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A singular perturbation problem
with a turning point

A.M. Watts

We consider the equation

ey" + p{x)y' + q(x)y = 0 ,

where e is a small positive parameter and p vanishes in the

interval. Two asymptotic forms of solution are obtained and a

rigorous estimate is made of the difference between the exact

solutions and the asymptotic forms.

1. Introduction

The equation

(1.1) ey" + p(x)y' + q{x)y = 0 ,

where e is a small positive parameter, has been studied extensively and

the asymptotic properties of the solutions are well understood when p

does not change sign. Cases when p has a simple zero have been

considered by Ackerberg and O'Malley [/], but they have made the assumption

that p and q are analytic functions. Here we show that quite general

results can be obtained for the solution in the interval 0 5 x 2 1 under

the much weaker conditions that q be continuously differentiable and p

twice continuously differentiable. We assume p(0) = 0 , p'(0) = -1 and

p is strictly negative for 0 < x 5 1 . We use the notation q{0) = b .

The continuation of the solutions through the origin is also considered.

Interest in this equation developed from the related problem of the

solution of the von Karman similarity equations for a rotating fluid. The
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angular velocity satisfies an equation of the same form as (l.l) with the

parameter e corresponding to the inverse of the Reynold's number. The

change in sign of the coefficient p corresponds to a reversal of the

axial velocity in the fluid, which is usually associated with a change in

sign of the angular velocity. The understanding of the flow between

counter-rotating discs is the eventual aim of this work, but it has not yet

been achieved.

Some preliminary forms of approximate solutions are obtained in order

to explain the choice of variables used below. Hear the origin the

approximate equation is

(1.2) ey" - xy' + by = 0 .

With r\ = x£ 1 , we obtain

(1.3) J ^

The solutions of this equation are the parabolic cylinder functions, which

also play an important role in the solution of the approximate equation for

larger values of the independent variable.

Away from the origin, the outer or slowly varying approximate solution

is given by

p(x)y' + q{x)y = 0 .

The solution of this equation is

U.M

To obtain the rapidly varying boundary layer solution, we use a change

of variable to

(1.5) * = ' Ho
Equation ( l . l ) becomes

• * H f. |f$ * *

and the approximate solution is

https://doi.org/10.1017/S0004972700046888 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046888


A perturbation problem 63

y = Ae* .

It must be remembered that since t is a stretched variable this solution

is valid only over a small interval, that is, over an interval in which x

changes by a small quantity. The important consequence of this solution

for our purposes is that the variable t is an appropriate one for the

rapidly varying solution, while x is appropriate for the slowly varying

x2
solution. We note also that for x -*• 0 , 2i "\# — = n.2 , which suggests

2
that t2 might be a more suitable variable to use.

More useful forms of approximate solutions valid over the whole

interval 0 5 x 5 1 are derived in the next section.

2. Construction of approximate solutions

The independent variable £(x) which is suggested by the preliminary

forms of the approximate solutions is given by

(2.1) e£2 = X2 = -2 p(i)dT .
JO

tx

= -2 p(
JO

Let

(2.2)

Equation (l

(2.3) L(y)

.1), in terms

~ d$2+P C'

of

e)

si = ed)

, becomes

+ «(C; e). z)y = <*5a. _ g !ZfL + byf

p

As before b = q{0) , p ' ( 0 ) = - l and from (2 .1) we have

X ^ x for x -»• 0 ,

so t h a t

Xza
b *• •+ 0 a s x -*• 0 ,

P2

that is
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b - Z-3- 'v Cx for x ->- 0
p 2

for some constant C , since q, p, X are continuously differentiable

functions of x .

( x p ' Xx)
Y + v a n i s h e s a t x = 0 a n d , s i n c e p ' , p and A"

P 2 J

— + ^—* Jare continuously differentiable functions of x , we have that

I* p 2 J
is bounded.

A "two-variable" method is used to determine the approximate

solutions. These are of the form

; e) = a(x)w(C) ,

where

(2.1*) u" - &' + bu = 0 ,

and the derivatives of w are given by formulae such as

(2.5) w' = ce/ + ^ a ' w .

For the sake of abbreviation we write

w(O = u(C; e) •

Substitution into (2.3) gives

' a ' a ' x ATa'l
— — + ——— ^ .

3 P PjLp p3

There is no a which would make this expression vanish, but we may choose

a so that the expression obtained when u and u' are replaced by their

asymptotic forms vanishes. If we were to use an iterative method to find

more accurate approximate solutions, this choice of a would prevent the

development of "resonance" in the next approximation.

We derive two approximate solutions W\, «2 where

(2.7) Wi(O = a j U k j U ) , w2(C) = a2(x)u2(O .
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and u 2 are solutions of (2.It), chosen so that

(2.8)

u2 = C2C
b'1e^U * 0(C2)] , for

The asymptotic forms of the derivatives of Uj and w2 may be shown to be

(2.9)

Mj and «2 are scaled so that their Wronskian is e2 .

