SPECIAL ORTHOGONAL LATIN SQUARES OF ORDER 10

Louis Weisner

(received July 19, 1962)

The orthogonal latin squares displayed in [1] and [2] have the property that their row permutations are transformed amongst themselves by a permutation of order 7. In this note I present three examples of orthogonal latin squares of order 10 whose row permutations are transformed amongst themselves by a permutation of order 9.

We suppose the rows labelled 0 to 9 from top to bottom and the columns labelled 0 to 9 from left to right, and that the entries in each row of the latin squares under consideration are the integers 0, 1, ..., 9. Each row is a permutation of these symbols. If R_i and R_i are the ith row permutations of two orthogonal latin squares of order 10, we require that

$$R_{i} = P^{-i}R_{o}P^{i}, R_{i}' = P^{-i}R_{o}'P^{i} (i = 0, 1, ..., 8),$$

where P = (012345678), while R_9 and R_9' are powers of P. The conditions are satisfied by the row permutations of the three pairs of orthogonal latin squares shown below. Thus, in Fig. 1, $R_0 = (125387946)$, $R_0' = (18)(2965)(347)$, $R_9 = P^6$, $R_9' = P^4$.

These figures have other special features. The squares in Fig. 1 are transposes (in the matric sense) of one another. One of the squares in Fig. 2 is symmetric, and the columns of one square form a permutation of the columns of the other.

Canad. Math. Bull. vol. 6, no. 1, January 1963.

Fig. 3 may be derived from Fig. 1 by the following rule: If x,y is the entry in the <u>ith</u> row and <u>jth</u> column of Fig. 1, then i, x is the entry in the <u>jth</u> row and <u>yth</u> column of Fig. 3. While the two figures are isomorphic, it is noteworthy that Fig. 3 has the involutory property: If x,y is the entry in the <u>ith</u> row and <u>jth</u> column, then i, j is the entry in the <u>xth</u> row and yth column.

00	28	59	84	67	32	15	93	71	46	
82	11	30	69	05	78	43	26	94	57	
95	03	22	41	79	16	80	54	37	68	
48	96	14	33	52	89	27	01	65	70	
76	50	97	25	44	63	09	38	12	81	
23	87	61	98	36	55	74	19	40	02	
51	34	08	72	90	47	66	85	29	13	
39	62	45	10	83	91	58	77	06	24	
17	49	73	56	21	04	92	60	88	35	
64	75	86	07	18	20	31	42	53	99	
				Fig.	Fig. 1.					
96	64	41	13	38	87	72	25	59	00	
69	97	75	52	24	40	80	83	36	11	
47	79	98	86	63	35	51	10	04	22	
15	58	89	90	07	74	46	62	21	33	
32	26	60	09	91	18	85	57	73	44	
84	43	37	71	19	92	20	06	68	55	
70	05	54	48	82	29	93	31	17	66	
28	81	16	65	50	03	39	94	42	77	
53	30	02	27	76	61	14	49	95	88	
01	12	23	34	45	56	67	78	80	99	

Fig. 2.

00	65	18	52	96	29	47	81	34	73
45	11	76	20	63	97	39	58	02	84
13	56	22	87	31	74	98	49	60	05
71	24	67	33	08	42	85	90	59	16
69	82	35	78	44	10	53	06	91	27
92	79	03	46	80	55	21	64	17	38
28	93	89	14	57	01	66	32	75	40
86	30	94	09	25	68	12	77	43	51
54	07	41	95	19	36	70	23	88	62
37	48	50	61	72	83	04	15	26	99

Fig. 3.

REFERENCES

- 1. E.T. Parker, Orthogonal latin squares, Proc. Nat. Acad. Sci. 45(1959), 859-862.
- 2. R.C. Bose, S.S. Shrikhande and E.T. Parker, Further results on the construction of mutually orthogonal latin squares and the falsity of Euler's conjecture, Canadian Journal Math. 12(1960), 189-203.

University of New Brunswick