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REDUCING TOWERS OF PRINCIPAL FIBRATIONS
J. F. McCLENDON

Consider a tower of principal fibrations

B«—FE,«—.--E,«—F,,,

Lol

R, R, R,

That is, E,,, is the pullback of E; — R, and the path fibration PR, — R,.
The question arises as to whether or not the tower can be shortened,
that is, whether or not F,,, — B is fiber homotopically equivalent to a
nice fibration £ — B. If “nice” is taken to mean “principal” then suf-
ficient conditions are known. They involve connectivity assumptions on
the E,. In this paper “nice” is taken to mean “D-relatively principal”
for some space D. Relative principal fibrations are more general than
principal fibrations. Their lifting properties are studied in [7]. They
enjoy some but not all of the nice properties of principal fibrations.
The assumptions on the tower above which imply that F,,, — B is nice
are weaker than the assumptions showing it to be principal—as expected,
since the conclusion is weaker.

One application of the sufficient conditions is a kind of represetation
theorem for certain fibrations. Suppose F — FE — B is a fibration, F, E,
B, having the homotopy type of CW complexes, and I/, (F) = 0 except
possibly when s <7< 2s — 1. Then it is shown that F — B is a relatively
principal fibration. No connectively assumptions are made on B. It
follows that if ¥ — B is any fibration with an n-connected fiber then the
2n’th stage of its Moore-Postnikov factorization is a relatively principal
fibration.

In the first section a twisted suspension operation is studied. In the
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second section this operation is used to give sufficient conditions for
reducing a two stage tower. In the last section sufficient conditions are
given for reducing an arbitrary tower and the above mentioned represen-
tation theorem is proved.

1. A Suspension Operation for Relatively Principal Fibrations.

First, we recall a few definitions from [6]. Let Top (u: C — D) be
the category of triples (X, %,£) where £:C— X, £: X - D, #% =« and
all of this takes place in Top = Top (§ — pt) = category of topological
spaces and continuous functions. Write Top (D = D) for Top (id: D — D).
It has all of the basic properties of Top (pt = pt) = the category of
pointed spaces and maps. In particular if Z e Top (D = D) then there
is a canonical principal fibration (path-loop fibration) 2,7 — P,Z — Z.
(The properties of Top(C — D) were established in my 1966 thesis [5]
and outlined in the published abstract. A couple of years later similar
notions were described by others.)

Now, let XeTop(C—D) and f:X —ZeTop(C—D) where C—Z
is C>D—Z. Then if P= P;,— X is the pullback of P,Z—Z and f
then it is called a D-relative principal fibration. Suppose that
LeTop(D = D). We wish to define a secondary operation p:[Z, L]} —
[P,Q2,L1. The operation can be treated in a fairly direct manner.
However, in the interest of clarity and unity (with an operation in [8])
we will start from an abstract level.

Consider the following data (4).

) B H,— G ST U,

Here {6,: H,— G}, teT, sep'(t), is a family of group homomorphisms.
S is a G-set, B:S— T, a: T— U are set maps, u,e U, a'(u) = BWS);
each g7'(t) is a G-subset of S and G acts transitively on it; §,(H,) = G,
= {g € G|gs = s} = the stability subgroup of s. r,: G — S is defined by
r(9) = gs. This situation is exactly the one occurring at the bottom of
exact homotopy sequences. A prototype example can be obtained as
follows. Let S be a G-set and T = S/G, U = {w}, H, = G, where s(t)
is a chosen element of g~'(t). For sep'(t), 6,: H,— G is defined by
0,(9) = ggg~* where s = gs(t).

Given the data (4), one can select se S and form the sequence

https://doi.org/10.1017/50027763000024648 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024648

PRINCIPAL FIBRATIONS 151

ds 8

) H 256158 T 50U
1 1 S t=‘BS Uy

Then it is easily checked that this is an exact sequence of pointed sets.
A morphism 4— 4’ is

H(t) j@) G S—T—U
N
) 2 S T > T

where the diagram is commutative, gt = t/, hs = s/, m, and k are homo-
morphisms, and f(u,) = u,. For each sec S there is induced a morphism
A(s) — A(s').

