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ABSTRACT. A gamma-ray density gauge can provide high-resolution and high-precision density
measurements of firn and ice cores. This study describes the design, gamma-ray energy optimization and
mass attenuation coefficient calibration of the Maine Automated Density Gauge Experiment (MADGE),
a portable, field-operable gamma-ray density gauge used on overland traverses in East Antarctica. The
MADGE instrument uses a 241Am gamma-ray source, a pulse-mode counting system and electronic core
diameter calipers to collect high-precision (±0.004g cm−3) density data from 3–8 cm diameter firn and
ice cores. The data are collected at a 3.3mm spatial resolution and an average throughput of 1.5mh−1

for 5 cm diameter cores.

1. INTRODUCTION
Information regarding firn and ice density as a function of
depth is important for many of the physical and climato-
logical records stored in an ice core. Accurate densities are
required to calculate water-equivalent accumulation rates
and can provide an independent means of determining
annual layers (Gerland and others, 1999; Hawley and
Morris, 2006; Hawley and others, 2008), while interpretation
of ground-penetrating radar returns is strongly influenced
by density variations above the firn/ice transition (Eisen
and others, 2002; Arcone and others, 2005). These scale
variations (from millimeters to tens of centimeters) act as
isochrones and can provide information regarding past
climate conditions (Spikes and others, 2004). Firn density
is usually calculated from measurements of sample volume
and mass, quantities which are not only subject to a large
measurement uncertainty but must also be sampled at a
low vertical resolution to make sample handling practical
(Whillans and Bolzan, 1988).
A gamma-ray (γ-ray) density gauge (sketched in Fig. 1)

non-destructively determines the density of a sample of
known thickness by comparing the transmission rate, or
intensity, of a beam of γ-rays passing through a sample with
the intensity of the same beam passing through air. Provided
that the beam is narrow and consists of γ-rays of the same
energy, the intensity of the transmitted γ-ray beam follows
the Lambert–Beer law:

n = n0 exp(−μmρx), (1)

where n is theγ-ray intensity (γ-rays s−1) at the detector with
a sample present, n0 isγ-ray intensity at the detector with no
sample present, ρ is the average density of the sample along
the beam path (g cm−3) and x is the beam path length in the
sample (cm). The mass attenuation coefficient, μm, of the
sample material (cm2 g−1) is defined as μ/ρ where μ is the
linear attenuation coefficient (cm−1) of the sample material.
The linear attenuation coefficient is a function of both the
atomic number and density of the material and is a measure
of the probability per unit length that a γ-ray will interact

in some way with the sample material. The mass attenuation
coefficient simply removes the density dependence from μ
and provides a way to determine the material density if μm
is known.
Both n and n0 are unscattered γ-ray intensities, that

is, they have passed from source to detector without
interacting with anything along the way, arriving at the
detector undeflected and with their original energy. Ideally,
γ-rays scattering from the sample are either deflected into
and absorbed by the Pb detector collimator plate, or have
lost sufficient energy in the Compton-scattering process to
be discarded by the counting system. However, in a real
instrument there is some contribution to n from small-angle
scattering events, as discussed in section 2.2.4.
The mass attenuation coefficient is a constant for a given

material and γ-ray energy, Eγ, so measuring the sample
attenuation consists of simply determining n0 and n. In a
real measurement, we do not measure intensities directly,
but instead determine them from n0 = N0/t0 and n = N/t ,
where N0 and N are the number of unscattered γ-rays
arriving at the detection system in time t0 and t , respectively.
The attenuation measurement alone can only give infor-

mation about the product ρx which has units of g cm−2 and
is called the ’mass thickness’ of the sample. In order to extract
a traditional density (g cm−3), we must also measure the
diameter of the ice core, x. We then determine the density
as

ρ = − ln
(
n/n0

)
μmx

. (2)

Several important aspects of a real density measurement
are not captured by this relation:

1. Choice of optimum Eγ for a given material and sample
size.

2. System dead-time losses cause measured intensities, m
and m0, to be lower than the actual intensities, n and n0.

3. Choice of an appropriate activity for the γ-ray source.
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Fig. 1. Top-down view of a γ-ray density gauge.

4. Calibrating the device to account for both finite detector
energy resolution and departures from the narrow-beam
approximation due to finite collimator hole size.

Section 2 discusses these issues and our methods of solving
them, while section 3 covers measurement uncertainty,
repeatability and throughput.

