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Abstract

In this paper we solve the equation f (g(x)) = f (x)hm(x) where f (x), g(x) and h(x) are unknown
polynomials with coefficients in an arbitrary field K, f (x) is nonconstant and separable, deg g ≥ 2, the
polynomial g(x) has nonzero derivative g′(x) , 0 in K[x] and the integer m ≥ 2 is not divisible by the
characteristic of the field K. We prove that this equation has no solutions if deg f ≥ 3. If deg f = 2, we
prove that m = 2 and give all solutions explicitly in terms of Chebyshev polynomials. The Diophantine
applications for such polynomials f (x), g(x), h(x) with coefficients in Q or Z are considered in the context
of the conjecture of Cassaigne et al. on the values of Liouville’s λ function at points f (r), r ∈ Q.
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1. Introduction

The problem investigated in the present paper is motivated by the following question.

Q 1. Do there exist integer polynomials f (x), g(x) and h(x) of degrees

deg f ≥ 3, deg g ≥ 2,

f (x) separable (and possibly irreducible in Z[x]), such that

f (g(x)) = f (x)h2(x)?

This question has been posed in connection with recent work by Borwein et al. [2]
on the sign changes of Liouville’s lambda function λ( f (n)) for the values of integer
quadratic polynomials f (x) ∈ Z[x] at integer points n ∈ Z. Recall that for n ∈ Z, the
lambda function λ(n) is defined by λ(n) = (−1)Ω(n), where Ω(n) is the total number
of prime factors of n, counted with multiplicity. Alternatively, λ(n) is the completely
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multiplicative function defined by λ(p) = −1 for each prime p dividing n. Chowla [4]
conjectured that ∑

n≤x

λ( f (n)) = o(x)

for any integer polynomial f (x) which is not of the form f (x) = bg(x)2, where b ∈ Z
and g(x) ∈ Z[x]. For f (x) = x, Chowla’s conjecture is equivalent to the prime number
theorem and has been proven for linear polynomials f (x), but is open for polynomials
of higher degree. The much weaker conjecture of Cassaigne et al. [3] is as follows.

C 2. If f (x) ∈ Z[x] and is not of the form of bg2(x) for some g(x) ∈ Z[x],
then λ( f (n)) changes sign infinitely often.

Even this has not been proved unconditionally for polynomials of degree deg f ≥ 2.
In the paper [2], it has been proved that the sequence λ( f (n)) cannot be eventually

constant for quadratic integer polynomials f (x) = ax2 + bx + c, provided that at least
one sign change occurs for n > (|b| + (|D| + 1)/2)/2a, where D is the discriminant of
f (x). The proof is based on the solutions of Pell-type equations. In practice, using
this conditional result, one can prove Cassaigne’s conjecture for any particular integer
quadratic f (x), for instance, f (x) = 3x2 + 2x + 1. In contrast, the only examples
of degree deg f ≥ 3 for which the conjecture has been proven in [3] are f (x) =∏k

j=1(ax + b j), where a, bk ∈ N, bk are all distinct, b1 ≡ · · · ≡ bk mod a. No similar
examples of irreducible integer polynomials of degree d ≥ 3 are known. The problem
of finding an irreducible example of degree d = 3 appears interesting and is probably
difficult.

We now explain how the composition identity in Question 1 could be of use to
prove that λ( f (n)) or λ( f (−n)) is not eventually constant for cubic polynomials f (x).
Assume that the leading coefficient of g(x) is positive. Since deg g ≥ 2, there exists
a positive integer n0 such that g(n) > n for integers n > n0. Suppose that there exist
two integers k0, l0 > n0 such that λ( f (k0)) = −λ( f (l0)). Then λ( f (k j)) and λ( f (l j)) also
differ in sign for infinite sequences of integers k j and l j, defined by k j+1 = g(k j) and
l j+1 = g(l j), j ≥ 0, since λ( f (g(n))) = λ( f (n)) follows by the composition identity.