1.1 DEFINITION. Let 4— 4" be given. Let teT, t' = gt, at = u,.
Suppose s’ € 8" with gs’ = t/. Define

I3t = {0 e Glg's’ e gD} .

1.2 THEOREM. (1) I'(s’;t) is a double coset of (kG,G(s)), i.e.,
g €l'(s’;t) implies I'(s’; t) = (k@) 9’ (G(s)).

@2 I'(gs’; 09 =I'(;t), all ¢e G

3) kG normal in G’ implies I'(¢9’s’;t) = I'(s'; t), all g’ € k(G)

Proof. T’ll prove (1) only. The interesting thing is that s’ needn’t
be in the image of k. Pick s, with Bs, =1 so p7(¢) = Gs, and hf™ 't =
WGsy) = (kG)hs,. Let s, = hs,. Suppose ¢’,9” € I'(s’; t) and ¢’s’ = k(g,)S),
9”8’ = k(g,)s;. Thus kg;'g"’s’ = kg'g’s’, hence (kgi9) 'kg;*9” € G(s') im-
plying g¢” € kg,k9:'9'G(s") C kGg'G(s). Conversely, ge kGg’G(s’) implies
9 'kg 'ge G(S) (some g) implying gs’ = kgg’s’ = kgkg,s; and hence
gel(s';t).

As a first example we take up the operation of [8, Section 2]. Let
F —f> E %5 B be a fibration in Top (pt), LeTop(D = D) and h: B —
L e Top (pt — D), putting F — E — B into Top (pt — D). Consider

F,F) — (B,F) — (B,pt) —> (L, L) .

Theorem 3.4 of [7] and the obvious naturality give the following situation
where [ ] means [ ]
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(E,F); (9B, 2 pt)l; —> [(E, F); (2L, L)),

l !
[(F, F); (9B, 2 p)lz —> [(F, F); (2L, 2L)1,

(E,F); (P,2D)], — [(E,F); (B,pY)], — [(E, F); (L, )]
! l l
[(F, F); (P,2D)], — I(F, F); (B,pD]p, — [(F, F); (L, L)l
Here P = P,, T = k~(d,) where k: L — D, 2T is the ordinary loop space,
QL means 2,L and Q means £,. This simplifies to

00— [E; 2L], (&, F); (P, 0D, — [(E,F); (B,pt)] —> [E; L],
l |

0— [F; 2T] [F; 2T] —0
Take s’ = x: F — QT and define >.: [(E,F); (B,pt)l, — [F; 2T1 by > (9)
=1I'(s";g). It follows from 1.2 that > 9 is a coset of ¢*[F,2L], in
[F,2T]. This is the same definition as in [8].

Now we return to the situation at the beginning of the section. Let

f:X—ZeTop(C—D) and h:Z — LeTop(D = D). We have

Py, Py) - (X,P;)— (Z,D) - (L,L)
From [7] we get the following.

(X, P)); (0Z,D)]; —> [(X, Py); (QL, 2L)]
! ‘ l
[Py, P); (22, D)]; —> (P, P)); (QL, L)]

(X, Pp); (P, D)), —> [(X, Pp); (Z, D)), —> (X, P)); (L, D],

! ! !
(P, Pp); (P, 2L)]p —> (X, Py); (Z, D)]p —> [(P,, Py); (L, )]p

This simplifies to the following.
(X, P)); (2Z,D), —> [X, QL]

l
0 —> [P, L],
(X, Pp), (P, 2D)]p —> (X, Pp); (Z,D)] —> (X, )],
!
[P;, 2L,  —> 0

1.3 DEFINITION. Let ¢’: P, — D — 2,L be the composition of the
structure maps. Define p:[Z, L]3 — [P,, 2,L1 by o(h) = I'(s’; f).
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It follows from Theorem 1.2 that p(h) is a coset of p*[X; Q,L] in
[P;; 2,L],. More concretely, consider

f

P, —X—7

S

QDL—)D—)L

Let H: X — P,L be a homotopy of k% to hf in Top(C — D). Define
w(x,m) = (Phym — H(x). Then wep(h) and it is, in fact, a typical
element.