1.1. Previous instruments
Several instruments of this type have been used in glacio-
logical work, including the Alfred Wegener Institute (AWI)
densimeter (Gerland and others, 1999; Wilhelms, 2000)
and the Hokkaido University X-ray device (Hori and others,
1999). These instruments operate at very different photon
energies, but both use very intense sources: ∼3Ci of 137Cs
(primary energy 661 keV) for the AWI instrument and a
30kV X-ray tube for the Hokkaido University device. The
strength of their sources requires that both detectors operate
in ’current mode’, since the high X- or γ-ray intensity makes
it impossible to detect the arrival or energy of an individual
photon.
This is a potential disadvantage as Equation (1) is valid

only for mono-energetic photons. Current-mode detection
cannot differentiate between unscattered photons (with full
energy, Eγ) and those that have been Compton-scattered to
some lower energy. Detectors without energy resolutionmust
either use very tight collimation or correct the measurements
using an empirical ’build-up factor’ which depends on Eγ
and both the geometry and density of the sample (Knoll,
1989).
Detector operation in ’pulse mode’ counts each detected

γ-ray individually and analyzes it for Eγ by monitoring the
electrical pulse created by the detector. Using pulse mode
precludes operation at very high γ-ray intensities due to
dead-time losses (Knoll, 1989), but it does improve the
statistical accuracy of the measurement and ensures that
Equation (1) is correctly applied, by only counting events in
a narrow energy range, corresponding to unscattered γ-rays.
Dead-time losses occur when the γ-ray intensity is so high
that it is not possible for the counting system to electronically
distinguish the detector pulse of one γ-ray from the next,
counting multiple γ-rays as one.

1.2. MADGE workbench and sensor head
The Maine Automated Density Gauge Experiment (MADGE)
instrumentation consists of an aluminum workbench
on which ice cores are processed, and an insulated,
temperature-controlled electronics box. The workbench
provides a straight and level surface for supporting the
ice-core trays and mounting the density-profiling hardware.
The ice cores are held in adjustable-height core trays and
are density-profiled by the sensor head, a π-shaped set of

Fig. 2. Bottom view of the MADGE sensor head. The source and
detector support plates are on the left and right, respectively. Core
calipers are the black mechanisms at the bottom, designed to
contact the core 33.3mm ahead of the γ-ray beam. The sensor-
head travel direction is from top to bottom of the photograph. For
scale, each support plate is 10 cm from top to bottom.

aluminum plates which provide rigid mounting support for
the source, γ-ray detector and ice-core diameter calipers,
shown in Figure 2. The two legs of the π are the source and
detector support plates, while the top is the yoke, a plate
machined to keep the support plates parallel and properly
aligned with each other.
A belt-type linear actuator driven by a stepper motor

moves the sensor head in 3.3mm increments over the ice
core. After the sensor head is moved, the core diameter
and gamma transmission are measured and stored by a
microcontroller. Each such movement and measurement
sequence is called an ’exposure’; it takes 303 exposures to
produce a continuous profile of a 1m ice core.
The core diameter calipers are 3.3mm wide, spring-

loaded, plastic arms which pivot in from both sides of the
sensor head to make contact with the ice core. Each arm
carries a steel activator which interacts with a Gill Blade25
eddy-current position detector (http://www.gillsensors.co.uk)
to provide sub-millimeter position measurements. The core-
diameter measurement is made 33.3mm (exactly ten
exposures) ahead of the nuclear measurement, so the data
can be easily shifted during post-processing to ensure that
the core diameter and gamma transmission data are properly
matched.

1.3. MADGE electronics box and microcontroller
The insulated electronics box takes 120VAC, 60Hz power
and contains the microcontroller board, a Canberra model
1000 portable nuclear-instrumentation module (NIM) bin
(http://www.canberra.com), a ±12V linear power sup-
ply and a Parker OEMZL6 stepper motor controller
(http://www.parker.com). A solid-state relay-controlled resist-
ance heater and an exhaust blower are also installed inside
the box to heat or cool as necessary to maintain a stable
interior temperature of ∼20◦C during measurements.
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Fig. 3. Sketch of MADGE inter-instrument communications. RS-232
shown in dashed lines, TTL level shown in dash–dot lines, SPI shown
in solid lines.

