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Abstract

We provide a comprehensive elaboration of the theoretical foundations of variable instantiation,
or grounding, in Answer Set Programming (ASP). Building on the semantics of ASP’s model-
ing language, we introduce a formal characterization of grounding algorithms in terms of (fixed
point) operators. A major role is played by dedicated well-founded operators whose associated
models provide semantic guidance for delineating the result of grounding along with on-the-fly
simplifications. We address an expressive class of logic programs that incorporates recursive
aggregates and thus amounts to the scope of existing ASP modeling languages. This is accom-
panied with a plain algorithmic framework detailing the grounding of recursive aggregates. The
given algorithms correspond essentially to the ones used in the ASP grounder gringo.
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1 Introduction

Answer Set Programming (ASP; Lifschitz 2002) allows us to address knowledge-intense

search and optimization problems in a greatly declarative way due to its integrated mod-

eling, grounding, and solving workflow (Gebser and Schaub 2016; Kaufmann et al . 2016).

Problems are modeled in a rule-based logical language featuring variables, function sym-

bols, recursion, and aggregates, among others. Moreover, the underlying semantics allows

us to express defaults and reachability in an easy way. A corresponding logic program

is then turned into a propositional format by systematically replacing all variables by

variable-free terms. This process is called grounding. Finally, the actual ASP solver takes

the resulting propositional version of the original program and computes its answer sets.

Given that both grounding and solving constitute the computational cornerstones of

ASP, it is surprising that the importance of grounding has somehow been eclipsed by

that of solving. This is nicely reflected by the unbalanced number of implementations.

With lparse (Syrjänen 2001b), (the grounder in) dlv (Faber et al . 2012), and gringo

(Gebser et al . 2011), three grounder implementations face dozens of solver implementa-

tions, among them smodels (Simons et al . 2002), (the solver in) dlv (Leone et al . 2006),

assat (Lin and Zhao 2004), cmodels (Giunchiglia et al . 2006), clasp (Gebser et al . 2012),

wasp (Alviano et al . 2015) just to name the major ones. What caused this imbalance?
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One reason may consist in the high expressiveness of ASP’s modeling language and the

resulting algorithmic intricacy (Gebser et al . 2011). Another may lie in the popular

viewpoint that grounding amounts to database materialization, and thus that most fun-

damental research questions have been settled. And finally the semantic foundations of

full-featured ASP modeling languages have been established only recently (Harrison et al .

2014; Gebser et al . 2015a), revealing the semantic gap to the just mentioned idealized

understanding of grounding. In view of this, research on grounding focused on algorithm

and system design (Faber et al . 2012; Gebser et al . 2011) and the characterization of

language fragments guaranteeing finite propositional representations (Syrjänen 2001b;

Gebser et al . 2007; Lierler and Lifschitz 2009; Calimeri et al . 2008).

As a consequence, the theoretical foundations of grounding are much less explored than

those of solving. While there are several alternative ways to characterize the answer sets

of a logic program (Lifschitz 2008), and thus the behavior of a solver, we still lack indepth

formal characterizations of the input–output behavior of ASP grounders. Although we

can describe the resulting propositional program up to semantic equivalence, we have no

formal means to delineate the actual set of rules.

To this end, grounding involves some challenging intricacies. First of all, the entire set

of systematically instantiated rules is infinite in the worst – yet not uncommon – case.

For a simple example, consider the program:

p(a)

p(X)← p(f(X)).

This program induces an infinite set of variable-free terms, viz. a, f(a), f(f(a)), . . . , that

leads to an infinite propositional program by systematically replacing variable X by all

these terms in the second rule, viz.

p(a), p(a)← p(f(a)), p(f(a))← p(f(f(a))), p(f(f(a)))← p(f(f(f(a)))), . . .

On the other hand, modern grounders only produce the fact p(a) and no instances of

the second rule, which is semantically equivalent to the infinite program. As well, ASP’s

modeling language comprises (possibly recursive) aggregates, whose systematic grounding

may be infinite in itself. To illustrate this, let us extend the above program with the rule

q ← #count{X : p(X)} = 1 (1)

deriving q when the number of satisfied instances of p is one. Analogous to above, the

systematic instantiation of the aggregate’s element results in an infinite set, viz.

{a : p(a), f(a) : p(f(a)), f(f(a)) : p(f(f(a))), . . . }.
Again, a grounder is able to reduce the rule in Equation (1) to the fact q since only

p(a) is obtained in our example. That is, it detects that the set amounts to the singleton

{a : p(a)}, which satisfies the aggregate. After removing the rule’s (satisfied) antecedent,

it produces the fact q. In fact, a solver expects a finite set of propositional rules including

aggregates over finitely many objects only. Hence, in practice, the characterization of

the grounding result boils down to identifying a finite yet semantically equivalent set of

rules (whenever possible). Finally, in practice, grounding involves simplifications whose

application depends on the ordering of rules in the input. In fact, shuffling a list of propo-

sitional rules only affects the order in which a solver enumerates answer sets, whereas

https://doi.org/10.1017/S1471068422000308 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000308


1140 R. Kaminski and T. Schaub

shuffling a logic program before grounding may lead to different though semantically

equivalent sets of rules. To see this, consider the program:

p(X)← ¬q(X) ∧ u(X) u(1) u(2)

q(X)← ¬p(X) ∧ v(X) v(2) v(3).

This program has two answer sets; both contain p(1) and q(3), while one contains q(2)

and the other p(2). Systematically grounding the program yields the obvious four rules.

However, depending upon the order, in which the rules are passed to a grounder, it already

produces either the fact p(1) or q(3) via simplification. Clearly, all three programs are

distinct but semantically equivalent in sharing the above two answer sets.

Our elaboration of the foundations of ASP grounding rests upon the semantics of

ASP’s modeling language (Harrison et al . 2014; Gebser et al . 2015a), which captures the

two aforementioned sources of infinity by associating non-ground logic programs with

infinitary propositional formulas (Truszczyński 2012). Our main result shows that the

stable models of a non-ground input program coincide with the ones of the ground out-

put program returned by our grounding algorithm upon termination. In formal terms,

this means that the stable models of the infinitary formula associated with the input

program coincide with the ones of the resulting ground program. Clearly, the resulting

program must be finite and consist of finitary subformulas only. A major part of our

work is thus dedicated to equivalence preserving transformations between ground pro-

grams. In more detail, we introduce a formal characterization of grounding algorithms in

terms of (fixed point) operators. A major role is played by specific well-founded operators

whose associated models provide semantic guidance for delineating the result of ground-

ing. More precisely, we show how to obtain a finitary propositional formula capturing

a logic program whenever the corresponding well-founded model is finite, and notably

how this transfers to building a finite propositional program from an input program

during grounding. The two key instruments accomplishing this are dedicated forms of

program simplification and aggregate translation, each addressing one of the two sources

of infinity in the above example. In practice, however, all these concepts are subject to

approximation, which leads to the order-dependence observed in the last example.

We address an expressive class of logic programs that incorporates recursive aggregates

and thus amounts to the scope of existing ASP modeling languages (Gebser et al . 2015b).

This is accompanied with an algorithmic framework detailing the grounding of recursive

aggregates. The given grounding algorithms correspond essentially to the ones used in

the ASP grounder gringo (Gebser et al . 2011). In this way, our framework provides

a formal characterization of one of the most widespread grounding systems. In fact,

modern grounders like (the one in) dlv (Faber et al . 2012) or gringo (Gebser et al . 2011)

are based on database evaluation techniques (Ullman 1988; Abiteboul et al . 1995). The

instantiation of a program is seen as an iterative bottom-up process starting from the

program’s facts while being guided by the accumulation of variable-free atoms possibly

derivable from the rules seen so far. During this process, a ground rule is produced if its

positive body atoms belong to the accumulated atoms, in which case its head atom is

added as well. This process is repeated until no further such atoms can be added. From

an algorithmic perspective, we show how a grounding framework (relying upon database

evaluation techniques) can be extended to incorporate recursive aggregates.

Our paper is organized as follows.
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Section 2 lays the basic foundations of our approach. We start in Section 2.1 by recalling

definitions of (monotonic) operators on lattices; they constitute the basic building blocks

of our characterization of grounding algorithms. We then review infinitary formulas along

with their stable and well-founded semantics in Sections 2.2, 2.3 and 2.4, respectively. In

this context, we explore several operators and define a class of infinitary logic programs

that allows us to capture full-featured ASP languages with (recursive) aggregates. Inter-

estingly, we have to resort to concepts borrowed from id-logic (Bruynooghe et al . 2016;

Truszczyński 2012) to obtain monotonic operators that are indispensable for capturing

iterative algorithms. Notably, the id-well-founded model can be used for approximating

regular stable models. Finally, we define in Section 2.5 our concept of program simplifica-

tion and elaborate upon its semantic properties. The importance of program simplifica-

tion can be read off two salient properties. First, it results in a finite program whenever

the interpretation used for simplification is finite. And second, it preserves all stable

models when simplified with the id-well-founded model of the program.

Section 3 is dedicated to the formal foundations of component-wise grounding. As

mentioned, each rule is instantiated in the context of all atoms being possibly derivable

up to this point. In addition, grounding has to take subsequent atom definitions into

account. To this end, we extend well-known operators and resulting semantic concepts

with contextual information, usually captured by two- and four-valued interpretations,

respectively, and elaborate upon their formal properties that are relevant to grounding.

In turn, we generalize the contextual operators and semantic concepts to sequences of

programs in order to reflect component-wise grounding. The major emerging concept is

essentially a well-founded model for program sequences that takes backward and forward

contextual information into account. We can then iteratively compute this model to

approximate the well-founded model of the entire program. This model-theoretic concept

can be used for governing an ideal grounding process.

Section 4 turns to logic programs with variables and aggregates. We align the seman-

tics of such aggregate programs with the one of Ferraris (2011) but consider infinitary

formulas (Harrison et al . 2014). In view of grounding aggregates, however, we introduce

an alternative translation of aggregates that is strongly equivalent to that of Ferraris but

provides more precise well-founded models. In turn, we refine this translation to be bound

by an interpretation so that it produces finitary formulas whenever this interpretation

is finite. Together, the program simplification introduced in Section 2.5 and aggregate

translation provide the basis for turning programs with aggregates into semantically

equivalent finite programs with finitary subformulas.

Section 5 further refines our semantic approach to reflect actual grounding processes.

To this end, we define the concept of an instantiation sequence based on rule dependen-

cies. We then use the contextual operators of Section 3 to define approximate models

of instantiation sequences. While approximate models are in general less precise than

well-founded ones, they are better suited for on-the-fly grounding along an instantia-

tion sequence. Nonetheless, they are strong enough to allow for completely evaluating

stratified programs.

Section 6 lays out the basic algorithms for grounding rules, components, and entire

programs and characterizes their output in terms of the semantic concepts developed in

the previous sections. Of particular interest is the treatment of aggregates, which are

decomposed into dedicated normal rules before grounding, and reassembled afterward.
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This allows us to ground rules with aggregates by means of grounding algorithms for

normal rules. Finally, we show that our grounding algorithm guarantees that an obtained

finite ground program is equivalent to the original non-ground program.

The previous sections focus on the theoretical and algorithmic cornerstones of ground-

ing. Section 7 refines these concepts by further detailing aggregate propagation, algorithm

specifics, and the treatment of language constructs from gringo’s input language.

We relate our contributions to the state of the art in Section 8 and summarize it in

Section 9.

Although the developed approach is implemented in gringo series 4 and 5, their high

degree of sophistication make it hard to retrace the algorithms from Section 6. Hence,

to ease comprehensibility, we have moreover implemented the presented approach in μ-

gringo1 in a transparent way and equipped it with means for retracing the developed

concepts during grounding. This can thus be seen as the practical counterpart to the

formal elaboration given below. Also, this system may enable some readers to construct

and to experiment with own grounder extensions.

This paper draws on material presented during an invited talk at the third workshop on

grounding, transforming, and modularizing theories with variables (Gebser et al . 2015c).

2 Foundations

2.1 Operators on lattices

This section recalls basic concepts on operators on complete lattices.

A complete lattice is a partially ordered set (L,≤) in which every subset S ⊆ L has a

greatest lower bound and a least upper bound in (L,≤).

An operator O on lattice (L,≤) is a function from L to L. It is monotone if x ≤ y implies

O(x) ≤ O(y) for each x, y ∈ L; and it is antimonotone if x ≤ y implies O(y) ≤ O(x) for

each x, y ∈ L.

Let O be an operator on lattice (L,≤). A prefixed point of O is an x ∈ L such that

O(x) ≤ x. A postfixed point of O is an x ∈ L such that x ≤ O(x). A fixed point of O is

an x ∈ L such that x = O(x), that is, it is both a prefixed and a postfixed point.

Theorem 1 (Knaster-Tarski; Tarski 1955)

Let O be a monotone operator on complete lattice (L,≤). Then, we have the following

properties:

(a) Operator O has a least fixed and prefixed point which are identical.

(b) Operator O has a greatest fixed and postfixed point which are identical.

(c) The fixed points of O form a complete lattice.

2.2 Formulas and interpretations

We begin with a propositional signature Σ consisting of a set of atoms. Follow-

ing Truszczyński (2012), we define the sets F0,F1, . . . of formulas as follows:

• F0 is the set of all propositional atoms in Σ,

1 The µ-gringo system is available at https://github.com/potassco/mu-gringo.
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• Fi+1 is the set of all elements of Fi, all expressions H∧ and H∨ with H ⊆ Fi, and

all expressions F → G with F,G ∈ Fi.

The set F =
⋃∞

i=0 Fi contains all (infinitary propositional) formulas over Σ.

In the following, we use the shortcuts

• � = ∅∧ and ⊥ = ∅∨,

• ¬F = F → ⊥ where F is a formula, and

• F ∧G = {F,G}∧ and F ∨G = {F,G}∨ where F and G are formulas.

We say that a formula is finitary, if it has a finite number of subformulas.

An occurrence of a subformula in a formula is called positive, if the number of impli-

cations containing that occurrence in the antecedent is even, and strictly positive if that

number is zero; if that number is odd the occurrence is negative. The sets F+ and F−

gather all atoms occurring positively or negatively in formula F , respectively; if applied

to a set of formulas, both expressions stand for the union of the respective atoms in the

formulas. Also, we define F± = F+ ∪ F− as the set of all atoms occurring in F .

A two-valued interpretation over signature Σ is a set I of propositional atoms such

that I ⊆ Σ. Atoms in an interpretation I are considered true and atoms in Σ \ I as false.

The set of all interpretations together with the ⊆ relation forms a complete lattice.

The satisfaction relation between interpretations and formulas is defined as follows:

• I |= a for atoms a if a ∈ I,

• I |= H∧ if I |= F for all F ∈ H,

• I |= H∨ if I |= F for some F ∈ H, and

• I |= F → G if I 
|= F or I |= G.

An interpretation I is a model of a set H of formulas, written I |= H, if it satisfies each

formula in the set.

In the following, all atoms, formulas, and interpretations operate on the same (implicit)

signature, unless mentioned otherwise.

2.3 Logic programs and stable models

Our terminology in this section keeps following the one of Truszczyński (2012).

The reduct F I of a formula F w.r.t. an interpretation I is defined as:

• ⊥ if I 
|= F ,

• a if I |= F and F = a ∈ F0,

• {GI | G ∈ H}∧ if I |= F and F = H∧,

• {GI | G ∈ H}∨ if I |= F and F = H∨, and

• GI → HI if I |= F and F = G→ H.

An interpretation I is a stable model of a formula F if it is among the (set inclusion)

minimal models of F I .

Note that the reduct removes (among other unsatisfied subformulas) all occurrences of

atoms that are false in I. Thus, the satisfiability of the reduct does not depend on such

atoms, and all minimal models of F I are subsets of I. Hence, if I is a stable model of F ,

then it is the only minimal model of F I .

SetsH1 andH2 of infinitary formulas are equivalent if they have the same stable models

and classically equivalent if they have the same models; they are strongly equivalent if, for
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any set H of infinitary formulas, H1∪H and H2∪H are equivalent. As shown by Harrison

et al . (2017), this also allows for replacing a part of any formula with a strongly equivalent

formula without changing the set of stable models.

In the following, we consider implications with atoms as consequent and formulas as

antecedent. As common in logic programming, they are referred to as rules, heads, and

bodies, respectively, and denoted by reversing the implication symbol. More precisely, an

F-program is set of rules of form h← F where h ∈ F0 and F ∈ F . We use H(h← F ) = h

to refer to rule heads and B(h← F ) = F to refer to rule bodies. We extend this by letting

H(P ) = {H(r) | r ∈ P} and B(P ) = {B(r) | r ∈ P} for any program P .

An interpretation I is a model of an F-program P , written I |= P , if I |= B(r)→ H(r)

for all r ∈ P . The latter is also written as I |= r. We define the reduct of P w.r.t. I as P I =

{rI | r ∈ P} where rI = H(r)← B(r)I . As above, an interpretation I is a stable model of

P if I is among the minimal models of P I . Just like the original definition of Gelfond and

Lifschitz (1988), the reduct of such programs leaves rule heads intact and only reduces

rule bodies. (This feature fits well with the various operators defined in the sequel.)