Now suppose that ¢: Il — Aut G is a homomorphism where /7 is a
group and G is an abelian group. Suppose that D — K(7,1) is given,
defining a local coeflicient system G, on D and hence on P, X, and Z.
Use these coefficients and form the following diagram.

- H(X,(C) — HY(P, C) —> H"''(X, P)

1 i [
- H(Z, C) —> H'D, C) —> H"\(Z, D)

—> H*'(X,C) —> HYP, C) —> - -

T 7
— H'"*'(Z, C) —— HYD,C) —> - - -

Here, and elsewhere in cohomology, a “pair” (X, A) is to be interpreted
as the mapping cone of whatever natural map A — X is indicated by the
context.

1.4 DEFINITION. R:H"'YZ,D;G, — HYP,C; G,) is defined by R =
S,

R is a secondary cohomology operation and its indeterminacy is
p*H'""'(X,C) c H"Y(P,C). Now take L’ = L,G,t+ 1), the classifying
space for local coefficient cohomology, and L =D x L. What follows
is also valid if L’ is replaced by a product over K of such spaces. We
have

H"Y(Z,D) . HYP,C)

l 5
(Z,D); (L, D)1, h

I |

[Z, L3 2P, 0,L1
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1.5 THEOREM. R = p.

Proof. Let h:Z — L. The indeterminacies of R(k) and p(h) are the
same so it suffices to find a common element. Consider the following
diagram.

f

P — X —57

N

.QDL—)PDL'—-)L

H is a null homotopy of hf (i.e. a homotopy of kd to h f) and w is the
naturally induced map. It is convenient to think of the bottom row as
a principal fibration. First of -all, it is clear that R is natural for such
maps of relative principal fibrations. Secondly, note that if At + 1)e
H*(L,D; G,) is a fundamental class for L then 2({) ¢ R(A({ + 1)). Hence
R(h) = R(h*A(t + 1)) D w*R((t)) > w. However, it is immediate from
the defining diagram for p that w e p(h). Q.E.D.

This proof should be compared to the proof that > = ¢ in [8]. With
some slight awkwardness it would be possible to define a homotopy
operation including both >’ and p as special cases and prove a theorem
which would specialize to both Theorem 1.5 and Theorem 3.1 of [8]. Both
operations can be viewed as versions of the bracket operation of Section 5
of [6].

We are interested in finding sufficient conditions for p(= R) to be
onto. Now assume 2:Z — D is a fibration in Top (pt) and that its fiber
is (n — 1)-connected and that the map £: X — D is b-connected.

1.6 THEOREM. t<min(n — 3,n + b — 1) implies R onto,
R:H'(Z,D; G,) — H"'(P,C; G,) .

Proof. In the defining diagram of R above it suffices to show f*
is isomorphic. Since Z — D is a fibration in Top (pt) so are P,Z — 7
and P—X. We have

P—s P,Z

Lo

X— Z
The fibers in Top(pt) of P—- X and P,Z — Z are the same. It follows

https://doi.org/10.1017/50027763000024648 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024648

PRINCIPAL FIBRATIONS 155

from the 83 X 3 lemma (Nomura [10]) that the “fibers” of P — P,Z and

X — Z are homotopically equivalent and so the relative Serre theorem

[8] can be applied to (X,P)— (Z,P,Z) and hence to (X,P)— (Z,D). It

is easy to see that the Top(pt) “fiber” of X —Z is min(n — 2, b)-con-

nected and HYZ,D; —) =0 for 2 <mn. The relative Serre theorem im-

plies that f* is isomorphic for ¢t + 1 <min(2n — 2,b + n). Q.E.D.
Now suppose there is a commutative diagram

P— X—7 in Top (C — D)

TM;.; Tug Tul
P—X-—2Z in Top (C' — D)
This gives (coefficients G,)
H"Y(Z,D) — H'(P, ()

Ht-f-l(Z/’ D/) N HL(PI’ C/)
So, in general, u}R(g) C R'u*(g).