With u replaced by u\ , and a by a\ , the term in equation (2.6)

which dominates is

To make this vanish, o^ is chosen to be

(2.10) b

where i'o is the outer solution given by equation (l.U). Note that Jo

has the factor x so that aj is bounded and non-zero at the origin as

well as over the remainder of the interval. Also, X and Jo a r e twice

continuously differentiable and so is otj , provided we make the further

restrictions that p is three times continuously differentiable and q

twice, in the neighbourhood of x = 0 .

With «2 and a2 , the dominant terms in (2.6) are

LPP I p2

is then given by
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from which we obtain

J>+1

and again we note that o.2 has two continuous derivatives for 0 5 x 5 1 ,

and does not vanish in the interval, under the same conditions as a.\ .

We now have two approximate solutions W\ and w2 with

l
(2.12) L(wi) = e^g1{x)u[(.E,) + zfi(x)ux = F i U ) ,

(2.13)

where

P P

(2.16) h2(x) =

and g2(x), f2(x) are defined in a similar way to gx, fx but with ax

replaced by a2 .

It is clear that the functions git g2, flt f2 and h2 are all

bounded and 0(1) for e ->• 0 . We also have, since h2 is continuously

differentiable and vanishes at the origin,

(2.17) \hz[x)\ < Kx

for some constant K .

Further, because of our choice of a2 , we have

1 o
(2.18)

for ? > ?o > where ?o ^s some number independent of E and greater than

the largest zero of u2 .

Note that the quantities on the left-hand sides of (2.17), (2.18) may

be simultaneously small since x may be small while £ is large.
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3. Existence of solutions

Our task now is to show that, in the interval 0 5 C - £1 > there

exist exact solutions of (2.3) to which Uj and w2 a-re approximations.

This is done by the construction of a suitable integral equation.

Since i>i and w2
 a r e twice differentiable functions of £ , there

is a second order linear operator of the form

(3.1) M{w) = w" + Pj(C, e)w' + S x U , e)u ,

such that

(3.2) M(wi) = M(w2) = 0 .

Equations (2.12), (2.13) may be written in the form

w" + Pw[ + Qu1 = Fi ,

«2 + Pu'2 + 6^2 = F2 »

and we have, by our definition of the operator M ,

u" + Piw{ + G1W1 = 0 ,

u2 + P1W2 + SiWi = 0 .

These two pairs of equations give

(P-Pi)u2 + {Q-Qi)w2 = ?2 .

so that

W2F1+U1F2
(3 .3) P.2 = P - Pi = -

(3-1*) S2 = « " Q\ =

s w2)

w2F\-w[Fz

w h e r e W{.W\, U 2 ) i s t h e Wronsk ian of w l s u 2 .

E q u a t i o n ( 2 . 3 ) may b e e x p r e s s e d i n t h e form

(3.5) M(J/(5; e)) = - Pzy' - Q2y •

In view of (3-2) we can use Uj and w2 to construct a suitable

Green's function for the operator M and obtain an integral equation

equivalent to (3.5) The appropriate integral equation is
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(3.6)

where T is the integral operator given by

(3.7) 2^(5) = - ui(C) JQ [v(n)]"
2w2(n)|[wi(n)F2(n) - u2(n)Fi(n)];/

r(n)

*

where

and gj is defined by (2.2).

Let Uj(C), y2(C) be two continuous functions defined by

U!(0) = y2(0) = 1 ,

0 5 C * Co ,

v'2(i) = C
be^ for Co S C 5 Ci •

We consider the function spaces 5j and 52 , where 5j consists of

functions satisfying, for some constant K which depends on the function,

and similarly, S2 consists of the differentiable functions satisfying

| / U ) | < Kv2U) , |f'(C)| < KV2(E,) .

After some lengthy calculations using (2.17), (2.18), we can show that T

is a contractive mapping in both S\ and S2 with contraction factors

that are 0(e3J , and hence that there exist exact solutions y\, y2 of

equation (2.3) with
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yiU; e) = wjU) + O[z*)vx(0 ,

i/i(5; e) = wi
(3.9)

(5; E) =

2(5; e) = w2

4. Continuation of solutions through the origin

One of the most important extensions of the problem originally posed

is the continuation of the solutions through the zero of the coefficient

p . Clearly, with similar conditions on the coefficients, similar results

can be obtained for negative x as for positive x . We need to relate

the asymptotic forms of solution for negative x to those for positive

x .

Suppose firstly that b is neither zero nor a positive integer. Then

a reference to Mi Iler [3, pp. 687, 689], for example, tells us that the

solution «i(5) of (2.it) satisfying the first of (2.8) is exponentially

large for large negative £ , that is

for £ * -» .

Similarly u2(£.) may be chosen to satisfy (2.k), the second of (2.8) and

u2 = C(-5)fc(l + 0(C~2)) for 5 + -» ,

so that the roles of u\ and u2 are reversed on passing through the

origin. Let two approximate solutions for x < 0 be Bi(:c)ui(€),

32(^)^2(5) , where 3i and $2 a r e chosen in the same manner as a2 and

<*! , respectively. Suppose also that Bi(O) = cii(O) , 62(0) = a2(0) .