The microcontroller is a Rabbit Semiconductor RCM3720
(http://www.rabbit.com) and operates all parts of the instru-
ment through RS-232, serial peripheral interface (SPI) and
simple transistor–transistor logic (TTL) level voltage signals,
as shown in Figure 3. The Canberra 512 counter timer and
the core diameter calipers are operated via RS-232, while
the OEMZL6 stepper motor driver is controlled via TTL-
level signals to select movement direction and give stepping
commands.
The microcontroller board also has 12-bit analog to digital

(A–D) and digital to analog (D–A) conversion capabilities.
The A–D converter measurements are used primarily to
monitor temperatures, while the D–A converter is used to
control the lower-level discriminator (LLD) setting of the
Canberra 2015A SCA, allowing any drift in the nuclear-
measurement system to be corrected.
The RCM3720 can be reprogrammed in the field and has

an on-board 1MB serial Flash memory to store hundreds of
meters of density profiles. The operator can upload data to a
laptop via any standard terminal program.

2. MEASUREMENT METHODS
The density gauge makes two simultaneous measurements:
sample thickness, x, determined by calipers, and sample
mass thickness, ρx, determined byγ-ray transmission. In this
section we discuss the equipment, the mathematical models
for transforming raw data into useful form and the calibration
method for the γ-ray transmission measurement system.

2.1. Thickness measurement
Measurement of the sample thickness determines the path
length of the γ-ray beam through the sample and can have
an impact on the calculated sample density uncertainty. Ice-
core calipers for field use need to withstand low temperatures
and blowing snow while providing sub-millimeter precision
over thousands of measurements per day. We chose a spring-
loaded caliper design that contacted the core on both sides,
and measured the caliper-arm displacements using a pair of
Gill Blade25 eddy current sensors.
Each Blade25 sensor reports a digital output code

for a given caliper-arm displacement, with a resolution

of ∼38 codesmm−1 (Gill Sensors, http://www.gillsensors.
co.uk). This output code is converted to a displacement
measurement (dsrc or ddet) using a third-order polynomial.
The two Blade25 sensors are controlled directly by the
RCM3720 microcontroller via three-wire RS-232 connec-
tions. The RCM3720 performs the displacement conversion
calculation and averages 30 measurements from each caliper
arm to calculate the core diameter as x = dyoke−dsrc−ddet,
where dsrc is the distance between the source support plate
and the ice core, ddet is detector support plate to ice-core
distance and dyoke is the inside distance between the source
and detector support plates. This system allows correct core-
diameter measurements, even when the core is not perfectly
centered in the gauge.
The uncertainty of each sensor is generally ±1 code, or

0.026mm, for small displacements (0–6mm) but can be
±2 codes for larger displacements (>8mm). We use the
larger value to be conservative, so the overall uncertainty
of the core-diameter measurement, Δx, is 0.1mm.

2.2. Gamma-ray transmission measurement
We will follow the path of a single γ-ray from its source to
its final destination, as a count stored in the memory of the
microcontroller, to discuss all of the equipment used in the
transmission measurement.
The γ-ray source, built by Isotope Products Laboratory

(http://www.ipl.isotopeproducts.com), is a sealed stainless-
steel capsule containing a 3.7GBq 241Am pellet with a
primary Eγ of 59.5 keV. The capsule is housed inside a
small Pb shield equipped with a fail-safe, spring-loaded
shutter (allowing the source to be turned on or off) and a
3.3mm diameter collimator hole. The source collimator hole
is 10mm long and confines the radiation to a 42◦ apex-angle
cone, aimed directly at the detector collimator hole.
The detector collimator is a flat Pb plate covering the

entire detector face, except for a 3.3mm diameter hole
in the center. The Pb plate provides radiation shielding
for the detector side of the sensor head and prevents the
detector from counting any radiation, except that passing
through the collimation hole. Together, the source and
detector collimators define a pencil-shaped measurement
beam which passes through the diameter of the ice core.
For the MADGE detection system, we required high

speed and good energy resolution at 59.5 keV to match
our source. The γ-ray detector was built by Saint-Gobain
Crystals (http://www.detectors.saint-gobain.com) and is a
3.8 cm diameter by 3.8 cm tall BrilLanCeTM380 (B380)
scintillation crystal mounted on a photomultiplier tube.
We chose B380 over the traditional NaI as our scintillator
because of the faster response time of the B380 crystal.
The detector requires a high-voltage source and elec-

tronics to process the output signal pulses. MADGE uses a
standard NIM bin to house and power a Canberra model
3102D high-voltage power supply, a model 512 dual counter
timer and a model 2015A single-channel analyzer (SCA) with
amplifier.
Signal pulses from the detector are first sent to the SCA.