1.7 THEOREM. Let we H(P,C). Assume ufw c R'(uk*g) for some g.
Assume u*: H*Y(X, P) — H*Y(X’, P’) is onto. Then w < R(g).

Proof. u*f*g = f'*ufg = dufw = u*é6w. Hence [f*g=4w and
w e R(g).

Consider now an ordinary principal fibration, in Top (C — pt), P(n)
— X — 7 where u: X —»Z. If a map £: X — D is given then a twisted
suspension operation p: H*D X Z,D; G) — H**(P,C; G) can be defined
as follows. First consider ' = u(£,u): X - D x Z and form the D-
relative principal fibration P(w') - X — D X Z. Then P = P(w).
(Here it might be better to write P,(u’) instead of P(u’).) Now suppose
N eTop (pt) and set L = D X N.

DX Z;D X NI 2~ [P; 2,(D x N)I¢

I I
(D x Z,D); (N,pt)] —  [P; ON]°

Il I
H"D x Z,D; &) — H"'P,C; @)

The last two rows give the twisted suspension operation in terms of the
original data. The last row assumes N = K(G,n). This transference
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technique can be generalized as follows. Given a K-relative principal
fibration, a map £: X — D, and NeTop(K = K), we get a twisted
operation

[(D ><KZ$‘D);(Zv’pt)]ll"{t"_> [P’AQKN]JG\"
I I
H"D XxZ,D;G) —— H"'(P,C;G,)

The last row assumes N = L,(G,n) and K = K(I,1).

2. Reducing Two Story Towers.
Suppose that the following tower in Top (C — D) is given.

B<«—FE,«—E,

lkl lk
L, L

Here L,e Top(D = D) and E, is the D-relative principal fibration in-
duced by k;. We are interested in finding M € Top(D = D) and f: B —
M so that E; — B is homotopically equivalent in Top (C — B) to P; — B
(the D-relatively principal fibration induced by f). The particular ex-
ample to keep in mind is the following one: L{ = L,(G,n), L; = L,(H,1),
L,=D xgL,, D— K= K(I,1) is a fixed map, /I is a group, G and H
are abelian groups and ¢: I — Aut (G) and +: I — Aut (H) are homomor-
phisms. The main homotopy theoretic result of this section is the fol-
lowing one.

2.1 THEOREM. Assume L, = 2,J and k,eImp: [L,; J13 — [E,; L,]3.
Then there is an M e Top (D = D) and f: B— M e Top (C — D) such that
P;— B and E,— B are homotopically equivalent in Top (C — B).

The theorem will be deduced from a couple of lemmas. First con-
sider the following diagram in Top (C — D).

P——X-—17

Ew la lb H:bf ~ fla

v
P—X—7

Here P and P’ are the induced D-relative principal fibrations. H: X —
WyZ’ is a given homotopy and w = wy: P — P’ is defined by w(x,m) =
(a(x), Pb)m + H(z)). If C = D = pt then the properties of w are known
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[Nomura, 9]. These known results can be generalized to the present
setting without difficulty. In particular, the following lemma can be
proved.

2.2 LEMMA. If a and b are homotopy equivalences then so is w.
If, in addition, a =id: X — X then w is a homotopy equivalence in
Top (C — X), i.e., a fiber homotopy equivalence in Top (C — D).

Now consider the following commutative diagram in Top (C — D).

P, 2> P,

Lo

P,~133—>X—f—>Z

b

P, —> Y—————>Z

Assume that ¢9: Y — Z e Top (D = D) so that P,e Top (D = D), gh = f,
k = (h,id), so hp, = p,k and w = (p,, Pp,) here.

2.3 LEMMA. The map w is a homotopy equivalence. In fact w is
o fiber homotopy equivalence of P, — X to P, — X.

Proof. If C =D = pt this is a result of Nomura [9]. His proof
carries over to the present setting without difficulty. The lemma can
also be deduced from a general 3 x 3 lemma.