This program-oriented reduct yields the same stable models as obtained by applying

the full reduct to the corresponding infinitary formula.

Proposition 2

Let P be an F-program.

Then, the stable models of formula {B(r)→ H(r) | r ∈ P}∧ are the same as the stable

models of program P .

For programs, Truszczyński (2012) introduces in an alternative reduct, replacing each

negatively occurring atom with ⊥, if it is falsified, and with �, otherwise. More precisely,

the so-called id-reduct FI of a formula F w.r.t. an interpretation I is defined as

aI = a aI = � if a ∈ I

aI = ⊥ if a /∈ I

H∧
I = {FI | F ∈ H}∧ H∧

I
= {FI | F ∈ H}∧

H∨
I = {FI | F ∈ H}∨ H∨

I
= {FI | F ∈ H}∨

(F → G)I = FI → GI (F → G)I = FI → GI ,

where a is an atom, H a set of formulas, and F and G are formulas.

The id-reduct of an F-program P w.r.t. an interpretation I is PI = {rI | r ∈ P} where

rI = H(r) ← B(r)I . As with rI , the transformation of r into rI leaves the head of r

unaffected.

Example 1

Consider the program containing the single rule

p← ¬¬p.
We get the following reduced programs w.r.t. interpretations ∅ and {p}:

{p← ¬¬p}∅ = {p← ⊥} {p← ¬¬p}{p} = {p← ¬⊥}
{p← ¬¬p}∅ = {p← ¬¬p} = {p← ¬¬p}{p} = {p← ¬¬p}

Note that both reducts leave the rule’s head intact.
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Extending the definition of positive occurrences, we define a formula as (strictly) pos-

itive if all its atoms occur (strictly) positively in the formula. We define an F-program

as (strictly) positive if all its rule bodies are (strictly) positive.

For example, the program in Example 1 is positive but not strictly positive because

the only body atom p appears in the scope of two antecedents within the rule body ¬¬p.

As put forward by van Emden and Kowalski (1976), we may associate with each

program P its one-step provability operator TP , defined for any interpretation X as

TP (X) = {H(r) | r ∈ P,X |= B(r)}.

Proposition 3 (Truszczyński 2012)

Let P be a positive F-program.

Then, the operator TP is monotone.

Fixed points of TP are models of P guaranteeing that each contained atom is supported

by some rule in P ; prefixed points of TP correspond to the models of P . According

to Theorem 1(a), the TP operator has a least fixed point for positive F-programs. We

refer to this fixed point as the least model of P and write it as LM (P ).

Observing that the id-reduct replaces all negative occurrences of atoms, any id-reduct

PI of a program w.r.t. an interpretation I is positive and thus possesses a least model

LM (PI). This gives rise to the following definition of a stable operator (Truszczyński

2012): Given an F-program P , its id-stable operator is defined for any interpretation I as

SP (I) = LM (PI).

The fixed points of SP are the id-stable models of P .

Note that neither the program reduct P I nor the formula reduct F I guarantee (least)

models. Also, stable models and id-stable models do not coincide in general.

Example 2

Reconsider the program from Example 1, comprising rule

p← ¬¬p.
This program has the two stable models ∅ and {p}, but the empty model is the only

id-stable model.

Proposition 4 (Truszczyński 2012)

Let P be an F-program.

Then, the id-stable operator SP is antimonotone.

No analogous antimonotone operator is obtainable for F-programs by using the pro-

gram reduct P I (and for general theories with the formula reduct F I). To see this,

reconsider Example 2 along with its two stable models ∅ and {p}. Given that both had

to be fixed points of such an operator, it would behave monotonically on ∅ and {p}.
In view of this, we henceforth consider exclusively id-stable operators and drop the

prefix “id”. However, we keep the distinction between stable and id-stable models.

Truszczyński (2012) identifies in a class of programs for which stable models and id-

stable models coincide. The set N consists of all formulas F such that any implication

in F has ⊥ as consequent and no occurrences of implications in its antecedent. An N -

program consists of rules of form h← F where h ∈ F0 and F ∈ N .
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Proposition 5 (Truszczyński 2012)

Let P be an N -program.

Then, the stable and id-stable models of P coincide.

Note that a positive N -program is also strictly positive.

2.4 Well-founded models

Our terminology in this section follows the one of Truszczyński (2018) and traces back

to the early work of Belnap (1977) and Fitting (2002).2

We deal with pairs of sets and extend the basic set relations and operations accordingly.

Given sets I ′, I, J ′, J , and X, we define:

• (I ′, J ′) ≺̄ (I, J) if I ′ ≺ I and J ′ ≺ J for (≺̄,≺) ∈ {(�,⊂), (�,⊆)}
• (I ′, J ′) ◦̄ (I, J) = (I ′ ◦ I, J ′ ◦ J) for (◦̄, ◦) ∈ {(�,∪), (�,∩), (�, \)}
• (I, J) ◦̄ X = (I, J) ◦̄ (X,X) for ◦̄ ∈ {�,�,�}

A four-valued interpretation over signature Σ is represented by a pair (I, J) � (Σ,Σ)

where I stands for certain and J for possible atoms. Intuitively, an atom that is

• certain and possible is true,

• certain but not possible is inconsistent,

• not certain but possible is unknown, and

• not certain and not possible is false.

A four-valued interpretation (I ′, J ′) is more precise than a four-valued interpretation

(I, J), written (I, J) ≤p (I ′, J ′), if I ⊆ I ′ and J ′ ⊆ J . The precision ordering also has

an intuitive reading: the more atoms are certain or the fewer atoms are possible, the

more precise is an interpretation. The least precise four-valued interpretation over Σ

is (∅,Σ). As with two-valued interpretations, the set of all four-valued interpretations

over a signature Σ together with the relation ≤p forms a complete lattice. A four-valued

interpretation is called inconsistent if it contains an inconsistent atom; otherwise, it is

called consistent. It is total whenever it makes all atoms either true or false. Finally, (I, J)

is called finite whenever both I and J are finite.

Following Truszczyński (2018), we define the id-well-founded operator of an F-program

P for any four-valued interpretation (I, J) as

WP (I, J) = (SP (J), SP (I)).

This operator is monotone w.r.t. the precision ordering ≤p. Hence, by Theorem 1(b),

WP has a least fixed point, which defines the id-well-founded model of P , also written as

WM (P ). In what follows, we drop the prefix “id” and simply refer to the id-well-founded

model of a program as its well-founded model. (We keep the distinction between stable

and id-stable models.)

Any well-founded model (I, J) of an F-program P satisfies I ⊆ J .

Lemma 6

Let P be an F-Program.

Then, the well-founded model WM (P ) of P is consistent.

2 The interested reader is referred to the tutorial by Truszczyński (2018) for further details.
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Example 3

Consider program P3 consisting of the following rules:

a

b← a

c← ¬b
d← c

e← ¬d.
We compute the well-founded model of P3 in four iterations starting from (∅,Σ):

SP (Σ) = {a, b} SP (∅) = {a, b, c, d, e}1.

SP ({a, b, c, d, e}) = {a, b} SP ({a, b}) = {a, b, e}2.

SP ({a, b, e}) = {a, b, e} SP ({a, b}) = {a, b, e}3.

SP ({a, b, e}) = {a, b, e} SP ({a, b, e}) = {a, b, e}.4.

The left and right column reflect the certain and possible atoms computed at each itera-

tion, respectively. We reach a fixed point at Step 4. Accordingly, the well-founded model

of P3 is ({a, b, e}, {a, b, e}).
Unlike general F-programs, the class of N -programs warrants the same stable and

id-stable models for each of its programs. Unfortunately, N -programs are too restricted

for our purpose (for instance, for capturing aggregates in rule bodies3). To this end, we

define a more general class of programs and refer to them as R-programs. Although

id-stable models of R-programs may differ from their stable models (see below), their

well-founded models encompass both stable and id-stable models. Thus, well-founded

models can be used for characterizing stable model-preserving program transformations.

In fact, we see in Section 2.5 that the restriction of F- to R-programs allows us to provide

tighter semantic characterizations of program simplifications.

We define R to be the set of all formulas F such that implications in F have no further

occurrences of implications in their antecedents. Then, an R-program consists of rules of

form h ← F where h ∈ F0 and F ∈ R. As with N -programs, a positive R-program is

also strictly positive.

Our next result shows that (id-)well-founded models can be used for approximating

(regular) stable models of R-programs.

Theorem 7

Let P be an R-program and (I, J) be the well-founded model of P .

If X is a stable model of P , then I ⊆ X ⊆ J .

Example 4

Consider the R-program P4:4

c← (b→ a) a← b

a← c b← a.

3 Ferraris’ semantics (Ferraris 2011) of aggregates introduces implications, which results in rules beyond
the class of N -programs.

4 The choice of the body b → a is not arbitrary since it can be seen as representing the aggregate
#sum{1 : a,−1 : b} ≥ 0.
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Observe that {a, b, c} is the only stable model of P4, the program does not have any

id-stable models, and the well-founded model of P4 is (∅, {a, b, c}). In accordance with

Theorem 7, the stable model of P4 is enclosed in the well-founded model.

Note that the id-reduct handles b → a the same way as ¬b ∨ a. In fact, the program

obtained by replacing

c← (b→ a)

with

c← ¬b ∨ a

is an N -program and has neither stable nor id-stable models.

Further, note that the program in Example 2 is not an R-program, whereas the one

in Example 3 is an R-program.

2.5 Program simplification

In this section, we define a concept of program simplification relative to a four-valued

interpretation and show how its result can be characterized by the semantic means from

above. This concept has two important properties. First, it results in a finite program

whenever the interpretation used for simplification is finite. And second, it preserves all

(regular) stable models of R-programs when simplified with their well-founded models.

Definition 1

Let P be an F-program, and (I, J) be a four-valued interpretation.

We define the simplification of P w.r.t. (I, J) as

P (I,J) = {r ∈ P | J |= B(r)I}.
For simplicity, we drop parentheses and we write P I,J instead of P (I,J) whenever clear

from context.

The program simplification P I,J acts as a filter eliminating inapplicable rules that

fail to satisfy the condition J |= B(r)I . That is, first, all negatively occurring atoms in

B(r) are evaluated w.r.t. the certain atoms in I and replaced accordingly by ⊥ and �,

respectively. Then, it is checked whether the reduced body B(r)I is satisfiable by the

possible atoms in J . Only in this case, the rule is kept in P I,J . No simplifications are

applied to the remaining rules. This is illustrated in Example 5 below.

Note that P I,J is finite whenever (I, J) is finite.

Observe that for an F-program P the head atoms in P I,J correspond to the result

of applying the provability operator of program PI to the possible atoms in J , that is,

H(P I,J ) = TPI
(J).

Our next result shows that programs simplified with their well-founded model maintain

this model.

Theorem 8

Let P be an F-program and (I, J) be the well-founded model of P .

Then, P and P I,J have the same well-founded model.
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Example 5

In Example 3, we computed the well-founded model ({a, b, e}, {a, b, e}) of P3. With this,

we obtain the simplified program P ′
3 = P

{a,b,e},{a,b,e}
3 after dropping c← ¬b and d← c:

a

b← a

e← ¬d.
Next, we check that the well-founded model of P ′

3 corresponds to the well-founded

model of P3:

SP ′
3

(Σ) = {a, b} SP ′
3

(∅) = {a, b, e}1.

SP ′
3

({a, b, e}) = {a, b, e} SP ′
3

({a, b}) = {a, b, e}2.

SP ′
3

({a, b, e}) = {a, b, e} SP ′
3

({a, b, e}) = {a, b, e}.3.

We observe that it takes two applications of the well-founded operator to obtain the

well-founded model. This could be reduced to one step if atoms false in the well-founded

model would be removed from the negative bodies by the program simplification. Keeping

them is a design decision with the goal to simplify notation in the following.

The next series of results further elaborates on semantic invariants guaranteed by

our concept of program simplification. The first result shows that it preserves all stable

models between the sets used for simplification.

Theorem 9

Let P be an F-program, and I, J , and X be two-valued interpretations.

If I ⊆ X ⊆ J , then X is a stable model of P iff X is a stable model of P I,J .

As a consequence, we obtain that R-programs simplified with their well-founded model

also maintain stable models.

Corollary 10

Let P be an R-program and (I, J) be the well-founded model of P .

Then, P and P I,J have the same stable models.

For instance, the R-program in Example 3 and its simplification in Example 5 have the

same stable model. Unlike this, the program from Example 2 consisting of rule p← ¬¬p
induces two stable models, while its simplification w.r.t. its well-founded model (∅, ∅)
yields an empty program admitting the empty stable model only.

Note that given an R-program with a finite well-founded model, we obtain a seman-

tically equivalent finite program via simplification. As detailed in the following sections,

grounding algorithms only compute approximations of the well-founded model. However,

as long as the approximation is finite, we still obtain semantically equivalent finite pro-

grams. This is made precise by the next two results showing that any program between

the original and its simplification relative to its well-founded model preserves the well-

founded model, and that this extends to all stable models for R-programs.
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Theorem 11

Let P and Q be F-programs, and (I, J) be the well-founded model of P .

If P I,J ⊆ Q ⊆ P , then P and Q have the same well-founded models.

Corollary 12

Let P and Q be R-programs, and (I, J) be the well-founded model of P .

If P I,J ⊆ Q ⊆ P , then P and Q are equivalent.

3 Splitting

One of the first steps during grounding is to group rules into components suitable for

successive instantiation. This amounts to splitting a logic program into a sequence of

subprograms. The rules in each such component are then instantiated with respect to

the atoms possibly derivable from previous components, starting with some component

consisting of facts only. In other words, grounding is always performed relative to a set

of atoms that provide a context. Moreover, atoms found to be true or false can be used

for on-the-fly simplifications.

Accordingly, this section parallels the above presentation by extending the respective

formal concepts with contextual information provided by atoms in a two- and four-valued

setting. We then assemble the resulting concepts to enable their consecutive application

to sequences of subprograms. Interestingly, the resulting notion of splitting allows for

more fine-grained splitting than the traditional concept (Lifschitz and Turner 1994) since

it allows us to partition rules in an arbitrary way. In view of grounding, we show that

once a program is split into a sequence of programs, we can iteratively compute an

approximation of the well-founded model by considering in turn each element in the

sequence.

In what follows, we append letter “C” to names of interpretations having a contextual

nature.

To begin with, we extend the one-step provability operator accordingly.

Definition 2

Let P be an F-program and IC be a two-valued interpretation.

For any two-valued interpretation I, we define the one-step provability operator of P

relative to IC as

T IC
P (I) = TP (IC ∪ I).

A prefixed point of T IC
P is a also a prefixed point of TP . Thus, each prefixed point of

T IC
P is a model of P but not vice versa.

To see this, consider program P = {a ← b}. We have TP (∅) = ∅ and T
{b}
P (∅) = {a}.

Hence, ∅ is a (pre)fixed point of TP but not of T
{b}
P since {a} 
⊆ ∅. The set {a} is a

prefixed point of both operators.

Proposition 13

Let P be a positive program, and IC and J be two valued interpretations.

Then, the operators T IC
P and T ·

P (J) are both monotone.

We use Theorems 1 and 13 to define a contextual stable operator.
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Definition 3

Let P be an F-program and IC be a two-valued interpretation.

For any two-valued interpretation J , we define the stable operator relative to IC , writ-

ten SIC
P (J), as the least fixed point of T IC

PJ
.

While the operator is antimonotone w.r.t. its argument J , it is monotone regarding its

parameter IC .

Proposition 14

Let P be an F-program, and IC and J be two-valued interpretations.

Then, the operators SIC
P and S ·

P (J) are antimonotone and monotone, respectively.

By building on the relative stable operator, we next define its well-founded counterpart.

Unlike above, the context is now captured by a four-valued interpretation.

Definition 4

Let P be an F-program and (IC , JC ) be a four-valued interpretation.

For any four-valued interpretation (I, J), we define the well-founded operator relative

to (IC , JC ) as

W
(IC ,JC )
P (I, J) = (SIC

P (J ∪ JC ), SJC
P (I ∪ IC )).

As above, we drop parentheses and simply write W I,J
P instead of W

(I,J)
P . Also, we keep

refraining from prepending the prefix “id” to the well-founded operator along with all

concepts derived from it below.

Unlike the stable operator, the relative well-founded one is monotone on both its

argument and parameter.

Proposition 15

Let P be an F-program, and (I, J) and (IC , JC ) be four-valued interpretations.

Then, the operators W IC ,JC
P and W ·

P (I, J) are both monotone w.r.t. the precision

ordering.

From Theorems 1 and 15, we get that the relative well-founded operator has a least

fixed point.

Definition 5

Let P be an F-program and (IC , JC ) be a four-valued interpretation.

We define the well-founded model of P relative to (IC , JC ), written WM (IC ,JC )(P ),

as the least fixed point of W IC ,JC
P .

Whenever clear from context, we keep dropping parentheses and simply write

WM I,J (P ) instead of WM (I,J)(P ).