Unfortunately, the answer to Question 1 is negative. In the next section we prove
a general result which holds for polynomials with coefficients in an arbitrary field K.
Our result shows that one cannot prove the conjecture for cubic polynomials f (x) by
using the composition identity in Question 1. We also refer to [6], where a certain
composition identity was used to investigate multiplicative dependence of integer
values of quadratic integer polynomials, and [5] for further results in this direction.

2. Main result

The main result of this paper is the following theorem.

T 3. Let m ≥ 2 be an integer not divisible by the characteristic of the field K.
Suppose that f (x) ∈ K[x] is nonconstant and separable, and the polynomial g(x) has a

https://doi.org/10.1017/S1446788712000237 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000237


[3] On the equation f (g(x)) = f (x)hm(x) 157

nonzero derivative and deg g ≥ 2. Then the equation

f (g(x)) = f (x)hm(x)

holds if and only if one of the following conditions holds:

(i) f (x) = ax + b where a, b ∈ K, a , 0, and g(x) = (x + b/a) hm(x) − b/a;
(ii) f (x) = ax2 + bx + c where a, b, c ∈ K, a , 0, and m = 2, and for some n ≥ 1,

g(x) =
1

2a

(
±Tn

(
2ax + b
√

D

)
√

D − b

)
, h(x) = ±Un−1

(
2ax + b
√

D

)
,

Tn(x) and Un(x) being Chebyshev polynomials of the first and second kind, and
D being the discriminant b2 − 4ac of f (x).

We remark that the condition on the separability of f (x) cannot be weakened in
Theorem 3, as may be seen by taking f (x) = g(x) = x(x − 1)m in Q[x]. Further, the
requirement that g(x) has a nonzero derivative for fields K of nonzero characteristic
cannot be weakened. Indeed, consider the simple example where f (x) = xd − 1 and
g(x) = xpl

in Fp[x]. Moreover, if the characteristic p divides the nonzero exponent
m in the equation f (g(x)) = f (x)hm(x), then one can write hm(x) = hm/p

1 (xp) = hm/p
2 (x),

where h2(x) is a polynomial with coefficients in K.
Recall that for a field K of characteristic other than 2, the Chebyshev polynomials

Tn(x) ∈ K[x] of the first kind are defined by the linear recurrence of order two,

T0(x) = 1, T1(x) = x and Tn+2(x) = 2xTn+1(x) − Tn(x). (1)

Similarly, the Chebyshev polynomials of the second kind Un(x) ∈ K[x] are defined by
the recurrence

U0(x) = 1, U1(x) = 2x and Un+2(x) = 2xUn+1(x) − Un(x). (2)

The polynomials Tn(x) and Un(x) contain only even powers of x for even n and odd
powers of x for odd n. Thus, the coefficients of g(x) and h(x) in Theorem 3(ii) lie in
K if n is odd and in K(

√
D) if n is even. Chebyshev polynomials have many other

remarkable properties; see, for instance, [12]. They play a key role in the theorems of
Ritt on decompositions of polynomials [13]. In addition, Chebyshev polynomials are
related to permutation polynomials over finite fields called Dickson polynomials [8].
In our proof, the following property of Chebyshev polynomials will be useful.

P 4. Suppose that the characteristic of the field K is not equal to 2. Then all
the solutions of the Pell equation

P2(x) − (x2 − 1)Q2(x) = 1

in the ring K[x] are given by

P(x) = ±Tn(x) and Q(x) = ±Un−1(x),

where Tn(x) and Un(x) are Chebyshev polynomials of the first and second kind,
respectively.
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The equation that appears in Proposition 4 is a special case of a general poly-
nomial Pell equation, P(x)2 − D(x)Q2(x) = 1. Solutions to general Pell equations
in polynomials over complex number field K = C were investigated by Pastor [11].
Dubickas and Steuding [7] gave an elementary algebraic proof for arbitrary field K.
The proof of Proposition 4 can be found in [7]. Alternative proofs (in the case where
K = C) are given in [1, 11].

