But by
Proposition 3.2(ii), Iv0 (s0) is generated by the spherical vector as a representation of Hv0 .
With this contradiction, the claim is proved.

To see that the pole is actually attained for some sections, it remains to show that the
poles of M(w−1, χs) and M(w0, χs) at s = s0 do not cancel. For this, note that the residue
of M(wi , χs)( fs) at s = s0, when regarded as a function of the maximal split torus A, is

the unramified character δ
1
2
0 · wi(χs0 ). Hence it suffices to see that these two unramified

characters are different. One checks that if D = H,

w0(χs0 ) = −11α1 − 24α2 − 36α3 − 20α4,

w−1(χs0 ) = −13α1 − 24α2 − 36α3 − 20α4,
(5.10)
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whereas if D = O,

w0(χs0 ) = −19α1 − 42α2 − 60α3 − 32α4,

w−1(χs0 ) = −23α1 − 42α2 − 60α3 − 32α4.
(5.11)

Hence, we see that the pole at s = s0 is actually attained. Moreover, the above shows that
all the cuspidal exponents ofΘ have strictly negative coefficients. This implies, by Jacquet’s
criterion [MW, p. 74] that Θ is contained in L2

(
H \H(A)

)
∩A(H).

Since Θ is square-integrable, it is semi-simple. Suppose that Π1 ⊂ Θ is an irreducible
summand. Then, for v finite, (Π1)v is the unique irreducible quotient of Iv(s0), by Proposi-
tion 3.2(ii) and (iii). Moreover, for v /∈ S, (Π1)v

∼= Πv. Now by a rigidity result of Kazhdan
[R2, Proposition 57], this implies that (Π1)v is also the minimal representation for all v ∈ S,
in particular for v the real place. Thus, Π1

∼= Π, and in view of Proposition 4.2, we deduce
that Θmust be irreducible. This proves the theorem.

Corollary 5.12 For v ∈ S finite, the minimal representation Πv is the unique irreducible
quotient of Iv(s0).

Corollary 5.13 For any non-zero f ∈ Π ⊂ I(−s0), let fs be the unique standard section
extending f . Then E(g, fs) is holomorphic at s = −s0, and E(g, f−s0 ) generatesΘ.

Proof This follows from the functional equation of Eisenstein series.

Remarks (i) It seems likely that there is exactly one automorphic realization for Π. As in
[GRS1], this uniqueness statement would follow if the multiplicity one result for Jacquet
modules in Proposition 3.2(ii) holds for all places v.

(ii) When D is an indefinite quaternion algebra, the data in this section allows one to
conclude that the minimal representation for the corresponding group is automorphic as
well.

6 Fourier Coefficients

In this section, we consider the Fourier coefficients of θ = θ(
⊗

v fv) ∈ Θ along the unipo-
tent radical N of the Heisenberg parabolic subgroup P = M ·N . Recall that N is a Heisen-
berg group with center Z, and V = N/Z.

Consider the constant term of θ along Z:

θZ(g) =

∫
Z\Z(A)

θ(zg) dz.(6.1)

Note that θZ is non-zero since the constant term of θ with respect to P0 is non-zero. We
consider its Fourier expansion along the compact group V \ V (A). For a character ψ of
V \V (A), the ψ-Fourier coefficient of θZ is:

θψ(g) =

∫
V\V (A)

θZ(ng)ψ(n)−1 dn.(6.2)

https://doi.org/10.4153/CJM-2000-031-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-031-4


An Automorphic Theta Module 751

Let Cψ be the stabilizer of ψ in M1. If ψ ∈ Ω, then Cψ is a conjugate of the derived group of
the maximal parabolic subgroup Q of M1. As in [GRS1] and [GrS], we have the following
two important properties of θψ :

Proposition 6.3 Suppose that ψ is non-trivial. For any non-zero θ ∈ Θ, θψ is non-zero if
and only if ψ ∈ Ω.

Proposition 6.4 Suppose that ψ ∈ Ω. Then for all c ∈ Cψ(A), we have:

θψ(cg) = θψ(g).