In what follows, we use the relativized concepts defined above to delineate the se-

mantics and resulting simplifications of the sequence of subprograms resulting from a

grounder’s decomposition of the original program. For simplicity, we first present a the-

orem capturing the composition under the well-founded operation, before we give the

general case involving a sequence of programs.

Just like suffix C, we use the suffix E (and similarly letter E further below) to indicate

atoms whose defining rules are yet to come.
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As in traditional splitting, we begin by differentiating a bottom and a top program. In

addition to the input atoms (I, J) and context atoms in (IC , JC ), we moreover distinguish

a set of external atoms, (IE , JE ), which occur in the bottom program but are defined

in the top program. Accordingly, the bottom program has to be evaluated relative to

(IC , JC ) � (IE , JE ) (and not just (IC , JC ) as above) to consider what could be derived

by the top program. Also, observe that our notion of splitting aims at computing well-

founded models rather than stable models.

Theorem 16

Let PB and PT be F-programs, (IC , JC ) be a four-valued interpretation, (I, J) =

WM IC ,JC (PB ∪ PT ), (IE , JE ) = (I, J) � (B(PB)
± ∩ H(PT )), (IB , JB) =

WM (IC ,JC )�(IE ,JE)(PB), and (IT , JT ) = WM (IC ,JC )�(IB,JB)(PT ).

Then, we have (I, J) = (IB , JB) � (IT , JT ).

Partially expanding the statements of the two previous result nicely reflects the de-

composition of the application of the well-founded founded model of a program:

WM IC ,JC (PB ∪ PT ) = WM (IC ,JC )�(IE ,JE)(PB) �WM (IC ,JC )�(IB,JB)(PT ).

Note that the formulation of the theorem forms the external interpretation (IE , JE ),

by selecting atoms from the overarching well-founded model (I, J). This warrants the

correspondence of the overall interpretations to the union of the bottom and top well-

founded model. This global approach is dropped below (after the next example) and

leads to less precise composed models.

Example 6

Let us illustrate the above approach via the following program:

a (PB)

b (PB)

c← a (PT )

d← ¬b. (PT )

The well-founded model of this program relative to (IC , JC ) = (∅, ∅) is

(I, J) = ({a, b, c}, {a, b, c}).
First, we partition the four rules of the program into PB and PT as given above. We

get (IE , JE ) = (∅, ∅) since B(PB)
± ∩ H(PT ) = ∅. Let us evaluate PB before PT . The

well-founded model of PB relative to (IC , JC ) � (IE , JE ) is

(IB , JB) = ({a, b}, {a, b}).
With this, we calculate the well-founded model of PT relative to (IC , JC ) � (IB , JB):

(IT , JT ) = ({c}, {c}).
We see that the union of (IB , JB) � (IT , JT ) is the same as the well-founded model of

PB ∪ PT relative to (IC , JC ).

This corresponds to standard splitting in the sense that {a, b} is a splitting set for

PB ∪ PT and PB is the “bottom” and PT is the “top” (Lifschitz and Turner 1994).
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Example 7

For a complement, let us reverse the roles of programs PB and PT in Example 6. Unlike

above, body atoms in PB now occur in rule heads of PT , that is, B(PB)
± ∩H(PT ) =

{a, b}. We thus get (IE , JE ) = ({a, b}, {a, b}). The well-founded model of PB relative to

(IC , JC ) � (IE , JE ) is

(IB , JB) = ({c}, {c}).
And the well-founded model of PT relative to (IC , JC ) � (IB , JB) is

(IT , JT ) = ({a, b}, {a, b}).
Again, we see that the union of both models is identical to (I, J).

This decomposition has no direct correspondence to standard splitting (Lifschitz and

Turner 1994) since there is no splitting set.

Next, we generalize the previous results from two programs to sequences of programs.

For this, we let I be a well-ordered index set and direct our attention to sequences (Pi)i∈I

of F-programs.

Definition 6

Let (Pi)i∈I
be a sequence of F-programs.

We define the well-founded model of (Pi)i∈I
as

WM ((Pi)i∈I
) =

⊔
i∈I

(Ii, Ji), (2)

where

Ei = B(Pi)
± ∩

⋃
i<j

H(Pj), (3)

(IC i, JC i) =
⊔
j<i

(Ij , Jj), and (4)

(Ii, Ji) = WM (IC i,JC i)�(∅,Ei)(Pi). (5)

The well-founded model of a program sequence is itself assembled in (2) from a se-

quence of well-founded models of the individual subprograms in (5). This provides us

with semantic guidance for successive program simplification, as shown below. In fact,

proceeding along the sequence of subprograms reflects the iterative approach of a ground-

ing algorithm, one component is grounded at a time. At each stage i ∈ I, this takes into

account the truth values of atoms instantiated in previous iterations, viz. (IC i, JC i), as

well as dependencies to upcoming components in Ei. Note that unlike Proposition 16,

the external atoms in Ei are identified purely syntactically, and the interpretation (∅, Ei)

treats them as unknown. Grounding is thus performed under incomplete information and

each well-founded model in (5) can be regarded as an over-approximation of the actual

one. This is enabled by the monotonicity of the well-founded operator in Proposition 15

that only leads to a less precise result when overestimating its parameter.

Accordingly, the next theorem shows that once we split a program into a sequence of

F-programs, we can iteratively compute an approximation of the well-founded model by

considering in turn each element in the sequence.
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Theorem 17

Let (Pi)i∈I
be a sequence of F-programs.

Then, WM ((Pi)i∈I
) ≤p WM (

⋃
i∈I

Pi).

The next two results transfer Theorem 17 to program simplification by successively

simplifying programs with the respective well-founded models of the previous programs.

Theorem 18

Let (Pi)i∈I
be a sequence of F-programs, (I, J) = WM ((Pi)i∈I

), and Ei, (IC i, JC i), and

(Ii, Ji) be defined as in (3)–(5).

Then, P I,J
k ⊆ P

(ICk,JCk)�(Ik,Jk)�(∅,Ek)
k ⊆ Pk for all k ∈ I.

Corollary 19

Let (Pi)i∈I
be a sequence of R-programs, and Ei, (IC i, JC i), and (Ii, Ji) be defined as

in Equation (3)–Equation (5).

Then,
⋃

i∈I
Pi and

⋃
i∈I

P
(IC i,JC i)�(Ii,Ji)�(∅,Ei)
i have the same well-founded and stable

models.

Let us mention that the previous result extends to sequences of F-programs and their

well-founded models but not their stable models.

Example 8

To illustrate Theorem 17, let us consider the following programs, P1 and P2:

a← ¬c (P1)

b← ¬d (P1)

c← ¬b (P2)

d← e. (P2)

The well-founded model of P1 ∪ P2 is

(I, J) = ({a, b}, {a, b}).
Let us evaluate P1 before P2. While no head literals of P2 occur positively in P1, the

head literals c and d of P2 occur negatively in rule bodies of P1. Hence, we get E1 = {c, d}
and treat both atoms as unknown while calculating the well-founded model of P1 relative

to (∅, {c, d}):
(I1, J1) = (∅, {a, b}).

We obtain that both a and b are unknown. With this and E2 = ∅, we can calculate

the well-founded model of P2 relative to (I1, J1):

(I2, J2) = (∅, {c}).
We see that because a is unknown, we have to derive c as unknown, too. And because

there is no rule defining e, we cannot derive d. Hence, (I1, J1) � (I2, J2) is less precise

than (I, J) because, when evaluating P1, it is not yet known that c is true and d is false.

Next, we illustrate the simplified programs according to Theorem 18:

a← ¬c a← ¬c (P1)

b← ¬d b← ¬d (P1)

c← ¬b. (P2)
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The left column contains the simplification of P1 ∪ P2 w.r.t. (I, J) and the right column

the simplification of P1 w.r.t. (I1, J1) and P2 w.r.t. (I1, J1) � (I2, J2). Note that d ← e

has been removed in both columns because e is false in both (I, J) and (I1, J1)� (I2, J2).

But we can only remove c ← ¬b from the left column because, while b is false in (I, J),

it is unknown in (I1, J1) � (I2, J2).

Finally, observe that in accordance with Theorem 9 and Corollaries 10 and

cor:sequence:simplification:stable, the program P1 ∪ P2 and the two simplified programs

have the same stable and well-founded models.

Clearly, the best simplifications are obtained when simplifying with the actual well-

founded model of the overall program. This can be achieved for a sequence as well when-

ever Ei is empty, that is, if there is no need to approximate the impact of upcoming

atoms.

Corollary 20

Let (Pi)i∈I
be a sequence of F-programs and Ei be defined as in (3).

If Ei = ∅ for all i ∈ I then WM ((Pi)i∈I
) = WM (

⋃
i∈I

Pi).

Corollary 21

Let (Pi)i∈I
be a sequence of F-programs, (I, J) = WM ((Pi)i∈I

), and Ei, (IC i, JC i), and

(Ii, Ji) be defined as in (3)–(5).

If Ei = ∅ for all i ∈ I, then P I,J
k = P

(ICk,JCk)�(Ik,Jk)
k for all k ∈ I.

Example 9

Next, let us illustrate Corollary 20 on an example. We take the same rules as in Example 8

but use a different sequence:

d← e (P1)

b← ¬d (P1)

c← ¬b (P2)

a← ¬c. (P2)

Observe that the head literals of P2 do not occur in the bodies of P1, that is, E1 =

B(P1)
± ∩H(P2) = ∅. The well-founded model of P1 is

(I1, J1) = ({b}, {b}).
And the well-founded model of P2 relative to ({b}, {b}) is

(I2, J2) = ({a}, {a}).
Hence, the union of both models is identical to the well-founded model of P1 ∪ P2.

Next, we investigate the simplified program according to Corollary 21:

b← ¬d (P1)

a← ¬c. (P2)

As in Example 8, we delete rule d ← e because e is false in (I1, J1). But this time, we

can also remove rule c← ¬b because b is true in (I1, J1) � (I2, J2).
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4 Aggregate programs

We now turn to programs with aggregates and, at the same time, to programs with

variables. That is, we now deal with finite nonground programs whose instantiation may

lead to infinite ground programs including infinitary subformulas. This is made precise

by Harrison et al . (2014) and Gebser et al . (2015a) where aggregate programs are asso-

ciated with infinitary propositional formulas (Truszczyński 2012). However, the primary

goal of grounding is to produce a finite set of ground rules with finitary subformulas only.

In fact, the program simplification introduced in Section 2.5 allows us to produce an

equivalent finite ground program whenever the well-founded model is finite. The source

of infinitary subformulas lies in the instantiation of aggregates. We address this below

by introducing an aggregate translation bound by an interpretation that produces fini-

tary formulas whenever this interpretation is finite. Together, our concepts of program

simplification and aggregate translation provide the backbone for turning programs with

aggregates into semantically equivalent finite programs with finitary subformulas.

Our concepts follow the ones of Gebser et al . (2015a); the semantics of aggregates is

aligned with that of Ferraris (2011) yet lifted to infinitary formulas (Truszczyński 2012;

Harrison et al . 2014).

We consider a signature Σ = (F ,P,V) consisting of sets of function, predicate, and

variable symbols. The sets of variable and function symbols are disjoint. Function and

predicate symbols are associated with non-negative arities. For short, a predicate symbol

p of arity n is also written as p/n. In the following, we use lower case strings for function

and predicate symbols, and upper case strings for variable symbols. Also, we often drop

the term ‘symbol’ and simply speak of functions, predicates, and variables.

As usual, terms over Σ are defined inductively as follows:

• v ∈ V is a term and

• f(t1, . . . , tn) is a term if f ∈ F is a function symbol of arity n and each ti is a term

over Σ.

Parentheses for terms over function symbols of arity 0 are omitted.

Unless stated otherwise, we assume that the set of (zero-ary) functions includes a set

of numeral symbols being in a one-to-one correspondence to the integers. For simplicity,

we drop this distinction and identify numerals with the respective integers.

An atom over signature Σ has form p(t1, . . . , tn) where p ∈ P is a predicate symbol

of arity n and each ti is a term over Σ. As above, parentheses for atoms over predicate

symbols of arity 0 are omitted. Given an atom a over Σ, a literal over Σ is either the

atom itself or its negation ¬a. A literal without negation is called positive, and negative

otherwise.

A comparison over Σ has form

t1 ≺ t2, (6)

where t1 and t2 are terms over Σ and ≺ is a relation symbol among <, ≤, >, ≥, =, and


=.

An aggregate element over Σ has form

t1, . . . , tm : a1 ∧ · · · ∧ an, (7)
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where ti is a term and aj is an atom, both over Σ for 0 ≤ i ≤ m and 0 ≤ j ≤ n.

The terms t1, . . . , tm are seen as a tuple, which is empty for m = 0; the conjunction

a1 ∧ · · · ∧ an is called the condition of the aggregate element. For an aggregate element e

of form (7), we use H(e) = (t1, . . . , tm) and B(e) = {a1, . . . , an}. We extend both to sets

of aggregate elements in the straightforward way, that is, H(E) = {H(e) | e ∈ E} and

B(E) = {B(e) | e ∈ E}.
An aggregate atom over Σ has form

f{e1, . . . , en} ≺ s, (8)

where n ≥ 0, f is an aggregate name among #count, #sum, #sum+, and #sum−, each

ei is an aggregate element, ≺ is a relation symbol among <, ≤, >, ≥, =, and 
= (as

above), and s is a term representing the aggregate’s bound.

Without loss of generality, we refrain from introducing negated aggregate atoms.5 We

often refer to aggregate atoms simply as aggregates.

An aggregate program over Σ is a finite set of aggregate rules of form

h← b1 ∧ · · · ∧ bn,

where n ≥ 0, h is an atom over Σ and each bi is either a literal, a comparison, or an

aggregate over Σ. We refer to b1, . . . , bn as body literals, and extend functions H(r) and

B(r) to any aggregate rule r.

Example 10

An example for an aggregate program is shown below, giving an encoding of the Company

Controls Problem (Mumick et al . 1990): A company X controls a company Y if X directly

or indirectly controls more than 50% of the shares of Y .

controls(X,Y )← #sum+{S : owns(X,Y, S);

S,Z : controls(X,Z) ∧ owns(Z, Y, S)} > 50

∧ company(X) ∧ company(Y ) ∧X 
= Y.

The aggregate #sum+ implements summation over positive integers. Notably, it takes

part in the recursive definition of predicate controls . In the following, we use an instance

with ownership relations between four companies:

company(c1) company(c2) company(c3) company(c4)

owns(c1, c2, 60) owns(c1, c3, 20) owns(c2, c3, 35) owns(c3, c4, 51).

We say that an aggregate rule r is normal if its body does not contain aggregates. An

aggregate program is normal if all its rules are normal.

A term, literal, aggregate element, aggregate, rule, or program is ground whenever it

does not contain any variables.

We assume that all ground terms are totally ordered by a relation ≤, which is used to

define the relations <, >, ≥, =, and 
= in the standard way. For ground terms t1, t2 and

5 Grounders like lparse and gringo replace aggregates systematically by auxiliary atoms and place them
in the body of new rules implying the respective auxiliary atom. This results in programs without
occurrences of negated aggregates.
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a corresponding relation symbol ≺, we say that ≺ holds between t1 and t2 whenever the

corresponding relation holds between t1 and t2. Furthermore, >, ≥, and 
= hold between

∞ and any other term, and <, ≤, and 
= hold between −∞ and any other term. Finally,

we require that integers are ordered as usual.

For defining sum-based aggregates, we define for a tuple t = t1, . . . , tm of ground terms

the following weight functions:

w(t) =

{
t1 if m > 0 and t1 is an integer

0 otherwise,

w+(t) = max{w(t), 0}, and

w−(t) = min{w(t), 0}.
With this at hand, we now define how to apply aggregate functions to sets of tuples

of ground terms in analogy to Gebser et al . (2015a).

Definition 7

Let T be a set of tuples of ground terms.

We define

#count(T ) =

{
|T | if T is finite,

∞ otherwise,

#sum(T ) =

{
Σt∈Tw(t) if {t ∈ T | w(t) 
= 0} is finite,

0 otherwise,

#sum+(T ) =

{
Σt∈Tw

+(t) if {t ∈ T | w(t) > 0} is finite,

∞ otherwise, and

#sum−(T ) =

{
Σt∈Tw

−(t) if {t ∈ T | w(t) < 0} is finite,

−∞ otherwise.

Note that in our setting the application of aggregate functions to infinite sets of ground

terms is of theoretical relevance only, since we aim at reducing them to their finite

equivalents so that they can be evaluated by a grounder.

A variable is global in

• a literal if it occurs in the literal,

• a comparison if it occurs in the comparison,

• an aggregate if it occurs in its bound, and

• a rule if it is global in its head atom or in one of its body literals.

For example, the variables X and Y are global in the aggregate rule in Example 10,

while Z and S are neither global in the rule nor the aggregate.

Definition 8

Let r be an aggregate rule.

We define r to be safe

• if all its global variables occur in some positive literal in the body of r and

• if all its non-global variables occurring in an aggregate element e of an aggregate

in the body of r, also occur in some positive literal in the condition of e.
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For instance, the aggregate rule in Example 10 is safe.