We will now combine the previous two lemmas to get a proof of
the main theorem. Consider the following diagram.

a

P, P, “s p, > P,

! l |

P, P, P.—> B — L
RN
o1 =5 a7 P, L J

Here L=L,, k=Fk, r = k,ep(w). r is defined by means of some null-
homotopy of uk. Use the same null-homotopy to define f. = is the
natural homotopy equivalence and s = (f,id) and »n(— r) ~ s by H, say,
as is readily checked; all other squares are strictly commutative; the
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map w is due to the homotopy H. b is a homotopy equivalence in
Top (C — B) by Lemma 2.3 and a and w are homotopy equivalences in
Top (C — P,) by Lemma 2.2. Hence bwa is a homotopy equivalence in
Top(C — B). Take M = P,. This completes the proof of Theorem 2.1.

If C = D = pt, then 2.1 is related to Lemma 1.6 of Gershenson [2].
In order to apply 2.1 we need some conditions which guarantee that
k, is in the image of p. For simplicity we consider only the specific
situation described at the beginning of the section.

B < E, < FE,

1 l

DXKL¢(G,%)=L1 DXKL.p(H’t):Lz

Here n <t. The results below can, however, be stated in more general
terms and proved by the same methods. In particular L(G,n) can be
replaced by I1xL(G;,n;) and L(H,t) by IIxL(H,t;). It is now assumed
that all spaces involved have the homotopy type of CW complexes.

2.4 COROLLARY. Assume B —D 1is b-connected and that t<
min(2n — 3,n + b — 1). Then there is an M cTop (D = D) and f: B —
M € Top (C — D) such that P;— B and E;— B are homotopically equiva-
lent in Top (C — B).

Proof. Theorem 2.1,1.5, and 1.6 give this. Here
J=D XgL,(H,t+1).
Now the above diagram is enlargened as follows.

B «—— E;

|

B «—— E, «—— E,

L

L, L,
E} is the pullback of E, — B. We have

L, «—— B «— E,

[ e

L, «—— B’ «—— F;
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and hence

[Ly, J18 <2~ [E,, L,)¢

|

(L, J13 2 (B}, L,1¢

Let k. be the composition E} — E, — L,.

2.5 THEOREM. Assume kijcIm’ and that t <n + b where b = con-
nectivity of B’ — B. Then the conclusion of 2.4 is valid.

Proof. It suffices, by 2.1, to show k,eImp. Theorem 1.7 will be
used for this purpose. Recall, Theorem 1.5, p = R and o’ = R’, so:

H"“'(L,,D; H,) — H'E,,C; H,)

| l

H*“Y(L,,D; H) — H'(E:,C; H,)

and k,ec H(E,,C), u}k, = kbelm R’. We must only establish that
w*: H"*Y(B,E,) —» H*Y(B’,E}) is a monomorphism. Since L,— D is a
fibration in Top (pt), so are E, — B and E},— B’ and these last two have
the same fiber. It follows from the 3 X 3 lemma in Top (pt) that B’ —
B and E} — E, have homotopically equivalent “fibers” and hence that the
relative Serre theorem [8] can be applied to (B, E}) — (B,E,). If it can
be shown that H?(B,E,; H(F; H);) =0 for p<m or 0 <q<m’ and ¢
+ 1< m + m’ it will then follow that «* is monomorphic. By assump-
tion F is b-connected so m/ =0 + 1. Now consider H?(L,D;I)—
H?(B,FE,; I') where I" is any local coefficient system. Just as above we
see that the “fibers” of B — L, and E, - D are homotopically equivalent,
so the relative Serre spectral sequence can be applied. But H?(L,,D;I)
=0 for p <n so it follows that the same is true of H?(B,E,; I'). Hence
m =n and u*: H(B,E,; H,) — H(B',E}; H,) is isomorphic for i< n +
b — 1 and monomorphic for i <n + b + 1. Q.E.D.

Some special cases are of interest. First note that if B = B’ then
2.5 reduces to 2.1. Next, take B’ = F,.