Finally, we consider the constant term θN , regarded as an automorphic form on M1. By
computing the constant term EP(g, fs) of E(g, fs) along P, we have:

Proposition 6.5 As an automorphic form on M1,

θN = c + θ ′

where c is a constant function, and θ ′ is contained in an automorphic realization of the global
minimal representation of M1.

One can further compute the constant term of EP(g, fs) along the unipotent radical U of
the maixmal parabolic Q in M1. Then one finds that the constant term (θN )U of θN along
U is simply the sum of two characters of the Levi factor of Q. This reflects the fact that, for
v ∈ S, Lv does not have a minimal representation.

7 Dual Pairs and Étale Cubic Algebras

We shall use the automorphic theta moduleΘ and the properties of its Fourier coefficients
discussed above to study theta correspondence. In this section, we briefly describe the dual
pair G× G ′.

Let e ∈ J be the identity, and let G ′ ⊂ L be the algebraic subgroup stabilizing e. Then
G ′ is the automorphism group of the Jordan algebra structure on J, and

G ′ ∼=

{
PU3(D), if D = H;

F cpt
4 , if D = O.

(7.1)

Here, PU3(D) is the projective unitary group in three variables with coefficients in D. Note
that G ′ acts naturally on J0, the space of trace zero elements in J. Moreover, G ′∞ is compact,
whereas for finite v ∈ S, G ′v has rank 1, and for v /∈ S, G ′v is split. Let G be the split group of
type G2. Then G× G ′ is a reductive dual pair in H (see [MS] and [SG]).

There is an embedding of G× G ′ in H such that

(G× G ′) ∩ P = P2 × G ′(7.2)
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where P2 = L2 ·U2 is the Heisenberg parabolic subgroup of G. Here, U2 is a Heisenberg
group with center Z, and V := U 2/Z is the subspace F ⊕ Fe ⊕ Fe ⊕ F of V . Moreover,
L2
∼= GL2, and its action on V is isomorphic to det⊗ Sym3(F2)∗. Thus we can identify V

with the space of binary cubic forms, and the non-zero L2-orbits are then parametrized by
cubic F-algebras [Wr]. We list the non-zero orbits below:

(i) S0 = L2 · (0, 0, 0, 1); this is the orbit corresponding to E0 = F[ε]/ε3.
(ii) S1 = L2 · (0, 0, 1, 0); this is the orbit corresponding to E1 = F ⊕ F[ε]/ε2.
(iii) For each étale cubic algebra E, there is a generic orbit SE. Given E, let E0 denote the

two-dimensional space of trace zero elements. Then the norm form of E restricts to
give a binary cubic form on E0. This form is an element in the orbit SE.

Since V can be identified with the characters of Z(A)U2\U2(A), we see that the L2-orbits
of non-trivial characters are parametrized by cubic algebras over F.

For ψE ∈ SE, a non-zero orbit, let

ΩE = {ψ ∈ Ω : ψ|U2(A) = ψE}.

Clearly, G ′ acts on ΩE, which as a G ′-set, depends only on E. As an example, the G ′-set
Ω1 := ΩE1 can be identified as:

Ω1 = {X ∈ J : rank(X) = 1 = Tr(X)}.

Note that Ω1 is clearly non-empty, but this is not always the case when E is étale. Indeed,
we have (see [GrG, Proposition 1]):

Lemma 7.3

(1) Suppose that E is étale. Then ΩE is non-empty if and only if E is totally real, in which case
G ′ acts transitively on ΩE. The algebraic subgroup of G ′ stabilizing an element of ΩE is:

CE =

{
ResE/F

(
SL(D⊗F E)

)
/µ2, if D = H;

SpinE,cpt
8 , if D = O.

(2) G ′ acts transitively on Ω1, and the algebraic subgroup of G ′ stabilizing an element is:

C =

{(
SU2(D)× SL(D)

)
/µ2, if D = H;

Spincpt
9 , if D = O.

8 Cuspidality of Theta Lifts

Let π =
⊗̂

vπv be an irreducible automorphic representation of G ′, and let α be an au-
tomorphic form in the space of π. Recall that the theta lift of α by θ ∈ Θ is defined to
be:

β(g) =

∫
G ′\G ′(A)

α(g ′)θ(gg ′) dg ′.(8.1)
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Note that this integral converges because G ′ \ G ′(A) is compact. Moreover β is an au-
tomorphic form on G. Let Θ(π) be the subspace of A(G) spanned by all such β’s. We
would like to investigate conditions under whichΘ(π) is non-zero and cuspidal, when π is
a non-trivial automorphic representation.