Note that comparisons are disregarded in the definition of safety. That is, variables in

comparisons have to occur in positive body literals.6

An aggregate program is safe if all its rules are safe.

An instance of an aggregate rule r is obtained by substituting ground terms for all

its global variables. We use Inst(r) to denote the set of all instances of r and Inst(P ) to

denote the set of all ground instances of rules in aggregate program P . An instance of

an aggregate element e is obtained by substituting ground terms for all its variables. We

let Inst(E) stand for all instances of aggregate elements in a set E. Note that Inst(E)

consists of ground expressions, which is not necessarily the case for Inst(r). As seen from

the first example in the introductory section, both Inst(r) and Inst(E) can be infinite.

A literal, aggregate element, aggregate, or rule is closed if it does not contain any

global variables.

For example, the following rule is an instance of the aggregate rule in Example 10.

controls(c1, c2)← #sum+{S : owns(c1, c2, S);

S,Z : controls(c1, Z), owns(Z, c2, S)} > 50

∧ company(c1) ∧ company(c2) ∧ c1 
= c2.

Note that both the rule and its aggregate are closed. It is also noteworthy to realize that

the two elements of the aggregate induce an infinite set of instances, among them

20 : owns(c1, c2, 20) and

35, c2 : controls(c1, c2), owns(c2, c3, 35).

We now turn to the semantics of aggregates as introduced by Ferraris (2011) but follow

its adaptation to closed aggregates by Gebser et al . (2015a): Let a be a closed aggregate

of form (8) and E be its set of aggregate elements. We say that a set D ⊆ Inst(E) of its

elements’ instances justifies a, written D � a, if f(H(D)) ≺ s holds.

An aggregate a is monotone whenever D1 �a implies D2 �a for all D1 ⊆ D2 ⊆ Inst(E),

and accordingly a is antimonotone if D2 � a implies D1 � a for all D1 ⊆ D2 ⊆ Inst(E).

We observe the following monotonicity properties.

Proposition 22 (Harrison et al. 2014)

• Aggregates over functions #sum+ and #count together with relations > and ≥
are monotone.

• Aggregates over functions #sum+ and #count together with relations < and ≤
are antimonotone.

• Aggregates over function #sum− have the same monotonicity properties as #sum+

aggregates with the complementary relation.

Next, we give the translation τ from aggregate programs to R-programs, derived from

the ones of Ferraris (2011) and Harrison et al . (2014):

For a closed literal l, we have

τ(l) = l,

6 In fact, gringo allows for variables in some comparisons to guarantee safety, as detailed in Section 7.3.

https://doi.org/10.1017/S1471068422000308 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000308


1160 R. Kaminski and T. Schaub

for a closed comparison l of form (6), we have

τ(l) =

{
� if ≺ holds between t1 and t2

⊥ otherwise

and for a set L of closed literals, comparisons and aggregates, we have

τ(L) = {τ(l) | l ∈ L}.
For a closed aggregate a of form (8) and its set E of aggregate elements, we have

τ(a) = {τ(D)∧ → τa(D)∨ | D ⊆ Inst(E), D 
 � a}∧, (9)

where

τa(D) = τ(Inst(E) \D) for D ⊆ Inst(E),

τ(D) = {τ(e) | e ∈ D} for D ⊆ Inst(E), and

τ(e) = τ(B(e))
∧

for e ∈ Inst(E).

For a closed aggregate rule r, we have

τ(r) = τ(H(r))← τ(B(r))∧.

For an aggregate program P , we have

τ(P ) = {τ(r) | r ∈ Inst(P )}. (10)

While aggregate programs like P are finite sets of (non-ground) rules, τ(P ) can be

infinite and contain (ground) infinitary expressions. Observe that τ(P ) is an R-program.

In fact, only the translation of aggregates introducesR-formulas; rules without aggregates

form N -programs.

Example 11

To illustrate Ferraris’ approach to the semantics of aggregates, consider a count aggregate

a of form

#count{X : p(X)} ≥ n.

Since the aggregate is non-ground, the set G of its element’s instances consists of all

t : p(t) for each ground term t.

The count aggregate cannot be justified by any subset D of G satisfying |{t | t : p(t) ∈
D}| < n, or D 
 � a for short. Accordingly, we have that τ(a) is the conjunction of all

formulas

{p(t) | t : p(t) ∈ D}∧ → {p(t) | t : p(t) ∈ (G \D)}∨ (11)

such that D ⊆ G and D 
 � a. Restricting the set of ground terms to the numerals 1, 2, 3

and letting n = 2 results in the formulas

� → p(1) ∨ p(2) ∨ p(3),

p(1)→ p(2) ∨ p(3),
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p(2)→ p(1) ∨ p(3), and

p(3)→ p(1) ∨ p(2).

Note that a smaller number of ground terms than n yields an unsatisfiable set of

formulas.

However, it turns out that a Ferraris-style translation of aggregates (Ferraris 2011;

Harrison et al . 2014) is too weak for propagating monotone aggregates in our id-based

setting. That is, when propagating possible atoms (i.e., the second component of the

well-founded model), an id-reduct may become satisfiable although the original formula

is not. So, we might end up with too many possible atoms and a well-founded model that

is not as precise as it could be. To see this, consider the following example.

Example 12

For some m,n ≥ 0, the program Pm,n consists of the following rules:

p(i)← ¬q(i) for 1 ≤ i ≤ m

q(i)← ¬p(i) for 1 ≤ i ≤ m

r ← #count{X : p(X)} ≥ n.

Given the ground instances G of the aggregate’s elements and some two-valued inter-

pretation I, observe that

τ(#count{X : p(X)} ≥ n)I

is classically equivalent to

τ(#count{X : p(X)} ≥ n)I ∨ {p(t) ∈ B(G) | p(t) /∈ I}∨. (12)

To see this, observe that the formula obtained via τ for the aggregate in the last rule’s

body consists of positive occurrences of implications of the form G∧ → H∨ where either

p(t) ∈ G or p(t) ∈ H. The id-reduct makes all such implications with some p(t) ∈ G such

that p(t) /∈ I true because their antecedent is false. All of the remaining implications in

the id-reduct are equivalent to H∨ where H contains all p(t) /∈ I. Thus, we can factor

out the formula on the right-hand side of (12).

Next, observe that for 1 ≤ m < n, the four-valued interpretation (I, J) =

(∅, H(τ(Pm,n))) is the well-founded model of Pm,n:

Sτ(Pm,n)(J) = I and

Sτ(Pm,n)(I) = J.

Ideally, atom r should not be among the possible atoms because it can never be in a

stable model. Nonetheless, it is due to the second disjunct in (12).

Note that not just monotone aggregates exhibit this problem. In general, we get for a

closed aggregate a with elements E and an interpretation I that

τ(a)I is classically equivalent to τ(a)I ∨ {c ∈ B(Inst(E)) | I 
|= c}∨.
The second disjunct is undesirable when propagating possible atoms.

To address this shortcoming, we augment the aggregate translation so that it provides

stronger propagation. The result of the augmented translation is strongly equivalent to
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that of the original translation (cf. Proposition 23). Thus, even though we get more

precise well-founded models, the stable models are still contained in them.

Definition 9

We define π as the translation obtained from τ by replacing the case of closed aggregates

in (9) by the following:

For a closed aggregate a of form (8) and its set E of aggregate elements, we have

π(a) = {τ(D)
∧ → πa(D)∨ | D ⊆ Inst(E), D 
 � a}∧,

where

πa(D) = {τ(C)
∧ | C ⊆ Inst(E) \D,C ∪D � a} for D ⊆ Inst(E).

Note that just as τ also π is recursively applied to the whole program.

Let us illustrate the modified translation by revisiting Example 11.

Example 13

Let us reconsider the count aggregate a:

#count{X : p(X)} ≥ n.

As with τ(a) in Example 11, π(a) yields a conjunction of formulas, one conjunct for each

set D ⊆ Inst(E) satisfying D 
 � a of the form:

{B(e) | e ∈ D}∧ → {{B(e) | e ∈ (C \D)}∧ | C � a,D ⊆ C ⊆ Inst(E)
}∨

. (13)

Restricting again the set of ground terms to the numerals 1, 2, 3 and letting n = 2 results

now in the formulas

� → (p(1) ∧ p(2)) ∨ (p(1) ∧ p(3)) ∨ (p(2) ∧ p(3)) ∨ (p(1) ∧ p(2) ∧ p(3)),

p(1)→ p(2) ∨ p(3) ∨ (p(2) ∧ p(3)),

p(2)→ p(1) ∨ p(3) ∨ (p(1) ∧ p(3)), and

p(3)→ p(1) ∨ p(2) ∨ (p(1) ∧ p(2)).

Note that the last disjunct can be dropped from each rule’s consequent. And as above,

a smaller number of ground terms than n yields an unsatisfiable set of formulas.

The next result ensures that τ(P ) and π(P ) have the same stable models for any

aggregate program P .

Proposition 23

Let a be a closed aggregate.

Then, τ(a) and π(a) are strongly equivalent.

The next example illustrates that we get more precise well-founded models using the

strongly equivalent refined translation.

Example 14

Reconsider Program Pm,n from Example 12.
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As above, we apply the well-founded operator to program Pm,n for m < n and four-

valued interpretation (I, J) = (∅, H(π(Pm,n))):

Sπ(Pm,n)(J) = I and

Sπ(Pm,n)(I) = J \ {r}.
Unlike before, r is now found to be false since it does not belong to Sπ(Pm,n)(∅).

To see this, we can take advantage of the following proposition.

Proposition 24

Let a be a closed aggregate.

If a is monotone, then π(a)I is classically equivalent to π(a) for any two-valued inter-

pretation I.

Note that π(a) is a negative formula whenever a is antimonotone; cf. Proposition 36.

Let us briefly return to Example 14. We now observe that π(a)I = π(a) for a =

#count{X : p(X)} ≥ n and any interpretation I in view of the last proposition. Hence,

our refined translation π avoids the problematic disjunct in Equation (12) on the right.

By Proposition 23, we can use π(Pm,n) instead of τ(Pm,n); both formulas have the same

stable models.

Using Proposition 24, we augment the translation π to replace monotone aggregates a

by the strictly positive formula π(a)∅. That is, we only keep the implication with the

trivially true antecedent in the aggregate translation (cf. Section 5).

While π improves on propagation, it may still produce infinitary R-formulas when

applied to aggregates. This issue is addressed by restricting the translation to a set of

(possible) atoms.

Definition 10

Let J be a two-valued interpretation. We define the translation πJ as the one obtained

from τ by replacing the case of closed aggregates in (9) by the following:

For a closed aggregate a of form (8) and its set E of aggregate elements, we have

πJ(a) = {τ(D)∧ → πa,J(D)∨ | D ⊆ Inst(E)|J , D 
 � a}∧,
where

πa,J(D) = {τ(C)∧ | C ⊆ Inst(E)|J \D,C ∪D � a} and

Inst(E)|J = {e ∈ Inst(E) | B(e) ⊆ J}.
Note that πJ(a) is a finitary formula whenever J is finite.

Clearly, πJ also conforms to π except for the restricted translation for aggregates

defined above. The next proposition elaborates this by showing that πJ and π behave

alike whenever J limits the set of possible atoms.

Theorem 25

Let a be a closed aggregate, and I ⊆ J and X ⊆ J be two-valued interpretations.

Then,

(a) X |= π(a) iff X |= πJ(a),

(b) X |= π(a)I iff X |= πJ(a)I , and

(c) X |= π(a)I iff X |= πJ(a)I .
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In view of Proposition 23, this result extends to Ferraris’ original aggregate transla-

tion (Ferraris 2011; Harrison et al . 2014).

The next example illustrates how a finitary formula can be obtained for an aggregate,

despite a possibly infinite set of terms in the signature.

Example 15

Let Pm,n be the program from Example 12. The well-founded model (I, J) of π(Pm,n) is

(∅, H(π(Pm,n))) if n ≤ m.

The translation πJ(P3,2) consists of the rules

p(1)← ¬q(1), q(1)← ¬p(1),

p(2)← ¬q(2), q(2)← ¬p(2),

p(3)← ¬q(3), q(3)← ¬p(3), and

r ← πJ (#count{X : p(X)} ≥ 2),

where the aggregate translation corresponds to the conjunction of the formulas in Exam-

ple 13. Note that the translation π(P3,2) depends on the signature whereas the translation

πJ(P3,2) is fixed by the atoms in J .

Importantly, Proposition 25 shows that given a finite (approximation of the) well-

founded model of an R-program, we can replace aggregates with finitary formulas. More-

over, in this case, Theorem 9 and Proposition 23 together indicate how to turn a program

with aggregates into a semantically equivalent finite R-program with finitary formulas as

bodies. That is, given a finite well-founded model of an R-program, the program simpli-

fication from Definition 1 results in a finite program and the aggregate translation from

Definition 10 produces finitary formulas only.

This puts us in a position to outline how and when (safe non-ground) aggregate pro-

grams can be turned into equivalent finite ground programs consisting of finitary subfor-

mulas only. To this end, consider an aggregate program P along with the well-founded

model (I, J) of π(P ). We have already seen in Corollary 10 that π(P ) and its simplifica-

tion π(P )I,J have the same stable models, just like π(P )I,J and its counterpart πJ(P )I,J

in view of Proposition 25.

Now, if (I, J) is finite, then π(P )I,J is finite, too. Seen from the perspective of ground-

ing, the safety of all rules in P implies that all global variables appear in positive body

literals. Thus, the number of ground instances of each rule in π(P )I,J is determined

by the number of possible substitutions for its global variables. Clearly, there are only

finitely many possible substitutions such that all positive body literals are satisfied by a

finite interpretation J (cf. Definition 1). Furthermore, if J is finite, aggregate translations

in πJ (P )I,J introduce finitary subformulas only. Thus, in this case, we obtain from P a

finite set of rules with finitary propositional formulas as bodies, viz. πJ(P )I,J , that has

the same stable models as π(P ) (as well as τ(P ), the traditional Ferraris-style semantics

of P (Ferraris 2011; Harrison et al . 2014)).

An example of a class of aggregate programs inducing finite well-founded models as

above consists of programs over a signature with nullary function symbols only. Any such

program can be turned into an equivalent finite set of propositional rules with finitary

bodies.
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5 Dependency analysis

We now further refine our semantic approach to reflect actual grounding processes. In

fact, modern grounders process programs on-the-fly by grounding one rule after another

without storing any rules. At the same time, they try to determine certain, possible, and

false atoms. Unfortunately, well-founded models cannot be computed on-the-fly, which

is why we introduce below the concept of an approximate model. More precisely, we

start by defining instantiation sequences of (non-ground) aggregate programs based on

their rule dependencies. We show that approximate models of instantiation sequences

are underapproximations of the well-founded model of the corresponding sequence of

(ground) R-programs, as defined in Section 3. The precision of both types of models

coincides on stratified programs. We illustrate our concepts comprehensively at the end

of this section in Examples 19 and 20.

To begin with, we extend the notion of positive and negative literals to aggregate

programs. For atoms a, we define a+ = (¬a)
−

= {a} and a− = (¬a)
+

= ∅. For compar-

isons a, we define a+ = a− = ∅. For aggregates a with elements E, we define positive

and negative atom occurrences, using Proposition 24 to refine the case for monotone

aggregates:

• a+ =
⋃

e∈E B(e),

• a− = ∅ if a is monotone, and

• a− =
⋃

e∈E B(e) if a is not monotone.

For a set of body literals B, we define B+ =
⋃

b∈B b+ and B− =
⋃

b∈B b−, as well as

B± = B+ ∪B−.

We see in the following, that a special treatment of monotone aggregates yields better

approximations of well-founded models. A similar case could be made for antimonotone

aggregates but had led to a more involved algorithmic treatment.

Inter-rule dependencies are determined via the predicates appearing in their heads

and bodies. We define pred(a) to be the predicate symbol associated with atom a

and pred(A) = {pred(a) | a ∈ A} for a set A of atoms. An aggregate rule r1 depends on

another aggregate rule r2 if pred(H(r2)) ∈ pred(B(r1)
±

). Rule r1 depends positively or

negatively on r2 if pred(H(r2)) ∈ pred(B(r1)+) or pred(H(r2)) ∈ pred(B(r2)
−

), respec-

tively.

For simplicity, we first focus on programs without aggregates in examples and delay a

full example with aggregates until the end of the section.

Example 16

Let us consider the following rules from the introductory example:

u(1) (r1)

p(X)← ¬q(X) ∧ u(X) (r2)

q(X)← ¬p(X) ∧ v(X). (r3)

We first determine the rule heads and positive and negative atom occurrences in rule

bodies:

H(r1) = u(1) B(r1)+ = ∅ B(r1)− = ∅
H(r2) = p(X) B(r2)+ = {u(X)} B(r2)− = {q(X)}
H(r3) = q(X) B(r3)+ = {v(X)} B(r3)− = {p(X)}.
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With this, we infer the corresponding predicates:

pred(H(r1)) = u/1 pred(B(r1)+) = ∅ pred(B(r1)−) = ∅
pred(H(r2)) = p/1 pred(B(r2)+) = {u/1} pred(B(r2)−) = {q/1}
pred(H(r3)) = q/1 pred(B(r3)+) = {v/1} pred(B(r3)−) = {p/1}.