2.6 COROLLARY. Suppose B’ = E,, k;elmp’. Thenif t < 2n — 2 the
conclusion of 2.4 is valid.
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Proof. Since L,— D is a fibration in Top (pt), ¢ = 1,2, it follows
that F, — B is also and is an extension of K(G,n — 1) by K(H,t — 1).
Since n < t, we see that E; — B is (n — 2)-connected and the corollary
follows from Theorem 2.5.

Next, take C = B’ = D. Then there is the following diagram in
Top (D = D).

«— Q,L,

«— FE,

0

1]
]

1 2

Here Q,L, = 2,(D X x L(G,n)) = D X x L(G,n — 1). Let k, be the com-
posite @,L, - E, — L,.

2.7 COROLLARY. Suppose kieIm 2,:1[L,,J1—[2,L,,L,]. Suppose also
that B — D is r-connected and t <n + r — 1. Then there is an f: B —
M ¢ Top (D = D) such that P; — B and E,— B are homotopically equiva-
lent in Top (D — B).

Proof. Consider

L, «—— B «—— E,

T

L, «— D «— 9,L,

It is clear from the definition of p that p = 2,. Also, since B — D is
a retraction and is r-connected it follows that D — B is (r — 1)-connected.
Hence 2.7 follows from 2.5.

Consider now a tower of ordinary principal fibrations is Top (C — pt).

B «— E, <« E,

b

R, R,

Assume b: B — D is given and R, = QR,. Then a sufficient condition for
E,— B to be D-relatively principal is that »,e Im p: [(D X R,, D); (R}, pt)]
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— [E,, R,]. p is the operation discussed at the end of Section 1. This
follows from 2.1 because we can consider

B < E, < E,
1(6,m 1(8,@
DxR, DXR,

and it is a tower of D-principal fibrations so 2.1 applies. More generally,
one can transfer from Top (C — K) to Top (C — D) and this is what was
done implicitly in 2.4.

3. Reducing Towers

I want to give a version of 2.1 for higher towers. Consider the
following tower of D-relatively principal fibrations.

B «— E, e E, E,..
ool
L, L, L,

In this section write P(f) for P,. For the operation p of 1.3 write o(f: k)
instead of p(k). In the proof of Theorem 2.1 denote f by k;. Thus we
have the diagram

E,

llfi'z — QM, — P(u)
|

©
/l
B T > L, —> M,

where 2 means 2, and 2M, = L,. The conclusion of 2.1 is that E, —
B and P(k;) are homotopy equivalent in Top (C — B). Identify E, and
P(k}) by the equivalence of the proof of Theorem 2.1. Consider the
following statements (4, for 7> 2.

ke o, ;v ) where v;_: P;_, - M,_,,

4,
P, ,=Pw,_,), OM; , =L, .

If ¢ = 2 interpret P, as L,.
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3.1 THEOREM. Assume (A) for 2< i< n. Then E,,, — B is equiva-
lent to P(k,) — B in Top (C — B).

Proof. If A,_,is true then P, , = P(v,_,) can be formed and v;_,: P;_,
—M;_, with k;ep(k]_,;v,.;) can be selected. We can form %, , and
identify F,_,— B with P(k;_) — B. Hence A, makes sense. A, is true
so 3.1 follows from 2.1 by induction.

From now on assume all spaces have homotopy type of CW complexes.

3.2 THEOREM. Assume L, =D X LyH,,t;) where D—K = (II,1) is
given. Assume t, <t, < ---<t, and t, <min2t, — 3,¢, + b + 1) where
b = connectivity of B— D. Then there is an M ¢ Top(D = D) and f: B
— M e Top (C — D) with P(f)— B and E,,, — B homotopically equivalent
i Top (C — B).

Proof. Assume (4,_,) has been established. H/(L,,D;—) =0, j <{t,
plus the Serre spectral sequence gives H/(P,,D; —) =0, <t,m<¢—1.
The proof of Theorem 1.6 now gives (4,). Q.E.D.

3.3 COROLLARY. Assume L, =D X K, (H;,t), t,<t, < .- - <, <28
— 3. Then the conclusion of 3.2 is valid with D = B.

Proof. b = co in 8.2.