In this section, we study the cuspidality question. Hence we need to compute the con-
stant terms of β along the unipotent radicals of the two maximal parabolic subgroups of
G. Recall that P2 = L2 ·U2 is the Heisenberg parabolic of G. Let P1 = L1 ·U1 be the other
maximal parabolic of G. We introduce the following notations:

U12 = U1 ∩U2, V12 = U12/Z,

V1 = U1/U1 ∩U2, V2 = U2/U1 ∩U2.

We first compute:

βU12 (g) =

∫
U12\U12(A)

β(ug) du

=

∫
V12\V12(A)

∫
G ′\G ′(A)

α(g ′) · θZ(vgg ′) dg ′ dv

=

∫
G ′\G ′(A)

α(g ′)
(
θN (gg ′) +

∑
ψ∈O0

θψ(gg ′)
)

dg ′

(8.2)

where O0 is defined in Lemma 2.7. By Proposition 6.4, θψ(gg ′) = θψ(g), for ψ ∈ O0.
Hence,

βU12 (g) =

∫
G ′\G ′(A)

α(g ′)θN (gg ′) dg ′.(8.3)

It follows that βU2 = βU12 . Moreover, by Proposition 6.5, we know that, as an automorphic
form on M1, θN is equal to c + θ ′, where c is a constant function of M1 and θ ′ lies in the
global minimal representation of M1. The integral of α against c is zero, since α is non-
constant. On the other hand, note that SL2×G ′ is a commuting pair in M1, where SL2 is
the derived group of L2

∼= GL2. Hence, βU12 , regarded as a function on SL2, is nothing
but the theta lift of α by θ ′. Moreover V1 is nothing but the unipotent radical of a Borel
subgroup of SL2. It follows that, as functions on SL2, βU1 is simply the constant term of
βU12 along V1. Hence, we need to study the Fourier coefficients of βU12 along V1.

For this, we consider the Fourier expansion of θ ′ along the unipotent radical U ∼= J of
Q. The analogues of Propositions 6.3 and 6.4 hold for θ ′ [GrS]. In particular, the characters
of U \U (A) can be parametrized by J, and

θ ′ = θ ′U +
∑

X∈ J: rank(X)=1

θ ′ψX
.(8.4)

Moreover, for X of rank 1,

θ ′ψX
(cg) = θ ′ψX

(g)(8.5)
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for c ∈ CψX (A), the stabilizer of ψX in L(A). Recall that L is the derived group of the Levi
factor of Q. As we have noted before, θ ′U is a constant function of L and so its integral
against α is zero. Further, since there are no rank one elements of J with trace zero, we
deduce easily that:

βU1 (g) =

∫
V1\V1(A)

βU12 (vg) dv = 0.

On the other hand, for any non-trivial character ψ of V1 \V1(A), let

Ωψ = {X ∈ J : rank(X) = 1 and ψX|V1(A) = ψ}.

This is a G ′-homogeneous space isomorphic to Ω1. Then the ψ-Fourier coefficient of βU12

is:

(βU12 )V1,ψ(g) =

∫
G ′\G ′(A)

∑
X∈Ωψ

α(g ′)θ ′ψX
(gg ′) dg ′

=

∫
C(A)\G ′(A)

θ ′ψX0
(gg ′) ·

(∫
C\C(A)

α(cg ′) dc

)
dg ′,

where X0 is an element of Ωψ , with stabilizer C . In conclusion, we have:

Proposition 8.6 An element of Θ(π) is either cuspidal or is concentrated along the Heisen-
berg parabolic of G. Moreover,Θ(π) is cuspidal if and only if the linear functional

PC : α �→

∫
C\C(A)

α(c) dc

is identically zero on π, i.e., π is not C-distinguished.

Proof The sufficiency for the vanishing of PC is clear. As for the necessity, we argue as in
[GS, Section 5, Propostion 4.5] that if the period PC (α) is non-zero, then we can choose θ
such that (βU12 )V1,ψ is non-zero. See also the proof of Proposition 9.3 below.