We see that r2 depends positively on r1 and that r2 and r3 depend negatively on each

other. View Figure 1 in Example 17 for a graphical representation of these inter-rule

dependencies.

The strongly connected components of an aggregate program P are the equivalence

classes under the transitive closure of the dependency relation between all rules in P . A

strongly connected component P1 depends on another strongly connected component P2

if there is a rule in P1 that depends on some rule in P2. The transitive closure of this

relation is antisymmetric.

A strongly connected component of an aggregate program is unstratified if it depends

negatively on itself or if it depends on an unstratified component. A component is strat-

ified if it is not unstratified.

A topological ordering of the strongly connected components is then used to guide

grounding.

For example, the sets {r1} and {r2, r3} of rules from Example 16 are strongly con-

nected components in a topological order. There is only one topological order because r2
depends on r1. While the first component is stratified, the second component is unstrat-

ified because r2 and r3 depend negatively on each other.

Definition 11

We define an instantiation sequence for P as a sequence (Pi)i∈I
of its strongly connected

components such that i < j if Pj depends on Pi.

Note that the components can always be well ordered because aggregate programs

consist of finitely many rules.

The consecutive construction of the well-founded model along an instantiation sequence

results in the well-founded model of the entire program.

Theorem 26

Let (Pi)i∈I
be an instantiation sequence for aggregate program P .

Then, WM ((π(Pi))i∈I
) = WM (π(P )).

Example 17

The following example shows how to split an aggregate program into an instantiation

sequence and gives its well-founded model. Let P be the following aggregate program,

extending the one from the introductory section:

u(1) u(2)

v(2) v(3)

p(X)← ¬q(X) ∧ u(X) q(X)← ¬p(X) ∧ v(X)

x← ¬p(1) y ← ¬q(3).
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Fig. 1. Rule dependencies for Example 19.

We have already seen how to determine inter-rule dependencies in Example 16. A

possible instantiation sequence for program P is given in Figure 1. Rules are depicted

in solid boxes. Solid and dotted edges between such boxes depict positive and negative

dependencies between the corresponding rules, respectively. Dashed and dashed/dotted

boxes represent components in the instantiation sequence (we ignore dotted boxes for

now but turn to them in Example 18). The number in the corner of a component box

indicates the index in the corresponding instantiation sequence.

For F = {u(1), u(2), v(2), v(3)}, the well-founded model of π(P ) is

WM (π(P )) = ({p(1), q(3)}, {p(1), p(2), q(2), q(3)}) � F.

By Theorem 26, the ground sequence (τ(Pi))i∈I
has the same well-founded model as

π(P ):

WM ((π(P ))i∈I
) = ({p(1), q(3)}, {p(1), p(2), q(2), q(3)}) � F.

Note that the set F comprises the facts derived from stratified components. In fact, for

stratified components, the set of external atoms (3) is empty. We can use Corollary 20

to confirm that the well founded model (F, F ) of sequence (π(Pi))1≤i≤4 is total. In fact,

each of the intermediate interpretations (5) is total and can be computed with just one

application of the stable operator. For example, I1 = J1 = {u(1)} for component P1.

We further refine instantiation sequences by partitioning each component along its

positive dependencies.

Definition 12

Let P be an aggregate program and (Pi)i∈I
be an instantiation sequence for P . Further-

more, for each i ∈ I, let (Pi,j)j∈Ii
be an instantiation sequence of Pi considering positive

dependencies only.

A refined instantiation sequence for P is a sequence (Pi,j)(i,j)∈J
where the index set J =

{(i, j) | i ∈ I, j ∈ Ii} is ordered lexicographically.

We call (Pi,j)(i,j)∈J
a refinement of (Pi)i∈I

.
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We define a component Pi,j to be stratified or unstratified if the encompassing compo-

nent Pi is stratified or unstratified, respectively.

Examples of refined instantiation sequences are given in Figures 1 and 2.

The advantage of such refinements is that they yield better or equal approximations

(cf. Theorem 28 and Example 19). On the downside, we do not obtain that WM ((Pi)i∈J
)

equals WM (π(P )) for refined instantiation sequences in general.

Example 18

The refined instantiation sequence for program P from Example 17 is given in Figure 1.

A dotted box indicates a component in a refined instantiation sequence. Components

that cannot be refined further are depicted with a dashed/dotted box. The number or

pair in the corner of a component box indicates the index in the corresponding refined

instantiation sequence.

Unlike in Example 17, the well-founded model of the refined sequence of ground pro-

grams (τ(Pi,j))(i,j)∈J
is

WM ((τ(Pi,j))(i,j)∈J
) = ({q(3)}, {p(1), p(2), q(2), q(3), x}) � F,

which is actually less precise than the well-founded model of P . This is because literals

over ¬q(X) are unconditionally assumed to be true because their instantiation is not

yet available when P5,1 is considered. Thus, we get (I5,1, J5,1) = (∅, {p(1), p(2)}) for

the intermediate interpretation (5). Unlike this, the atom p(3) is false when considering

component P5,2 and q(3) becomes true. In fact, we get (I5,2, J5,2) = ({q(3)}, {q(2), q(3)}).
Observe that (I5, J5) from above is less precise than (I5,1, J5,1) � (I5,2, J5,2).

We continue with this example below and show in Example 19 that refined instantiation

sequences can still be advantageous to get better approximations of well-founded models.

We have already seen in Section 3 that external atoms may lead to less precise semantic

characterizations. This is just the same in the non-ground case, whenever a component

comprises predicates that are defined in a following component of a refined instantiation

sequence. This leads us to the concept of an approximate model obtained by overapprox-

imating the extension of such externally defined predicates.

Definition 13

Let P be an aggregate program, (IC , JC ) be a four-valued interpretation, E be a set

of predicates, and P ′ be the program obtained from P by removing all rules r with

pred(B(r)−) ∩ E 
= ∅.
We define the approximate model of P relative to (IC , JC ) as

AM
(IC ,JC )
E (P ) = (I, J),

where

I = SIC
π(P ′)(JC ) and

J = SJC
π(P )(IC ∪ I).

We keep dropping parentheses and simply write AM IC ,JC
E (P ) instead of

AM
(IC ,JC )
E (P ).

The approximate model amounts to an immediate consequence operator, similar to the

relative well-founded operator in Definition 4; it refrains from any iterative applications,
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as used for defining a well-founded model. More precisely, the relative stable operator is

applied twice to obtain the approximate model. This is similar to Van Gelder’s alternating

transformation (Van Gelder 1993). The certain atoms in I are determined by applying the

operator to the ground program obtained after removing all rules whose negative body

literals comprise externally defined predicates, while the possible atoms J are computed

from the entire program by taking the already computed certain atoms in I into account.

In this way, the approximate model may result in fewer unknown atoms than the relative

well-founded operator when applied to the least precise interpretation (as an easy point

of reference). How well we can approximate the certain atoms with the approximate

operator depends on the set of external predicates E . When approximating the model of

a program P in a sequence, the set E comprises all negative predicates occurring in P

for which possible atoms have not yet been fully computed. This leads to fewer certain

atoms obtained from the reduced program, P ′ = {r ∈ P | pred(B(r)−)∩E = ∅}, stripped

of all rules from P that have negative body literals whose predicates occur in E .

The next theorem identifies an essential prerequisite for an approximate model of a

non-ground program to be an underapproximation of the well-founded model of the

corresponding ground program.

Theorem 27

Let P be an aggregate program, E be a set of predicates, and (IC , JC ) be a four-valued

interpretation.

If pred(H(P )) ∩ pred(B(P )−) ⊆ E then AM IC ,JC
E (P ) ≤p WM IC ,JC∪EC (π(P )) where

EC is the set of all ground atoms over predicates in E .

In general, a grounder cannot calculate on-the-fly a well-founded model. Implementing

this task efficiently requires an algorithm storing the grounded program, as, for example,

implemented in an ASP solver. But modern grounders are able to calculate the stable

operator on-the-fly. Thus, an approximation of the well-founded model is calculated. This

is where we use the approximate model, which might be less precise than the well-founded

model but can be computed more easily.

With the condition of Theorem 27 in mind, we define the approximate model for an

instantiation sequence. We proceed similar to Definition 6 but treat in (14) all atoms

over negative predicates that have not been completely defined as external.

Definition 14

Let (Pi)i∈I
be a (refined) instantiation sequence for P .

Then, the approximate model of (Pi)i∈I
is

AM ((Pi)i∈I
) =

⊔
i∈I

(Ii, Ji),

where

Ei = pred(B(Pi)
−

) ∩ pred(
⋃
i≤j

H(Pj)), (14)

(IC i, JC i) =
⊔
j<i

(Ij , Jj), and (15)

(Ii, Ji) = AM IC i,JC i

Ei
(Pi). (16)
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Note that the underlying approximate model removes rules containing negative literals

over predicates in Ei when calculating certain atoms. This amounts to assuming all ground

instances of atoms over Ei to be possible.7 Compared to (3), however, this additionally

includes recursive predicates in (14). The set Ei is empty for stratified components.

The next result relies on Theorem 17 to show that an approximate model of an in-

stantiation sequence constitutes an underapproximation of the well-founded model of

the translated entire program. In other words, the approximate model of a sequence of

aggregate programs (as computed by a grounder) is less precise than the well-founded

model of the whole ground program.

Theorem 28

Let (Pi)i∈I
be an instantiation sequence for aggregate program P and (Pj)j∈J

be a

refinement of (Pi)i∈I
.

Then, AM ((Pi)i∈I
) ≤p AM ((Pj)j∈J

) ≤p WM (π(P )).

The finer granularity of refined instantiation sequences leads to more precise models.

Intuitively, this is because a refinement of a component may result in a series of approxi-

mate models, which yield a more precise result than the approximate model of the entire

component because in some cases fewer predicates are considered external in (14).

We remark that all instantiation sequences of a program have the same approximate

model. However, this does not carry over to refined instantiation sequences because their

evaluation is order dependent.

The two former issues are illustrated in Example 19.

The actual value of approximate models for grounding lies in their underlying series of

consecutive interpretations delineating each ground program in a (refined) instantiation

sequence. In fact, as outlined after Proposition 25, whenever all interpretations (Ii, Ji)

in (16) are finite so are the R-programs πJC i∪Ji
(Pi)

(IC i,JC i)�(Ii,Ji) obtained from each

Pi in the instantiation sequence.

Theorem 29

Let (Pi)i∈I
be a (refined) instantiation sequence of an aggregate program P , and let

(IC i, JC i) and (Ii, Ji) be defined as in (15) and (16).

Then,
⋃

i∈I
πJC i∪Ji

(Pi)
(IC i,JC i)�(Ii,Ji) and π(P ) have the same well-founded and stable

models.

Notably, this union of R-programs is exactly the one obtained by the grounding algo-

rithm proposed in the next section (cf. Theorem 34).

Example 19

We continue Example 18.

The approximate model of the instantiation sequence (Pi)i∈I
, defined in Definition 14,

is less precise than the well-founded model of the sequence, viz.

AM ((Pi)i∈I
) = (∅, {p(1), p(2), q(2), q(3), x, y}) � F.

7 To be precise, rules involving aggregates that could in principle derive certain atoms might be removed,
too. Here, we are interested in a syntactic criteria that allows us to underapproximate the set of certain
atoms.
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This is because we have to use AM F,F
E (P5) to approximate the well-founded model of

component P5. Here, the set E = {a/1, b/1} determined by Equation (14) forces us to

unconditionally assume instances of ¬q(X) and ¬p(X) to be true. Thus, we get (I5, J5) =

(∅, {p(1), p(2), q(2), q(3)}) for the intermediate interpretation in (16). This is also reflected

in Definition 13, which makes us drop all rules containing negative literals over predicates

in E when calculating true atoms.

In accord with Theorem 28, we approximate the well-founded model w.r.t. the refined

instantiation sequence (Pi,j)(i,j)∈J
and obtain

AM ((Pi,j)(i,j)∈J
) = ({q(3)}, {p(1), p(2), q(2), q(3), x}) � F,

which, for this example, is equivalent to the well-founded model of the corresponding

ground refined instantiation sequence and more precise than the approximate model of

the instantiation sequence.

In an actual grounder implementation the approximate model is only a byproduct,

instead, it outputs a program equivalent to the one in Theorem 29:

u(1) u(2)

v(2) v(3)

p(1)← ¬q(1) ∧ u(1) p(2)← ¬q(2) ∧ u(2)

q(2)← ¬p(2) ∧ v(2) q(3)← ¬p(3) ∧ v(3)

x← ¬p(1).

Note that the rule y ← ¬q(3) is not part of the simplification because q(3) is certain.

Remark 1

The reason why we use the refined grounding is that we cannot expect a grounding

algorithm to calculate the well-founded model for a component without further processing.

But at least some consequences should be considered. Gringo is designed to ground

on-the-fly without storing any rules, so it cannot be expected to compute all possible

consequences but it should at least take all consequences from preceding interpretations

into account. With the help of a solver, we could calculate the exact well-founded model

of a component after it has been grounded.

Whenever an aggregate program is stratified, the approximate model of its instantia-

tion sequence is total (and coincides with the well-founded model of the entire ground

program).

Theorem 30

Let (Pi)i∈I
be an instantiation sequence of an aggregate program P such that Ei = ∅ for

each i ∈ I as defined in (14).

Then, AM ((Pi)i∈I
) is total.

Example 20

The dependency graph of the company controls encoding is given in Figure 2 and follows

the conventions in Example 19. Because the encoding only uses positive literals and

monotone aggregates, grounding sequences cannot be refined further. Since the program

is positive, we can apply Theorem 30. Thus, the approximate model of the grounding
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Fig. 2. Rule dependencies for the company controls encoding and instance in Example 10
where c = company , o = owns, and s = controls.

sequence is total and corresponds to the well-founded model of the program. We use the

same abbreviations for predicates as in Figure 2. The well-founded model is (F ∪I, F ∪I)

where

F = {c(c1), c(c2), c(c3), c(c4),

o(c1, c2, 60), o(c1, c3, 20), o(c2, c3, 35), o(c3, c4, 51)} and

I = {s(c1, c2), s(c3, c4), s(c1, c3), s(c1, c4)}.

6 Algorithms

This section lays out the basic algorithms for grounding rules, components, and entire

programs and characterizes their output in terms of the semantic concepts developed in

the previous sections. Of particular interest is the treatment of aggregates, which are

decomposed into dedicated normal rules before grounding and reassembled afterward.

This allows us to ground rules with aggregates by means of grounding algorithms for

normal rules. Finally, we show that our grounding algorithm guarantees that an obtained

finite ground program is equivalent to the original non-ground program.

In the following, we refer to terms, atoms, comparisons, literals, aggregate elements,

aggregates, or rules as expressions. As in the preceding sections, all expressions, inter-

pretations, and concepts introduced below operate on the same (implicit) signature Σ

unless mentioned otherwise.

A substitution is a mapping from the variables in Σ to terms over Σ. We use ι to denote

the identity substitution mapping each variable to itself. A ground substitution maps all

variables to ground terms or themselves. The result of applying a substitution σ to an

expression e, written eσ, is the expression obtained by replacing each variable v in e by

σ(v). This directly extends to sets E of expressions, that is, Eσ = {eσ | e ∈ E}.
The composition of substitutions σ and θ is the substitution σ ◦ θ where (σ ◦ θ)(v) =

θ(σ(v)) for each variable v.

A substitution σ is a unifier of a set E of expressions if e1σ = e2σ for all e1, e2 ∈
E. In what follows, we are interested in one-sided unification, also called matching. A
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1 function GroundRule
I,J
r,f,J ′(σ, L)

2 if L 
= ∅ then // match next

3 (G, l)← (∅, Selectσ(L));

4 foreach σ′ ∈ Matches
I,J
l (σ) do

5 G← G ∪ GroundRuleI,Jr,f,J ′(σ′, L \ {l});
6 return G;

7 else if f = t or B(rσ)
+ � J ′ then // rule instance

8 return {rσ};
9 else // rule seen

10 return ∅;
Algorithm 1: Grounding Rules

substitution σ matches a non-ground expression e to a ground expression g, if eσ = g

and σ maps all variables not occurring in e to themselves. We call such a substitution

the matcher of e to g. Note that a matcher is a unique ground substitution unifying e

and g, if it exists. This motivates the following definition.

For a (non-ground) expression e and a ground expression g, we define:

match(e, g) =

{
{σ} if there is a matcher σ from e to g

∅ otherwise

When grounding rules, we look for matches of non-ground body literals in the possibly

derivable atoms accumulated so far. The latter is captured by a four-valued interpretation

to distinguish certain atoms among the possible ones. This is made precise in the next

definition.

Definition 15

Let σ be a substitution, l be a literal or comparison, and (I, J) be a four-valued interpre-

tation.