Note that in 3.2 and 3.3 we can take L, =D XgllgL,H, ;)
provided ¢, =1¢;,, <t,,<---. This last corollary is related to a result
of Larmore [4].

3.4 COROLLARY. Let p: E — B be a fibration in Top (pt) with fiber
F = p~%(b,). Assume II,(F) = 0 except possibly when s <i1<<2s — 1. Then
there is an M € Top(B = B) and f:B— M such that P(f)— B and E —
B are homotopically equivalent in Top (C — B).

Proof. Let the diagram at the beginning of the section come from
the Postnikov factorization of p (see Section 4 of [8]). Thus L, = B Xx
LUIF,s +1),---,L, =B Xg L(Il,,_ ,F,28 — 1), n =8 —1,¢t, =s + 1, and
t, <2s — 1 =2t — 3. Hence 3.4 follows from 3.3.

Note that 3.3 is actually valid with D = B’ where B — B’ is b-connect-
ed, b >t —2. So in 3.4 we can take M e Top (B’ = B’) for such a B'.
For example, if ... — B(j) — --- — B(1) = K(1,B,1) is the Postnikov sys-
tem for B then B’ = B(t, — 2) is permissable in 3.3 and B’ = B(s — 1)
in 3.4.
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3.5 COROLLARY. Let E — B be a fibration in Top (pt) with fiber F
and II.F = 0 except possibly when s <1<<2s — 1. Assume B is s-con-
nected. Then E -—B is fiber homotopically equivalent to a principal
fibration.

Proof. D = pt in the above comment.

Corollary 3.5 is known and is, in fact, a special case of a theorem
of Ganea [1] and Hilton [3]. In order to generalize the Ganea-Hilton
theorem we consider the following diagram in Top (D = D).

b
Lol

n

The top row is obtained by pullback from the middle row. Let k; be
the composite E, —» E, — L.

3.6 THEOREM. Assume B— D is r-connected, k,cImQ,: [Ei; M,]—
[E,, L), where QE, = E,, and t,<t, +r+1, 1 <i<n. Then there is
an f:B—>MeTop(D = D) such that P(f)—B and E,,,— B are
homotopically equivalent in Top (D — B). Moreover, Q,M = E,,, ..

Proof. This follows from 3.1 just as 3.7 followed from 2.1.

3.7 THEOREM. Assume p: E — BeTop(D = D) and is a fibration in
Top (pt) with fiber F = p~'(b,). Let E be the pullback of p and b:D —
B. Assume E = 2,7 for some Z e Top (D = D) and B — D 1is r-connected.
Assume II.F = 0 except possibly when s <i<s+ r. Then there is an
f:B—Z in Top (D = D) such that P(f)— B and E — B are homotopically
equivalent in Top (D — B).

Proof. Let the above tower come from the Moore-Postnikov factori-
zation of p. The E-tower is then the Postnikov tower for E,,, — D.
However, this can also be obtained by applying £, to the Postnikov
tower for Z —D. It follows that each k, is indeed in the image of 2,
(by ‘“‘uniqueness” of Postnikov invariants). Here f, =s + 1 and ¢, <s
4+ 7 =1¢ +7r—1. The result now follows from 3.6. M can be taken
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to be Z because at each stage of the inductive construction the v, can
be taken to be the Postnikov invariant of Z.

The Ganea-Hilton result is the case D = pt of 3.7. Finally we
describe a version of 3.1 which does not explicitly require Top (D = D)
language. Consider a tower of ordinary principal fibrations (in Top C

— pt).
B E, R E, < E,.,
O |
R, R, R,

Assume b: B — D is given. For simplicity take R, = K(G,,t,).

rieImp: H“*'(P,_,,D; G,) — HYE,,C; G,) where P;,_, = P(v;_,) ,

(A’L) / s
Viog: (Pipy D) — (R, pt) and QR =R,.

If follows from 3.1 that (4,) for 2 < i< n gives E,,, — B a D-relatively
principal fibration (see the end of Section 2). There is a similar local
coefficient formulation.
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