3. Proof of Theorem 3

In this section we prove Theorem 3.

P. Set d = deg f . Let a ∈ K and b ∈ K be the leading coefficients of polynomials
f (x) and g(x); then ab , 0. Suppose that L is the field extension of K generated by the
roots of the three polynomials f (x), xm − 1 and xm − b. Then

f (x) = a
∏
α∈V( f )

(x − α). (3)

Here V( f ) ⊂ L denotes the set of the roots of the polynomial f (x). The composition
equation f (g(x)) = f (x)hm(x) factors in L[x] into

a
∏
α∈V( f )

(g(x) − α) = a
∏
α∈V( f )

(x − α)hm(x), (4)

and one can cancel a on both sides. Observe that distinct factors g(x) − α on the
left-hand side of (4) are relatively prime in L[x] since their difference is a nonzero
constant. We claim that at most one factor g(x) − α may be relatively prime to f (x)
if m ≥ 2 and the characteristic of K does not divide m. Indeed, suppose that g(x) − β,
where β ∈ V( f ) and β , α, is another such factor. Then both g(x) − α and g(x) − β
divide hm(x), so g(x) − α and g(x) − β must be the mth powers of polynomials u(x)
and v(x) in L[x] which divide h(x), say, g(x) − α = um(x) and g(x) − β = v(x)m (note
that u(x) and v(x) belong to L[x] since the field L contains all roots of f (x) and the mth
roots of the leading coefficient b of the polynomial g(x)). Then u(x)m − v(x)m = β − α
is a nonzero constant polynomial. On the other hand,

um(x) − vm(x) =

m−1∏
j=0

(u(x) − ζ jv(x)),

where ζ is a primitive mth root of unity in L and at least one of the polynomials
u(x) − ζ jv(x) has degree greater than orequal to one, which is impossible.

Now, suppose that V( f ) = {α1, α2, . . . , αd}. Let V j be the set containing all distinct
common roots of the polynomial g(x) − α j and the polynomial f (x),

V j = V(g(x) − α j) ∩ V( f ).

Then g(x) − α j = f j(x)u j(x), where u j(x) ∈ L[x] and

f j(x) =
∏
α∈V j

(x − α).
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Note that f j(x) are all separable and coprime in L[x]. Since f (x) is also separable, the
equation (4) implies that

a
d∏

j=1

f j(x) = f (x), (5)

and consequently
d∏

j=1

u j(x) = hm(x). (6)

The polynomials u j(x) are relatively prime, thus u j(x) = hm
j (x), j = 1, . . . , d, for some

polynomials h j(x) ∈ L[x] whose product is equal to h(x) in (6). Let n j = deg f j, for
j = 1, . . . , d. Without loss of generality, assume that n1 ≤ n2 ≤ · · · ≤ nd. Then n1 ≥ 0.
Observe that n2 ≥ 1 if n1 = 0, since no two factors g(x) − α j can be coprime with f (x),
as noted above. The identity (5) gives

n1 + n2 + · · · + nd = deg f = d. (7)

Since g(x) = f j(x)h j(x)m + α j, one also has deg g ≡ n j mod m. We now consider two
cases for deg g modulo m.

Case 1. Assume that deg g ≡ 0 mod m. Then n j ≥ m for j ≥ 2, hence

d ≥ m(d − 1) (8)

by (7). Since m ≥ 2, one has d ≥ 2d − 2 which is only possible if d = 1 or d = 2.
Suppose that d = 2. Then m ≤ 2 by (8).