We define the set of matches for l in (I, J) w.r.t. σ, written Matches
I,J
l (σ),

for an atom l = a as

MatchesI,Ja (σ) = {σ ◦ σ′ | a′ ∈ J, σ′ ∈ match(aσ, a′)},

for a ground literal l = ¬a as

MatchesI,J¬a (σ) = {σ | aσ 
∈ I}, and

for a ground comparison l = t1 ≺ t2 as in (6) as

Matches
I,J
t1≺t2(σ) = {σ | ≺ holds between t1σ and t2σ}.

In this way, positive body literals yield a (possibly empty) set of substitutions, refining

the one at hand, while negative and comparison literals are only considered when ground

and then act as a test on the given substitution.

Our function for rule instantiation is given in Algorithm 1. It takes a substitution σ

and a set L of literals and yields a set of ground instances of a safe normal rule r, passed
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as a parameter; if called with the identity substitution and the body literals B(r) of

r, it yields ground instances of the rule. The other parameters consist of a four-valued

interpretation (I, J) comprising the set of possibly derivable atoms along with the certain

ones, a two-valued interpretation J ′ reflecting the previous value of J , and a Boolean

flag f used to avoid duplicate ground rules in consecutive calls to Algorithm 1. The idea

is to extend the current substitution in Lines 4–5 until we obtain a ground substitution σ

that induces a ground instance rσ of rule r. To this end, Selectσ(L) picks for each

call some literal l ∈ L such that l ∈ L+ or lσ is ground. That is, it yields either a

positive body literal or a ground negative or ground comparison literal, as needed for

computing Matches
I,J
l (σ). Whenever an application of Matches for the selected literal in

B(r) results in a non-empty set of substitutions, the function is called recursively for each

such substitution. The recursion terminates if at least one match is found for each body

literal and an instance rσ of r is obtained in Line 8. The set of all such ground instances

is returned in Line 6. (Note that we refrain from applying any simplifications to the

ground rules and rather leave them intact to obtain more direct formal characterizations

of the results of our grounding algorithms.) The test B(rσ)
+ � J ′ in Line 7 makes sure

that no ground rules are generated that were already obtained by previous invocations of

Algorithm 1. This is relevant for recursive rules and reflects the approach of semi-naive

database evaluation (Abiteboul et al . 1995).

For characterizing the result of Algorithm 1 in terms of aggregate programs, we need

the following definition.

Definition 16

Let P be an aggregate program and (I, J) be a four-valued interpretation.

We define InstI,J(P ) ⊆ Inst(P ) as the set of all instances g of rules in P satisfying

J |= π(B(g))∧I .

In terms of the program simplification in Definition 1, an instance g belongs to

InstI,J (P ) iff H(g) ← π(B(g))∧ ∈ π(r)I,J . Note that the members of InstI,J (P ) are

not necessarily ground, since non-global variables may remain within aggregates; though

they are ground for normal rules.

We use Algorithm 1 to iteratively compute ground instances of a rule w.r.t. an increas-

ing set of atoms. The Boolean flag f and the set of atoms J ′ are used to avoid duplicating

ground instances in successive iterations. The flag f is initially set to true to not filter

any rule instances. In subsequent iterations, duplicates are omitted by setting the flag

to false and filtering rules whose positive bodies are a subset of the atoms J ′ used in

previous iterations. This is made precise in the next result.

Proposition 31

Let r be a safe normal rule and (I, J) be a finite four-valued interpretation.

Then,

(a) InstI,J({r}) = GroundRule
I,J
r,t,∅(ι, B(r)) and

(b) InstI,J({r}) = InstI,J
′
({r}) ∪ GroundRuleI,Jr,f ,J ′(ι, B(r)) for all J ′ ⊆ J .

Now, let us turn to the treatment of aggregates. To this end, we define the following

translation of aggregate programs to normal programs.
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Definition 17

Let P be a safe aggregate program over signature Σ.

Let Σ′ be the signature obtained by extending Σ with fresh predicates

αa,r/n, and (17)

εa,r/n (18)

for each aggregate a occurring in a rule r ∈ P where n is the number of global variables

in a, and fresh predicates

ηe,a,r/(m + n) (19)

for each aggregate element e occurring in aggregate a in rule r where m is the size of the

tuple H(e).

We define Pα, P ε, and P η as normal programs over Σ′ as follows.

• Program Pα is obtained from P by replacing each aggregate occurrence a in P

with

αa,r(X1, . . . , Xn), (20)

where αa,r/n is defined as in (17) and X1, . . . , Xn are the global variables in a.

• Program P ε consists of rules

εa,r(X1, . . . , Xn)← t ≺ b ∧ b1 ∧ · · · ∧ bl (21)

for each predicate εa,r/n as in (18) where X1, . . . , Xn are the global variables in

a, a is an aggregate of form f{E} ≺ b occurring in r, t = f(∅) is the value of the

aggregate function applied to the empty set, and b1, . . . , bl are the body literals of

r excluding aggregates.

• Program P η consists of rules

ηe,a,r(t1, . . . , tm, X1, . . . , Xn)← c1 ∧ · · · ∧ ck ∧ b1 ∧ · · · ∧ bl (22)

for each predicate ηe,a,r/m + n as in (19) where (t1, . . . , tm) = H(e), X1, . . . , Xn

are the global variables in a, {c1, . . . , ck} = B(e), and b1, . . . , bl are the body literals

of r excluding aggregates.

Summarizing the above, we translate an aggregate program P over Σ into a normal

program Pα along with auxiliary normal rules in P ε and P η, all over a signature ex-

tending Σ by the special-purpose predicates in (17)–(19). In fact, there is a one-to-one

correspondence between the rules in P and Pα, so that we get P = Pα and P ε = P η = ∅
whenever P is normal.

Example 21

We illustrate the translation of aggregate programs on the company controls example in

Example 10. We rewrite the rule

controls(X,Y )←
a︷ ︸︸ ︷

#sum+{S : owns(X,Y, S)︸ ︷︷ ︸
e1

;

S,Z : controls(X,Z) ∧ owns(Z, Y, S)︸ ︷︷ ︸
e2

} > 50

∧ company(X) ∧ company(Y ) ∧X 
= Y

(r)
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containing aggregate a with elements e1 and e2, into rules r1 to r4:

controls(X,Y )← αa,r(X,Y )

∧ company(X) ∧ company(Y ) ∧X 
= Y,
(r1)

εa,r(X,Y )← 0 > 50

∧ company(X) ∧ company(Y ) ∧X 
= Y,
(r2)

ηe1,a,r(S,X, Y )← owns(X,Y, S)

∧ company(X) ∧ company(Y ) ∧X 
= Y, and
(r3)

ηe2,a,r(S,Z,X, Y )← controls(X,Z) ∧ owns(Z, Y, S)

∧ company(X) ∧ company(Y ) ∧X 
= Y.
(r4)

We have Pα = {r1}, P ε = {r2}, and P η = {r3, r4}.
This example illustrates how possible instantiations of aggregate elements are gathered

via the rules in P η. Similarly, the rules in P ε collect instantiations warranting that the

result of applying aggregate functions to the empty set is in accord with the respective

bound. In both cases, the relevant variable bindings are captured by the special head

atoms of the rules. In turn, groups of corresponding instances of aggregate elements are

used in Definition 20 to sanction the derivation of ground atoms of form (20). These

atoms are ultimately replaced in Pα with the original aggregate contents.

We next define two functions gathering information from instances of rules in P ε and

P η. In particular, we make precise how groups of aggregate element instances are obtained

from ground rules in P η.

Definition 18

Let P be an aggregate program, and Gε and Gη be subsets of ground instances of rules in

P ε and P η, respectively. Furthermore, let a be an aggregate occurring in some rule r ∈ P

and σ be a substitution mapping the global variables in a to ground terms.

We define

εr,a(Gε, σ) =
⋃

g∈Gε

match(raσ, g),

where ra is a rule of form (21) for aggregate occurrence a, and

ηr,a(Gη, σ) = {eσθ | g ∈ Gη, e ∈ E, θ ∈ match(reσ, g)},
where E are the aggregate elements of a and re is a rule of form (22) for aggregate

element occurrence e in a.

Given that σ maps the global variables in a to ground terms, raσ is ground whereas

reσ may still contain local variables from a. The set εr,a(Gε, σ) has an indicative nature:

For an aggregate aσ, it contains the identity substitution when the result of applying

its aggregate function to the empty set is in accord with its bound, and it is empty

otherwise. The construction of ηr,a(Gη, σ) goes one step further and reconstitutes all

ground aggregate elements of aσ from variable bindings obtained by rules in Gη. Both

functions play a central role below in defining the function Propagate for deriving ground

aggregate placeholders of form (20) from ground rules in Gε and Gη.
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Example 22

We show how to extract aggregate elements from ground instances of rules (r3) and (r4)

in Example 21.

Let Gε be empty and Gη be the program consisting of the following rules:

ηe1,a,r(60, c1, c2)← owns(c1, c2, 60)

∧ company(c1) ∧ company(c2) ∧ c1 
= c2,

ηe1,a,r(20, c1, c3)← owns(c1, c3, 20)

∧ company(c1) ∧ company(c3) ∧ c1 
= c3,

ηe1,a,r(35, c2, c3)← owns(c2, c3, 35)

∧ company(c2) ∧ company(c3) ∧ c2 
= c3,

ηe1,a,r(51, c3, c4)← owns(c3, c4, 51)

∧ company(c3) ∧ company(c4) ∧ c3 
= c4, and

ηe2,a,r(35, c2, c1, c3)← controls(c1, c2) ∧ owns(c2, c3, 35)

∧ company(c1) ∧ company(c3) ∧ c1 
= c3.

Clearly, we have εr,a(Gε, σ) = ∅ for any substitution σ because Gε = ∅. This means that

aggregate a can only be satisfied if at least one of its elements is satisfiable. In fact, we

obtain non-empty sets ηr,a(Gη, σ) of ground aggregate elements for four substitutions σ:

ηr,a(Gη, σ1) = {60 : owns(c1, c2, 60)} for σ1 : X �→ c1, Y �→ c2,

ηr,a(Gη, σ2) = {51 : owns(c3, c4, 51)} for σ2 : X �→ c3, Y �→ c4,

ηr,a(Gη, σ3) = {35, c2 : controls(c1, c2) ∧ owns(c2, c3, 35);

20 : owns(c1, c3, 20)} for σ3 : X �→ c1, Y �→ c3, and

ηr,a(Gη, σ4) = {35 : owns(c2, c3, 35)} for σ4 : X �→ c2, Y �→ c3.

For capturing the result of grounding aggregates relative to groups of aggregate ele-

ments gathered via P η, we restrict their original translation to subsets of their ground

elements. That is, while π(a) and πa(·) draw in Definition 9 on all instances of aggregate

elements in a, their counterparts πG(a) and πa,G(·) are restricted to a subset of such

aggregate element instances:8

Definition 19

Let a be a closed aggregate and of form (8), E be the set of its aggregate elements, and

G ⊆ Inst(E) be a set of aggregate element instances.

We define the translation πG(a) of a w.r.t. G as follows:

πG(a) = {τ(D)
∧ → πa,G(D)

∨ | D ⊆ G,D 
 � a}∧,
where

πa,G(D) = {τ(C)
∧ | C ⊆ G \D,C ∪D � a}.

As before, this translation maps aggregates, possibly including non-global variables, to

a conjunction of (ground)R-rules. The resultingR-formula is used below in the definition

of functions Propagate and Assemble.

8 Note that the restriction to sets of ground aggregate elements is similar to the one to two-valued
interpretations in Definition 10.
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Example 23

We consider the four substitutions σ1 to σ4 together with the sets G1 = ηr,a(Gη, σ1)

to G4 = ηr,a(Gη, σ4) from Example 22 for aggregate a.

Following the discussion after Proposition 24, we get the formulas

πG1
(aσ1) = owns(c1, c2, 60),

πG2
(aσ2) = owns(c3, c4, 51),

πG3
(aσ3) = controls(c1, c2) ∧ owns(c2, c3, 35) ∧ owns(c1, c3, 20), and

πG4
(aσ4) = ⊥.

The function Propagate yields a set of ground atoms of form (20) that are used

in Algorithm 2 to ground rules having such placeholders among their body literals.

Each such special atom is supported by a group of ground instances of its aggregate

elements.

Definition 20

Let P be an aggregate program, (I, J) be a four-valued interpretation, and Gε and Gη

be subsets of ground instances of rules in P ε and P η, respectively.

We define Propagate
I,J
P (Gε, Gη) as the set of all atoms of form ασ such that

εr,a(Gε, σ) ∪ G 
= ∅ and J |= πG(aσ)I with G = ηr,a(Gη, σ) where α is an atom of

form (20) for aggregate a in rule r and σ is a ground substitution for r mapping all

global variables in a to ground terms.

An atom ασ is only considered if σ warrants ground rules in Gε or Gη, signaling that

the application of α to the empty set is feasible when applying σ or that there is a non-

empty set of ground aggregate elements of α obtained after applying σ, respectively. If

this is the case, it is checked whether the set G of aggregate element instances warrants

that πG(aσ) admits stable models between I and J .

Example 24

We show how to propagate aggregates using the sets G1 to G4 and their associated

formulas from Example 23. Suppose that I = J = F ∪ {controls(c1, c2)} using F from

Example 20.

Observe that J |= πG1
(aσ1)I , J |= πG2

(aσ2)I , J |= πG3
(aσ3)I , and J 
|= πG4

(aσ4)I .

Thus, we get PropagateI,JP (Gε, Gη) = {αa,r(c1, c2), αa,r(c1, c3), αa,r(c3, c4)}.
The function Assemble yields an R-program in which aggregate placeholder atoms of

form (20) have been replaced by their corresponding R-formulas.

Definition 21

Let P be an aggregate program, and Gα and Gη be subsets of ground instances of rules

in Pα and P η, respectively.

We define Assemble(Gα, Gη) as the R-program obtained from Gα by

replacing

• all comparisons by � and

• all atoms of form ασ by the corresponding formulas πG(aσ) with G = ηr,a(Gη, σ)

where α is an atom of form (20) for aggregate a in rule r and σ is a ground

substitution for r mapping all global variables in a to ground terms.
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1 function GroundComponent(P, I, J)

2 (Gα, Gε, Gη, f, JA, JA′, J ′)← (∅, ∅, ∅, t, ∅, ∅, ∅);
3 repeat

// ground aggregate elements

4 Gε ← Gε ∪⋃
r∈P ε GroundRule

I,J
r,f,J ′(ι, B(r));

5 Gη ← Gη ∪⋃
r∈Pη GroundRule

I,J
r,f,J ′(ι, B(r));

// propagate aggregates

6 JA← Propagate
I,J
P (Gε, Gη);

// ground remaining rules

7 Gα ← Gα ∪⋃
r∈Pα GroundRule

I,J∪JA
r,f,J ′∪JA′(ι, B(r));

8 (f, JA′, J ′, J)← (f , JA, J, J ∪H(Gα));

9 until J ′ = J ;

10 return Assemble(Gα, Gη);

Algorithm 2: Grounding Components

Example 25

We show how to assemble aggregates using the sets G1 to G3 for aggregate atoms that

have been propagated in Example 24. Therefore, let Gα be the program consisting of the

following rules:

controls(c1, c2)← αa,r(c1, c2) ∧ company(c1) ∧ company(c2) ∧ c1 
= c2,

controls(c3, c4)← αa,r(c3, c4) ∧ company(c3) ∧ company(c4) ∧ c3 
= c4, and

controls(c1, c3)← αa,r(c1, c3) ∧ company(c1) ∧ company(c3) ∧ c1 
= c3.

Then, program Assemble(Gα, Gη) consists of the following rules:

controls(c1, c2)← πG1
(aσ1) ∧ company(c1) ∧ company(c2) ∧ �,

controls(c3, c4)← πG2
(aσ2) ∧ company(c3) ∧ company(c4) ∧ �, and

controls(c1, c3)← πG3
(aσ3) ∧ company(c1) ∧ company(c3) ∧ �.

The next result shows how a (non-ground) aggregate program P is transformed into

a (ground) R-program πJ(P )I,J in the context of certain and possible atoms (I, J) via

the interplay of grounding P ε and P η, deriving aggregate placeholders from their ground

instances Gε and Gη, and finally replacing them in Gα by the original aggregates’ con-

tents.

Proposition 32

Let P be an aggregate program, (I, J) be a finite four-valued interpretation, Gε =

InstI,J (P ε), Gη = InstI,J (P η), JA = Propagate
I,J
P (Gε, Gη), and Gα = InstI,J∪JA(Pα).

Then,

(a) Assemble(Gα, Gη) = πJ(P )I,J and

(b) H(Gα) = Tπ(P )I (J).

Property (b) highlights the relation of the possible atoms contributed by Gα to a

corresponding application of the immediate consequence operator. In fact, this is the first

of three such relationships between grounding algorithms and consequence operators.
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1 function Ground(P )

2 let (Pi)i∈I
be a refined instantiation sequence for P ;

3 (F,G)← (∅, ∅);
4 foreach i ∈ I do
5 let P ′

i be the program obtained from Pi as in Definition 13;

6 F ← F ∪ GroundComponent(P ′
i , H(G), H(F ));

7 G← G ∪ GroundComponent(Pi, H(F ), H(G));

8 return G;

Algorithm 3: Grounding Programs

Let us now turn to grounding components of instantiation sequences in Algorithm 2.