9 Non-Vanishing of Theta Lifts

In this section, we investigate when Θ(π) is non-zero. To do this, we study the Fourier
expansion of β along U2. First note:

Lemma 9.1 β is zero if and only if βZ is zero.

Proof Suppose that βZ = 0. Let Z1 ⊃ Z be the center of U1. Then certainly βZ1,ψ = 0
for any character ψ of Z1 \ Z1(A) which is trivial on Z(A). But L1 acts transitively on the
non-trivial characters of Z1 \ Z1(A). This implies that β = 0, as required.
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Hence, to investigate the non-vanishing of β, it suffices to consider βZ . Let ψE be a
character of U2(A) in the L2-orbit SE. Then, as in the last section, theψE-Fourier coefficient
of βZ is given by:

βψE (g) =

∫
CE(A)\G ′(A)

θψ̃E
(gg ′)PCE (α, g ′) dg ′(9.2)

where ψ̃E is an element of ΩE with stabilizer CE, and

PCE (α, g ′) =

∫
CE\CE(A)

α(cg ′) dc.

Now we have:

Proposition 9.3 Assume thatΘ(π) is cuspidal. Then the linear functional FE : β �→ βψE (1)
is identically zero on Θ(π) unless E is étale and totally real, in which case it is non-zero if and
only if the linear functional α �→ PCE (α) := PCE (α, 1) is non-zero on π.

Proof By Proposition 8.6, the assumption thatΘ(π) is cuspidal implies that βψE1
= 0 for

all β ∈ Θ(π). Moreover, the fact that π is non-trivial implies that βψE0
= 0, since CE0 = G ′.

Also, if E is étale but not totally real, ΩE is empty by Lemma 7.3, so that βψE = 0.

By (9.2), it is clear that the vanishing of PCE implies that of FE. The proof of the converse
is along the lines of [GrS, Section 5, Proposition 4.5]. So suppose that PCE (α) is non-zero.
Note that PCE (α, g ′) descends to a smooth functionαE onΩE(A). Choose a neighbourhood
N =

∏
v Nv of ψ̃E ∈ ΩE(A) with Nv open compact for finite v. By shrinking N, we can

ensure that αE(x) = αE(x∞), for all x ∈ N. Note that for almost all v, Nv = ΩE(Zv) =
G ′(Zv) · ψ̃E.

Similarly, the restriction of θψ̃E
to M1(A) descends to a function on Cψ̃E

(A) \M1(A). As
in [GrS, Section 5, (3.11)], for suitable θ, this function can be written as a product

∏
v fv

where fv is some smooth function on Ωv which, for almost all finite places v, is equal to a
distinguished function f 0

v (corresponding to the normalized spherical vector in Πv). Now,
for almost all places v, the restriction of f 0

v to ΩE,v is the characteristic function of ΩE(Zv)
(see [GrG, Proposition 2]). On the other hand, at the other finite places, it follows from
[MS, Theorem 6.1] that fv can be any locally constant, compactly supported function on
Ωv. SinceΩE,v is a closed subset ofΩv, we can choose fv such that its restriction toΩE,v is the

characteristic function of Nv. Hence, we can take f∞ =
⊗̂

v �=∞ fv such that its restriction
to ΩE(A∞) is the characteristic function of N∞ =

∏
v �=∞Nv. Thus, up to multiplication

by a non-zero constant, we have:

FE(β) =

∫
ΩE(R)

f∞(x)αE(x) dx.

Now as in [GrS], the fact thatΩE(R) is compact implies, by the Stone-Weierstrass theorem,
that the restrictions of the functions f∞ span a dense subspace of the space of smooth
functions on ΩE(R). Hence the above integral is non-zero for a suitable choice of f∞. This
completes the proof of the proposition.
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By Propositions 8.6 and 9.3, we have:

Theorem 9.4 If π is a non-trivial automorphic representation of G′, then Θ(π) is non-zero
and cuspidal if and only if the following two conditions hold:

(i) π is not C-distinguished.
(ii) π is CE-distinguished for some totally real étale cubic algebra E.
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