Case 2. Assume that deg g . 0 mod m. Then n1 = · · · = nd = 1 by (7). Suppose
that deg g = sm + 1, where s := deg h j ≥ 1 for 1 ≤ j ≤ d. Since hm

j (x) | g(x) − α j, the
polynomials hm−1

j (x) are (relatively prime) factors of the derivative g′(x). By the
conditions of the theorem, g′(x) is a nonzero polynomial, hence

ms ≥ deg g′ ≥ deg hm−1
1 + · · · + deg hm−1

d = d(m − 1)s

and, consequently,
m ≥ d(m − 1). (9)

Then d ≤ m/(m − 1) ≤ 2. Suppose that d = 2. Then, in addition, (9) gives m ≤ 2.
Thus it remains to consider the cases where d = 1 and d = 2. If d = 1, then the

polynomial f (x) is linear, thus f (x) = ax + b where a, b ∈ K and a , 0. The equation
f (g(x)) = f (x)hm(x) is equivalent to

ag(x) + b = (ax + b)hm(x),

so one simplification solves g(x) and this completes the proof in this case.
Suppose that d = 2. Then f (x) = ax2 + bx + c where a, b, c ∈ K and a , 0. Let

D = b2 − 4ac; then D , 0 since f (x) is separable. Further, m = 2 by the conditions
of Theorem 3 and the degree inequalities in the two cases above. Hence, it suffices
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T 1. Examples of polynomials f (x), g(x), h(x) ∈ Z[x] in Theorem 3.

f (x) g(x) h(x)

x2 + 1 4x3 + 3x 4x2 + 1
x2 − 1 4x3 − 3x 4x2 − 1
x2 + 2 2x3 + 3x 2x2 + 1
x2 − 2 2x3 − 3x 2x2 − 1
x2 + 4 x3 + 3x x2 + 1
x2 − 4 x3 − 3x x2 − 1

to find the polynomials g(x) and h(x) in the equation f (g(x)) = f (x)h2(x). Since the
characteristic of the field K is not equal to 2 by the conditions of Theorem 3, the linear
change of variables x→ x(t) defined by

x =
t
√

D − b
2a

transforms the polynomial f (x) into

f (x) =
D
4a

F(t),

where F(t) = t2 − 1. Set

G(t) =
1
√

D

(
2ag

( t
√

D − b
2a

)
+ b

)
and H(t) = h

( t
√

D − b
2a

)
.

By straightforward substitution, one can easily check that the map x→ x(t) transforms
the composition equation f (g(x)) = f (x)h2(x) into (D/4a)F(G(t)) = (D/4a)F(t)H2(t).
Cancelling the factor D/4a on both sides, one obtains

F(G(t)) = F(t)H2(t),

or, equivalently,
G2(t) − (t2 − 1)H2(t) = 1.

By Proposition 4, the solutions to this equation are all of the form G(t) = ±Tn(t),
H(t) = ±Un−1(t), where Tn(t) and Un(t) are Chebyshev polynomials of the first and
second kind. Application of the inverse map t→ t(x) now yields the result. �

4. Rational and integer examples

Let f (x) = ax2 + bx + c be a quadratic polynomial with rational coefficients. For
n = 3 in Theorem 3, one has T3(x) = 4x3 − 3x and U2(x) = 4x2 − 1. By Theorem 3,
f (g(x)) = f (x)h2(x) holds for

g(x) = (16a2x3 + 24abx2 + (9b2 + 12ac)x + 8bc)/D,

h(x) = (16a2x2 + 16abx + 3b2 + 4ac)/D.
(10)
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Extend the definition of the λ function to the whole set of rationals Q by complete
multiplicativity. Then, using the method outlined in Section 1, one can easily prove the
following analogue of Theorem 2 in [2] for the sign changes of λ function at rational
points: either λ( f (r)) is constant for all rational numbers r greater than the largest real
root of g(x) − x or it changes sign infinitely many often.

The question of finding all solutions of the composition equation in integer
polynomials f (x), g(x), and h(x) is closely related to the solution of the polynomial
Pell equations in Z[x]; see [9, 10, 14]. This does not seem to be easy. Examples of
such polynomials are f (x) = x2 ± 1, f (x) = x2 ± 2, f (x) = x2 ± 4. The corresponding
polynomials g(x) and h(x) with integer coefficients can be found using (10); see
Table 1.
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