The function GroundComponent takes an aggregate program P along with two sets I and

J of ground atoms. Intuitively, P is a component in a (refined) instantiation sequence

and I and J form a four-valued interpretation (I, J) comprising the certain and possible

atoms gathered while grounding previous components (although their roles get reversed

in Algorithm 3). After variable initialization, GroundComponent loops over consecutive

rule instantiations in Pα, P ε, and P η until no more possible atoms are obtained. In this

case, it returns in Line 10 the R-program obtained from Gα by replacing all ground

aggregate placeholders of form (20) with the R-formula corresponding to the respective

ground aggregate. The body of the loop can be divided into two parts: Lines 4–6 deal with

aggregates and Lines 7 and 8 care about grounding the actual program. In more detail,

Lines 4 and 5 instantiate programs P ε and P η, whose ground instances, Gε and Gη, are

then used in Line 6 to derive ground instances of aggregate placeholders of form (20).

The grounded placeholders are then added via variable JA to the possible atoms J when

grounding the actual program Pα in Line 7, where J ′ and JA′ hold the previous value

of J and JA, respectively. For the next iteration, J is augmented in Line 8 with all rule

heads in Gα and the flag f is set to false. Recall that the purpose of f is to ensure

that initially all rules are grounded. In subsequent iterations, duplicates are omitted by

setting the flag to false and filtering rules whose positive bodies are a subset of the atoms

J ′ ∪ JA′ used in previous iterations.

While the inner workings of Algorithm 2 follow the blueprint given by Proposition 32.

its outer functionality boils down to applying the stable operator of the corresponding

ground program in the context of the certain and possible atoms gathered so far.

Proposition 33

Let P be an aggregate program, (IC , JC ) be a finite four-valued interpretation, and

J = SJC
π(P )(IC ).

Then,

(a) GroundComponent(P, IC , JC ) terminates iff J is finite.

If J is finite, then

(a) GroundComponent(P, IC , JC ) = πJC∪J(P )IC ,JC∪J and

(b) H(GroundComponent(P, IC , JC )) = J .

Finally, Algorithm 3 grounds an aggregate program by iterating over the components

of one of its refined instantiation sequences. Just as Algorithm 2 reflects the application
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of a stable operator, function Ground follows the definition of an approximate model

when grounding a component (cf. Definition 13). At first, facts are computed in Line 6

by using the program stripped from rules being involved in a negative cycle overlapping

with the present or subsequent components. The obtained head atoms are then used in

Line 7 as certain context atoms when computing the ground version of the component at

hand. The possible atoms are provided by the head atoms of the ground program built

so far, and with roles reversed in Line 6. Accordingly, the whole iteration aligns with the

approximate model of the chosen refined instantiation sequence (cf. Definition 14), as

made precise next.

Our grounding algorithm computes implicitly the approximate model of the chosen

instantiation sequence and outputs the corresponding ground program; it terminates

whenever the approximate model is finite.

Theorem 34

Let P be an aggregate program, (Pi)i∈I
be a refined instantiation sequence for P , and

(IC i, JC i) and (Ii, Ji) be defined as in Equations (15) and (16).

If (Pi)i∈I
is selected by Algorithm 3 in Line 2, then we have that

(a) the call Ground(P ) terminates iff AM ((Pi)i∈I
) is finite, and

(b) if AM ((Pi)i∈I
) is finite, then Ground(P ) =

⋃
i∈I

πJC i∪Ji
(Pi)

(IC i,JC i)�(Ii,Ji).

As already indicated by Theorem 29, grounding is governed by the series of consecutive

approximate models (Ii, Ji) in (16) delineating the stable models of each ground program

in a (refined) instantiation sequence. Whenever each of them is finite, we also obtain a

finite grounding of the original program. Note that the entire ground program is composed

of the ground programs of each component in the chosen instantiation sequence. Hence,

different sequences may result in different overall ground programs.

Most importantly, our grounding machinery guarantees that an obtained finite ground

program has the same stable models as the original non-ground program.

Corollary 35 (Main result)

Let P be an aggregate program.

If Ground(P ) terminates, then P and Ground(P ) have the same well-founded and stable

models.

Example 26

The execution of the grounding algorithms on Example 19 is illustrated in Table 1.

Each individual table depicts a call to GroundComponent where the header above the

double line contains the (literals of the) rules to be grounded and the rows below trace

how nested calls to GroundRule proceed. The rules in the header contain the body literals

in the order as they are selected by GroundRule with the rule head as the last literal.

Calls to GroundRule are depicted with vertical lines and horizontal arrows. A vertical line

represents the iteration of the loop in Lines 4–5. A horizontal arrow represents a recursive

call to GroundRule in Line 5. Each row in the table not marked with × corresponds to

a ground instance as returned by GroundRule. Furthermore, because all components are

stratified, we only show the first iteration of the loop in Lines 3–9 of Algorithm 2 as the

second iteration does not produce any new ground instances.

Grounding components P1 to P4 results in the programs F = G = {u(1)← �, u(2)←
�, v(2) ← �, v(3) ← �}. Since grounding is driven by the sets of true and possible
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Table 1. Grounding of components P5,1, P5,2, P6, and P7 from Example 19

where GC = GroundComponent

atoms, we focus on the interpretations Ii and Ji where i is a component index in the

refined instantiation sequence. We start tracing the grounding starting with I4 = J4 =

{u(1), u(2), v(2), v(3)}.
The grounding of P5,1 is depicted in Table 1a and 1b. We have E = {b/1} because

predicate b/1 is used in the head of the rule in P5,2. Thus, GroundComponent(∅, J4, I4)

in Line 6 returns the empty set because P ′
5,1 = ∅. We get I5,1 = I4. In the next line, the

algorithm calls GroundComponent(P5,1, I5,1, J4) and we get J5,1 = {p(1), p(2)}. Note that

at this point, it is not known that q(1) is not derivable and so the algorithm does not

derive p(1) as a fact.

The grounding of P5,2 is given in Table 1c and 1d. This time, we have E = ∅ and

P5,2 = P ′
5,2. Thus, the first call to GroundRule determines q(3) to be true while the

second call additionally determines the possible atom q(2).

The grounding of P6 is illustrated in Table 1e and 1f. Note that we obtain that x is

possible because p(1) was not determined to be true.

The grounding of P7 is depicted in Table 1g and 1h. Note that, unlike before, we obtain

that y is false because q(3) was determined to be true.

Furthermore, observe that the choice of the refined instantiation sequence determines

the output of the algorithm. In fact, swapping P5,1 and P5,2 in the sequence would result

in x being false and y being possible.

To conclude, we give the grounding of the program as output by gringo in Table 2.

The grounder furthermore omits the true body literals marked in green.

Example 27

We illustrate the grounding of aggregates on the company controls example in Example 10

using the grounding sequence (Pi)1≤i≤9 and the set of facts F from Example 20. Observe

that the grounding of components P1 to P8 produces the program {a← � | a ∈ F}. We
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u(1) u(2)

v(2) v(3)

p(1)← ¬q(1) ∧ u(1) p(2)← ¬q(2) ∧ u(2)

q(2)← ¬p(2) ∧ v(2) q(3)← ¬p(3) ∧ v(3)

x← ¬p(1)

Table 2. Grounding of Example 19 as output by gringo

focus on how component P9 is grounded. Because there are no negative dependencies,

the components P9 and P ′
9 in Line 5 of Algorithm 3 are equal. To ground component P9,

we use the rewriting from Example 21.

The grounding of component P9 is illustrated in Table 3, which follows the same

conventions as in Example 26. Because the program is positive, the calls in Lines 6 and 7

in Algorithm 3 proceed in the same way and we depict only one of them. Furthermore,

because this example involves a recursive rule with an aggregate, the header consists of

five rows separated by dashed lines processed by Algorithm 2. The first row corresponds

to P ε
9 grounded in Line 4, the second and third to P η

9 grounded in Line 5, the fourth

to aggregate propagation in Line 6, and the fifth to Pα
9 grounded in Line 7. After the

header follow the iterations of the loop in Lines 3–9. Because the component is recursive,

processing the component requires four iterations, which are separated by solid lines

in the table. The right-hand side column of the table contains the iteration number

and a number indicating which row in the header is processed. The row for aggregate

propagation lists the aggregate atoms that have been propagated.

The grounding of rule r2 in Row 1.1 does not produce any rule instances in any iteration

because the comparison 0 > 50 is false. By first selecting this literal when grounding the

rule, the remaining rule body can be completely ignored. Actual systems implement

heuristics to prioritize such literals. Next, in the grounding of rule r3 in Row 1.2, direct

shares given by facts over owns/3 are accumulated. Because the rule does not contain

any recursive predicates, it only produces ground instances in the first iteration. Unlike

this, rule r4 contains the recursive predicate controls/2 . It does not produce instances

in the first iteration in Row 1.3 because there are no corresponding atoms yet. Next,

aggregate propagation is triggered in Row 1.4, resulting in aggregate atoms αa,r(c1, c2)

and αa,r(c3, c4), for which enough shares have been accumulated in Row 1.2. Note that

this corresponds to the propagation of the sets G1 and G2 in Example 24. With these

atoms, rule r1 is instantiated in Row 1.5, leading to new atoms over controls/2. Observe

that, by selecting atom αa,r(X,Y ) first, GroundRule can instantiate the rule without

backtracking.

In the second iteration, the newly obtained atoms over predicate controls/2 yield atom

ηe1,a,r(35, c2, c1, c3) in Row 2.3, which in turn leads to the aggregate atom αa,r(c1, c3)

resulting in further instances of r4. Note that this corresponds to the propagation of the

set G3 in Example 24.

The following iterations proceed in a similar fashion until no new atoms are accumu-

lated and the grounding loop terminates. Note that the utilized selection strategy affects

the amount of backtracking in rule instantiation. One particular strategy used in gringo

is to prefer atoms over recursive predicates. If there is only one such atom, GroundRule
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Table 3. Tracing grounding of component P9 where c = company, o = owns, and

s = controls

can select this atom first and only has to consider newly derived atoms for instantiation.

The table is made more compact by applying this strategy. Further techniques are avail-

able in the database literature (Ullman 1988) that also work in case of multiple atoms

over recursive predicates.

To conclude, we give the ground rules as output by a grounder like gringo in Table 4.

We omit the translation of aggregates because its main objective is to show correctness

of the algorithms. Solvers like clasp implement translations or even native handling of

aggregates geared toward efficient solving (Gebser et al . 2009). Since our example pro-

gram is positive, gringo is even able to completely evaluate the rules to facts omitting

true literals from rule bodies marked in green.
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controls(c1, c2)← #sum+{60 : owns(c1, c2, 60)} > 50

∧ company(c1) ∧ company(c2) ∧ c1 �= c2

controls(c3, c4)← #sum+{51 : owns(c3, c4, 51)} > 50

∧ company(c3) ∧ company(c4) ∧ c3 �= c4

controls(c1, c3)← #sum+{20 : owns(c1, c3, 20);

35, c2 : controls(c1, c2) ∧ owns(c2, c3, 35)} > 50

∧ company(c1) ∧ company(c3) ∧ c1 �= c3

controls(c1, c4)← #sum+{51, c3 : controls(c1, c3) ∧ owns(c3, c4, 51)} > 50

∧ company(c1) ∧ company(c4) ∧ c1 �= c4

Table 4. Grounding of the company controls problem from Example 10 as output by

gringo

7 Refinements

Up to now, we were primarily concerned by characterizing the theoretical and algorith-

mic cornerstones of grounding. This section refines these concepts by further detailing

aggregate propagation, algorithm specifics, and the treatment of language constructs

from gringo’s input language.

7.1 Aggregate propagation

We used in Section 6 the relative translation of aggregates for propagation, namely,

formula πG(aσ) in Definition 20, to check whether an aggregate is satisfiable. In this

section, we identify several aggregate specific properties that allow us to implement more

efficient algorithms to perform this check.

To begin with, we establish some properties that greatly simplify the treatment of

(arbitrary) monotone or antimonotone aggregates.

We have already seen in Proposition 24 that π(a)I is classically equivalent to π(a)

for any closed aggregate a and two-valued interpretation I. Here is its counterpart for

antimonotone aggregates.

Proposition 36

Let a be a closed aggregate.

If a is antimonotone, then π(a)I is classically equivalent to � if I |= π(a) and ⊥
otherwise for any two-valued interpretation I.

Example 28

In Example 24, we check whether the interpretation J satisfies the formulas πG1
(aσ1)I

to πG4
(aσ4)I .

Using Proposition 24, this boils down to checking
∑

e∈Gi,J|=B(e) H(e) > 50 for each

1 ≤ i ≤ 4. We get 60 > 50, 51 > 50, 55 > 50, and 35 
> 50 for each Gi, which agrees with

checking J |= πGi
(aσi)I .

An actual implementation can maintain a counter for the current value of the sum for

each closed aggregate instance, which can be updated incrementally and compared with

the bound as new instances of aggregate elements are grounded.

https://doi.org/10.1017/S1471068422000308 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000308


1186 R. Kaminski and T. Schaub

Next, we see that such counter based implementations are also possible #sum aggre-

gates using the <, ≤, >, or ≥ relations. We restrict our attention to finite interpretations

because Proposition 37 is intended to give an idea on how to implement an actual prop-

agation algorithm for aggregates (infinite interpretations would add more special cases).

Furthermore, we just consider the case that the bound is an integer here; the aggregate

is constant for any other ground term.

Proposition 37

Let I be a finite two-valued interpretation, E be a set of aggregate elements, and b be

an integer.

For T = H({e ∈ Inst(E) | I |= B(e)}), we get

(a) π(#sum{E} � b)I is classically equivalent to π(#sum+{E} � b′)
with � ∈ {≥, >} and b′ = b−#sum−(T ), and

(b) π(#sum{E} ≺ b)I is classically equivalent to π(#sum−{E} ≺ b′)
with ≺ ∈ {≤, <} and b′ = b−#sum+(T ).

The remaining propositions identify properties that can be exploited when propagating

aggregates over the = and 
= relations.

Proposition 38

Let I be a two-valued interpretation, E be a set of aggregate elements, and b be a ground

term.

We get the following properties:

(a) π(f{E} < b)I ∨ π(f{E} > b)I implies π(f{E} 
= b)I , and

(b) π(f{E} = b)I implies π(f{E} ≤ b)I ∧ π(f{E} ≥ b)I .

The following proposition identifies special cases when the implications in Proposi-

tion 38 are equivalences. Another interesting aspect of this proposition is that we can

actually replace #sum aggregates over = and 
= with a conjunction or disjunction,

respectively, at the expense of calculating a less precise approximate model. The con-

junction is even strongly equivalent to the original aggregate under Ferraris’ semantics

but not the disjunction.

Proposition 39

Let I and J be two-valued interpretations, f be an aggregate function among #count,

#sum+, #sum− or #sum, E be a set of aggregate elements, and b be an integer.

We get the following properties:

(a) for I ⊆ J , we have J |= π(f{E} < b)I ∨ π(f{E} > b)I iff J |= π(f{E} 
= b)I , and

(b) for J ⊆ I, we have J |= π(f{E} = b)I iff J |= π(f{E} ≤ b)I ∧ π(f{E} ≥ b)I .

The following proposition shows that full propagation of #sum, #sum+, or #sum−

aggregates over relations = and 
= involves solving the subset sum problem (Martello and

Toth 1990). We assume that we propagate w.r.t. some polynomial number of aggregate

elements. Propagating possible atoms when using the = relation, that is, when I ⊆
J , involves deciding an NP problem and propagating certain atoms when using the 
=
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relation, that is, when J ⊆ I, involves deciding a co-NP problem.9 Note that the decision

problem for #count aggregates is polynomial, though.

Proposition 40

Let I and J be finite two-valued interpretations, f be an aggregate function, E be a set

of aggregate elements, and b be a ground term.

For TI = {H(e) | e ∈ Inst(E), I |= B(e)} and TJ = {H(e) | e ∈ Inst(E), J |= B(e)},
we get the following properties:

(a) for J ⊆ I, we have J |= π(f{E} 
= b)I iff there is no set X ⊆ TI such that

f(X ∪ TJ) = b, and

(b) for I ⊆ J , we have J |= π(f{E} = b)I and iff there is a set X ⊆ TJ such that

f(X ∪ TI) = b.

7.2 Algorithmic refinements

The calls in Lines 6 and 7 in Algorithm 3 can sometimes be combined to calculate certain

and possible atoms simultaneously. This can be done whenever a component does not

contain recursive predicates. In this case, it is sufficient to just calculate possible atoms

along with rule instances in Line 7 augmenting Algorithm 1 with an additional check

to detect whether a rule instance produces a certain atom. Observe that this condition

applies to all stratified components but can also apply to components depending on un-

stratified components. In fact, typical programs following the generate, define, and test

methodology (Lifschitz 2002; Niemelä 2008) of ASP, where the generate part uses choice

rules (Simons et al . 2002) (see below), do not contain unstratified negation at all. When

a grounder is combined with a solver built to store rules and perform inferences, one

can optimize for the case that there are no negative recursive predicates in a component.