Let zi(£; e), 32(C; e) be exact solutions of (2.3) to which B>iUx

and &2u2 approximate. By (3.9) and similar equations for z\, z2 we

have
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2/iCO; E) = OxCOMiCo) + 0[c3) = 2x(0; e) + o(E3) ,

2/1(0; E) = ai(0)Mj(0) + O(e^) = z}(0; e) + O(E^) ,

2/2(O; E) = 22(0; E) + O(E^) ,

2/2(O; E) = 32(0; e) + O(s^) .

Clearly, J/J and 2/2 may tie continued into negative values of £ , and Z\

and 32 may each be expressed as a l inear combination of z/j and yi .

Using the i r re la t ions at the origin we have

; e) = a i ( 5 ; E) + o

(U.2) 2/2(5; E) = s 2 (£ ; E) + O ( E ^ J 3 1 ( C ; E) + O ( E ^ ) Z 2 ( C ; E)

In terms of the prototype function U 2 ,

; E) = ai(5; e) +

We cannot use s 2 or 32w2 as an approximation to 1/2 for %, < 0 , since

the term Ofs^jsiCC; E ) on the right of {k.2) dominates for large negative

£ . However, in this case we can continue 32 to positive values of £

and obtain, for £ > 0 ,

22(C; e) = i/2(C; e) + 0 ( E S ) U 2 ( 5 ) •

Thus there are two solutions t/l» Z2 with j/1 exponentially large

for negative a; and s 2 exponentially large for positive x .

These and their approximations allow us to obtain solutions to

two-point boundary value problems where the conditions are applied on

opposite sides of the origin. The solutions give a boundary layer at each

boundary point with exponentially small values in the interior.

In the case when b is a positive integer, Wi(C) is a polynomial,

while U2(£) is exponentially large for both large positive and large

negative £, . Equations (k.l) and (k.2) still hold but y\ cannot be

approximated by Z\ (or BiUj) because the term O(E"3J32(C; E ) on the

right of (U.l) dominates for large negative £ . Without the ability to

extend the approximate form for t/x through the origin we cannot find

approximate solutions to two-point boundary value problems such as those
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discussed by Ackerberg and O'Malley [/] in Part 3 of the i r paper.

A useful example here is the equation

(1+.5) ey" - xy' + (b+x)y = 0 .

The transformations

71

si
h z ,

yield

(1+.6) [i + £ + | - = 0 ,

whose solutions are parabolic cylinder functions. If b + £ is a positive

integer, then there is a solution of C+.5) which is only algebraically

large for both positive and negative x . If b is a positive integer,

any solution of (̂ .5) is exponentially large for positive x or negative

x or both. This contradicts the results in Parts 3a, 3b of the paper by

Ackerberg and O'Malley.

5. Remarks

For an interval extending to °° , the approximate solutions W\ and

«2 are not valid, in that they do not approximate to the exact solutions

J/J and y2 • It is the terms containing f\(x) and fz(x) in (2.12),

(2.13) which cause the trouble and it is these terms, as shown by (2.6),

which contain a" and a^ • T o obtain approximate solutions valid over

larger intervals than [0, £1] , it would be necessary to continue the

two-variable process to higher order terms. The same type of behaviour is

shown in problems of non-linear oscillations and in problems involving

adiabatic invariants, where it is possible to trade off accuracy in the

approximation for a larger interval of validity. That is, the approximate

solutions become less accurate as the interval is extended until, after a

sufficiently large time, the errors become comparable with the solution

itself. There are, however, examples such as the asymptotic solutions of

Bessel's equation where the first approximation to the solution is valid
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over an infinite interval.

The method used here of deriving approximate solutions by a

two-variable procedure and then using them to obtain an integral equation

is also applicable in problems which have been dealt with by other methods

such as those described by Erdelyi [2] and Mitropol'skiT [4].

The restrictions on p and q that were introduced in Section 2

(after (2.10)) may be avoided by the use of a messy modification to the

method. The third continuous derivative of p and the second of q are

necessary only to ensure that a.\ and a2 have bounded second derivatives

in the neighbourhood of the origin, but the particular forms of a.\ and

012 are chosen to satisfy asymptotic conditions for large C . Instead of

adding these extra conditions on p and q , we could use alternative

approximate solutions given by

Co < C < €1 .
0 < 5 < S0 ,

w2(C) = a2(<r)w2(C) Co < C < Ci .

= B2(C; e)w2(E) 0 < C < Co >

where $1 and 32
 exe chosen so that B\, ~j—, , 02> ~J—> have

the same values as al5 a{, a", a2, a 2 ) a2 , respectively, at Co • I* i s

also specified that , are 0[c 2) , which is possible since a"
dxz dx2

and a'2 are of this order at C = Co •
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