In this case, it is sufficient to compute possible atoms along with their rule instances

and leave the computation of certain atoms to the solver. Finally, note that gringo cur-

rently does not separate the calculation of certain and possible atoms at the expense of

computing a less precise approximate model and possibly additional rule instances.

Example 29

For the following example, gringo computes atom p(4) as unknown but the algorithms

in Section 6 identify it as true.

r(1, 4) p(1)← ¬q(1)

r(2, 3) q(1)← ¬p(1)

r(3, 1) p(2)

p(Y )← p(X) ∧ r(X,Y ).

When grounding the last rule, gringo determines p(4) to be possible in the first iteration

because p(1) is unknown at this point. In the second iteration, it detects that p(1) is

a fact but does not use it for grounding again. If there were further rules depending

negatively on predicate p/1, inapplicable rules might appear in gringo’s output.

9 Note that clingo’s grounding algorithm does not attempt to solve these problems in all cases. It simply
over- or underapproximates the satisfiability using Proposition 38.

https://doi.org/10.1017/S1471068422000308 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000308


1188 R. Kaminski and T. Schaub

Another observation is that the loop in Algorithm 2 does not produce further rule in-

stances in a second iteration for components without recursive predicates. Gringo main-

tains an index (Garcia-Molina et al . 2009) for each positive body literal to speed up

matching of literals; whenever none of these indexes, used in rules of the component at

hand, are updated, further iterations can be skipped.

Just like dlv ’s grounder, gringo adapts algorithms for semi-naive evaluation from the

field of databases. In particular, it works best on linear programs (Abiteboul et al . 1995),

having at most one positive literal occurrence over a recursive predicate in a rule body.

The program in Example 10 for the company controls problem is such a linear program

because controls/2 is the only recursive predicate. Algorithm 1 can easily be adapted to

efficiently ground linear programs by making sure that the recursive positive literal is

selected first. We then only have to consider matches that induce atoms not already used

for instantiations in previous iterations of the loop in Algorithm 2 to reduce the amount

of backtracking to find rule instances. In fact, the order in which literals are selected in

Line 3 is crucial for the performance of Algorithm 1. Gringo uses an adaptation of the

selection heuristics presented by Leone et al . (2001) that additionally takes into account

recursive predicates and terms with function symbols.

To avoid unnecessary backtracking when grounding general logic programs, gringo

instantiates rules using an algorithm similar to the improved semi-naive evaluation with

optimizations for linear rules (Abiteboul et al . 1995).

7.3 Capturing gringo’s input language

We presented aggregate programs where rule heads are simple atoms. Beyond that,

gringo’s input language offers more elaborate language constructs to ease modeling.

A prominent such construct are so-called choice rules (Simons et al . 2002). Syntacti-

cally, one-element choice rules have the form {a} ← B, where a is an atom and B a body.

Semantically, such a rule amounts to a ∨ ¬a ← B or equivalently a ← ¬¬a ∧ B. We

can easily add support for grounding choice rules, that is, rules where the head is not a

plain atom but an atom marked as a choice, by discarding choice rules when calculating

certain atoms and treating them like normal rules when grounding possible atoms. A

translation that allows for supporting head aggregates using a translation to aggregate

rules and choice rules is given by Gebser et al . (2015a). Note that gringo implements

further refinements to omit deriving head atoms if a head aggregate cannot be satisfied.

Another language feature that can be instantiated in a similar fashion as body ag-

gregates are conditional literals. Gringo adapts the rewriting and propagation of body

aggregates to also support grounding of conditional literals.

Yet another important language feature are disjunctions in the head of rules (Gelfond

and Lifschitz 1991). As disjunctive logic programs, aggregate programs allow us to solve

problems from the second level of the polynomial hierarchy. In fact, using �Lukasiewicz’

theorem (Lukasiewicz 1941), we can write a disjunctive rule of form

a ∨ b← B

as the shifted strongly equivalent R-program:

a← (b→ a) ∧B

b← (a→ b) ∧B.
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We can use this as a template to design grounding algorithms for disjunctive programs.

In fact, gringo calculates the same approximate model for the disjunctive rule and the

shifted program.

The usage of negation as failure is restricted in R-programs. Note that any occurrence

of a negated literal l in a rule body can be replaced by an auxiliary atom a adding rule

a ← l to the program. The resulting program preserves the stable models modulo the

auxiliary atoms. This translation can serve as a template for double negation or negation

in aggregate elements as supported by gringo.

Integrity constraints are a straightforward extension of logic programs. They can

be grounded just like normal rules deriving an auxiliary atom that stands for ⊥.

Grounding can be stopped whenever the auxiliary atom is derived as certain. Integrity

constraints also allow for supporting negated head atoms, which can be shifted to rule

bodies (Janhunen 2001) resulting in integrity constraints, and then treated like negation

in rule bodies.

A frequently used convenience feature of gringo are term pools (Gebser et al . 2015a;b).

The grounder handles them by removing them in a rewriting step. For example, a rule

of form

h(X;Y, Z)← p(X;Y ), q(Z)

is factored out into the following rules:

h(X,Z)← p(X), q(Z)

h(X,Z)← p(Y ), q(Z)

h(Y, Z)← p(X), q(Z)

h(Y, Z)← p(Y ), q(Z).

We can then apply the grounding algorithms developed in Section 6.

To deal with variables ranging over integers, gringo supports interval terms (Gebser

et al . 2015a;b). Such terms are handled by a translation to inbuilt range predicates. For

example the program

h(l..u)

for terms l and u is rewritten into

h(A)← rng(A, l, u)

by introducing auxiliary variable A and range atom rng(A, l, u). The range atom provides

matches including all substitutions that assign integer values between l and u to A.

Special care has to be taken regarding rule safety, the range atom can only provide

bindings for variable A but needs variables in the terms l and u to be provided elsewhere.

A common feature used when writing logic programs are terms involving arithmetic ex-

pressions and assignments. Both influence which rules are considered safe by the grounder.

For example, the rule

h(X,Y )← p(X + Y, Y ) ∧X = Y + Y
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is rewritten into

h(X,Y )← p(A, Y ) ∧X = Y + Y ∧A = X + Y

by introducing auxiliary variable A. The rule is safe because we can match the literals

in the order as given in the rewritten rule. The comparison X = Y + Y extends the

substitution with an assignment for X and the last comparison serves as a test. Gringo

does not try to solve complicated equations but supports simple forms like the one given

above.

Last but not least, gringo does not just support terms in assignments but it also

supports aggregates in assignments. To handle such kind of aggregates, the rewriting and

propagation of aggregates has to be extended. This is achieved by adding an additional

variable to aggregate replacement atoms (20), which is assigned by propagation. For

example, the rule

h(X,Y )← q(X) ∧
a︷ ︸︸ ︷

Y = #sum{Z : p(X,Z)}︸ ︷︷ ︸
r

is rewritten into

εa,r(X)← q(X)

ηe,a,r(Z,X)← p(X,Z) ∧ q(X)

h(X,Y )← αa,r(X,Y ).

Aggregate elements are grounded as before but values for variable Y are computed during

aggregate propagation. In case of multiple assignment aggregates, additional care has to

to be taken during the rewriting to ensure that the rewritten rules are safe.

8 Related work

This section aims at inserting our contributions into the literature, starting with theoret-

ical aspects over algorithmic ones to implementations.

Splitting for infinitary formulas has been introduced by Harrison and Lifschitz (2016)

generalizing results of Janhunen et al . (2007) and Ferraris et al . (2009). To this end, the

concept of an A-stable model is introduced (Harrison and Lifschitz 2016). We obtain the

following relationship between our definition of a stable model relative to a set IC and

A-stable models: For an N -program P , we have that if X is a stable model of P relative

to IC , then X ∪ IC is an (A\ IC )-stable model of P . Similarly, we get that if X is an A-

stable model of P , then S
X\A
P (X) is a stable model of P relative to X \A. The difference

between the two concepts is that we fix atoms IC in our definition while A-stable models

allow for assigning arbitrary truth values to atoms in A \ A (Harrison and Lifschitz

2016, Proposition 1). With this, let us compare our handling of program sequences to

symmetric splitting (Harrison and Lifschitz 2016). Let (Pi)i∈I
be a refined instantiation

sequence of aggregate program P , and F =
⋃

i<j π(Pi) and G =
⋃

i≥j π(Pi) for some

j ∈ I such that H(F ) 
= H(G). We can use the infinitary splitting theorem of Harrison

and Lifschitz (2016) to calculate the stable model of F∧ ∧ G∧ through the H(F )- and

A\H(F )-stable models of F∧ ∧G∧. Observe that instantiation sequences do not permit
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positive recursion between their components and infinite walks are impossible because

an aggregate program consists of finitely many rules inducing a finite dependency graph.

Note that we additionally require the condition H(F ) 
= H(G) because components can

be split even if their head atoms overlap. Such a split can only occur if overlapping head

atoms in preceding components are not involved in positive recursion.

Next, let us relate our operators to the ones defined by Truszczyński (2012). First of

all, it is worthwhile to realize that the motivation of Truszczyński (2012) is to conceive

operators mimicking model expansion in id-logic by adding certain atoms. More precisely,

let Φ, St , and Wf stand for the versions of the Fitting, stable, and well-founded operators

defined by Truszczyński (2012). Then, we get the following relations to the operators

defined in the previous sections:

StP,IC (J) = lfp(ΦP,IC (·, J))

= lfp(T IC
PJ

) ∪ IC

= SIC
P (J) ∪ IC .

For the well-founded operator we obtain

Wf P,IC (I, J) = W IC ,IC
P (I, J) � IC .

Our operators allow us to directly calculate the atoms derived by a program. The versions

of Truszczyński (2012) always include the input facts in their output and the well-founded

operator only takes certain but not possible atoms as input.

In fact, we use operators as Denecker et al . (2000) to approximate the well-founded

model and to obtain a ground program. While we apply operators to infinitary formulas

(resulting from a translation of aggregates) as introduced by Truszczyński (2012), there

has also been work on applying operators directly to aggregates. Vanbesien et al . (2021)

provide an overview. Interestingly, the high complexity of approximating the aggregates

pointed out in Proposition 40 has already been identified by Pelov et al . (2007).

Simplification can be understood as a combination of unfolding (dropping rules if a

literal in the positive body is not among the head atoms of a program, that is, not among

the possible atoms) and negative reduction (dropping rules if an atom in the negative

body is a fact, that is, the literal is among the certain atoms) (Brass and Dix 1999; Brass

et al . 2001). Even the process of grounding can be seen as a directed way of applying

unfolding (when matching positive body literals) and negative reduction (when matching

negative body literals). When computing facts, only rules whose negative body can be

removed using positive reduction are considered.

The algorithms of Kemp et al . (1991) to calculate well-founded models perform a

computation inspired by the alternating sequence to define the well-founded model as Van

Gelder (1993). Our work is different in so far as we are not primarily interested in

computing the well-founded model but the grounding of a program. Hence, our algorithms

stop after the second application of the stable operator (the first to compute certain and

the second to compute possible atoms). At this point, a grounder can use algorithms

specialized for propositional programs to simplify the logic program at hand. Algorithmic

refinements for normal logic programs as proposed by Kemp et al . (1991) also apply in

our setting.
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Last but not least, let us outline the evolution of grounding systems over the last two

decades.

The lparse (Syrjänen 2001a) grounder introduced domain- or omega-restricted pro-

grams (Syrjänen 2001b). Unlike safety, omega-restrictedness is not modular. That is, the

union of two omega-restricted programs is not necessarily omega-restricted while the

union of two safe programs is safe. Apart from this, lparse supports recursive monotone

and antimonotone aggregates. However, our company controls encoding in Example 10

is not accepted because it is not omega-restricted. For example, variable X in the sec-

ond aggregate element needs a domain predicate. Even if we supplied such a domain

predicate, lparse would instantiate variable X with all terms provided by the domain

predicate resulting in a large grounding. As noted by Ferraris and Lifschitz (2005), recur-

sive nonmonotone aggregates (sum aggregates with negative weights) are not supported

correctly by lparse.

Gringo 1 and 2 add support for lambda-restricted programs (Gebser et al . 2007) ex-

tending omega-restricted programs. This augments the set of predicates that can be used

for instantiation but is still restricted as compared to safe programs. That is, lambda-

restrictedness is also not modular and our company controls program is still not accepted.

At the time, the development goal was to be compatible to lparse but extend the class

of accepted programs. Notably, gringo 2 adds support for additional aggregates (Geb-

ser et al . 2009). Given its origin, gringo up to version 4 handles recursive nonmonotone

aggregates in the same incorrect way as lparse.

The grounder of the dlv system has been the first one to implement grounding algo-

rithms based on semi-naive evaluation (Eiter et al . 1997). Furthermore, it implements

various techniques to efficiently ground logic programs (Leone et al . 2001; Faber et al .

2001; Perri et al . 2007). The dlvA system is the first dlv -based system to support recursive

aggregates (Dell’Armi et al . 2003), which is nowadays also available in recent versions of

idlv (Calimeri et al . 2017).

Gringo 3 closed up to dlv being the first gringo version to implement grounding al-

gorithms based on semi-naive evaluation (Gebser et al . 2011). The system accepts safe

rules but still requires lambda-restrictedness for predicates within aggregates. Hence, our

company controls encoding is still not accepted.

Gringo 4 implements grounding of aggregates with algorithms similar to the ones

presented in Section 6 (Gebser et al . 2015c). Hence, it is the first version that accepts

our company controls encoding.

Finally, gringo 5 refines the translation of aggregates as proposed by Alviano et al .

(2015) to properly support nonmonotone recursive aggregates and refines the semantics

of pools and undefined arithmetics (Gebser et al . 2015a).

Another system with a grounding component is the idp system (De Cat et al . 2014).

Its grounder instantiates a theory by assigning sorts to variables. Even though it supports

inductive definitions, it relies solely on the sorts of variables (Wittocx et al . 2010) to in-

stantiate a theory. In case of inductive definitions, this can lead to instances of definitions

that can never be applied. We believe that the algorithms presented in Section 6 can also

be implemented in an idp system decreasing the instantiation size of some problems (e.g.,

the company controls problem presented in Example 10).

https://doi.org/10.1017/S1471068422000308 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000308


Foundations of grounding in ASP 1193

Last but not least, we mention that not all ASP systems follow a two-phase approach of

grounding and solving but rather adapt a lazy approach by grounding on-the-fly during

solving (Palù et al . 2009; Lefèvre et al . 2017; Weinzierl et al . 2020).

9 Conclusion

We have provided a first comprehensive elaboration of the theoretical foundations of

grounding in ASP. This was enabled by the establishment of semantic underpinnings

of ASP’s modeling language in terms of infinitary (ground) formulas (Harrison et al .

2014; Gebser et al . 2015a). Accordingly, we start by identifying a restricted class of

infinitary programs, namely, R-programs, by limiting the usage of implications. Such

programs allow for tighter semantic characterizations than general F-programs, while

being expressive enough to capture logic programs with aggregates. Interestingly, we rely

on well-founded models (Bruynooghe et al . 2016; Truszczyński 2018) to approximate the

stable models ofR-programs (and simplify them in a stable-models preserving way). This

is due do the fact that the (id-)well-founded-operator enjoys monotonicity, which lends

itself to the characterization of iterative grounding procedures. The actual semantics of

non-ground aggregate programs is then defined via a translation to R-programs. This

setup allows us to characterize the inner workings of our grounding algorithms for aggre-

gate programs in terms of the operators introduced for R-programs. It turns out that

grounding amounts to calculating an approximation of the well-founded model together

with a ground program simplified with that model. This does not only allow us to prove

the correctness of our grounding algorithms but moreover to characterize the output

of a grounder like gringo in terms of established formal means. To this end, we have

shown how to split aggregate programs into components and to compute their approxi-

mate models (and corresponding simplified ground programs). The key instruments for

obtaining finite ground programs with finitary subformulas have been dedicated forms

of program simplification and aggregate translation. Even though, we limit ourselves to

R-programs, we capture the core aspects of grounding: a monotonically increasing set

of possibly derivable atoms and on-the-fly (ground) rule generation. Additional language

features of gringo’s input language are relatively straightforward to accommodate by

extending the algorithms presented in this paper.

For reference, we implemented the presented algorithms in a prototypical grounder,

μ-gringo, supporting aggregate programs (see Footnote 1). While it is written to be as

concise as possible and not with efficiency in mind, it may serve as a basis for experiments

with custom grounder implementations. The actual gringo system supports a much larger

language fragment. There are some differences compared to the algorithms presented here.

First, certain atoms are removed from rule bodies if not explicitly disabled via a command

line option. Second, translation π is only used to characterize aggregate propagation. In

practice, gringo translates ground aggregates to monotone aggregates (Alviano et al .

2015). Further translation (Bomanson et al . 2014) or even native handling (Gebser et al .

2009) of them is left to the solver. Finally, in some cases, gringo might produce more

rules than the algorithms presented above. This should not affect typical programs. A

tighter integration of grounder and solver to further reduce the number of ground rules

is an interesting topic of future research.
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To view supplementary material for this article, please visit http://doi.org/10.1017/
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