The SCA outputs a single logic pulse only if the input detector
pulse voltage falls within a preset voltage window. This
voltage window defines the Eγ range that will trigger a
count by the counting system. The output logic pulses are
sent to the counter/timer which keeps track of both the
number of logic pulses (counts) and the elapsed time of
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Fig. 4. Absolute value of sensitivity, |S|, vs μm for 8 cm diameter ice
cores of indicated densities (g cm−3). Eγ vs μm for water (Brunetti
and others, 2004) is plotted to relate the μm for optimized S to Eγ
for the sample material of interest. |S| is shown for a unit sample-free
intensity (n0 = 1 count s−1) for simplicity.

the measurement. The microcontroller reads both count and
elapsed-time data from the counter/timer for storage.

2.2.1. Goldilocks’ γ-ray
For a given sample size and density, a very high-energy γ-ray
may not interact with the sample at all and a very low-energy
γ-ray may not penetrate the sample to be counted. Between
these two extremes we expect there will be an energy which
is ‘just right’. We want γ-rays with low enough energy to
have sufficient interaction with the sample to get a good
density measurement but not so much interaction that the
count rate is prohibitively low.
We can find this optimum γ-ray energy from Equation (1)

by first defining the sensitivity, S, as the change in intensity,
n, for a given change in sample density, ρ:

S =
∂n
∂ρ

= −μmxn0 exp (−μmρx) . (3)

Given a sample material, size and range of densities, we can
find the value of μm which maximizes the sensitivity and
translate that optimum μm value into γ-ray energy using the
solid curve in Figure 4.
S is a negative number by definition, since n will decrease

with increasing ρ, but in Figure 4 we plot the absolute value,
|S|, to visualize the meaning of the maximum: that value
of μm which achieves the greatest change in output signal
(intensity or count rate) for a given change in the input
signal (density). Plotting |S| vs μm for various values of ρ,
we can see in Figure 4 that the sensitivity has a maximum
and approaches zero for the two extremes of high and low
values of μm.
Setting ∂S/∂μm equal to zero yields a simple relationship

between μm, x and ρ for optimal sensitivity: μm = 1/ρx.
Using this general relationship, we can use estimates of our
expected sample size and density range to determine the
optimum mass attenuation coefficient, which can then be
converted into a corresponding optimal Eγ by choosing a
material, and plotting Eγ versus μm for that material.

2.2.1.1. Choosing Eγ for MADGE
In designing MADGE, we needed to process core diameters
ranging from 5.0 to 8.0 cm with expected firn and ice

Table 1. MADGE sample parameters and resulting optimized
mass attenuation coefficients and γ-ray energies for water. Mass
thicknesses range from 1.0 to 7.3 g cm−2

Sample size, x Sample density, ρ Optimal μm Optimal Eγ

cm g cm−3 cm2 g−1 keV

5.0 0.2 1.0 18.2
5.0 0.917 0.218 53.6
8.0 0.2 0.625 22.2
8.0 0.917 0.136 203.4

densities ranging from 0.2 to 0.917 g cm−3, which together
yield mass thicknesses ranging from 1.0 to 7.3 g cm−2. The
optimum μm values for this range are shown in Table 1.
Choosing our material to be water, we can then use the Eγ
vs μm curve for water to find the optimum Eγ.
Taken together, the data shown in Table 1 suggest that a

γ-ray energy between 20 and 100 keV would provide good
sensitivity for the expected range of sample size and density,
leading us to select 241Am for our source isotope, with its
primary Eγ of 59.5 keV. This choice is nearly optimal for a
0.917g cm−3, 5 cm diameter core (ρx = 4.6g cm−2), which
roughly represents the center of our expected sample mass
thickness range.

2.2.2. Detection system dead time
All γ-ray detection systems have a limit on the rate at
which they can resolve one γ-ray from another. This limit
is generally described using the concept of a system dead
time, τ : the period of time following the arrival of a γ-ray
during which the system is unable to count a newly arriving
γ-ray. Two problems arise from this phenomenon:

1. The actual rate of γ-rays incident on the detector, n, and
measured count rate, m, diverge as the incident intensity
increases, making it necessary to perform a dead-time
correction to determine the values of n and n0 from the
measured values, m and m0.

2. The dead-time correction is based on the value of the
dead time, τ , which has its own associated uncertainty,
Δτ , introducing additional uncertainty to the calculated
densities.

The simplest model of dead time is the ’non-paralyzable’
model, which assumes that the detection system is unable to
count an additional event if it occurs within a time τ of the
previous event (Knoll, 1989). In this model, the relationship
between measured count rate, m, and the actual rate of
incident γ-rays, n, is given by n = m/(1 − mτ ). Since the
number of actual and measured counts is given by N = nt
and M = mt respectively, we also have the relationship
N = M/(1+mτ ).When testing theMADGE detection system
within its operating range, we found that the non-paralyzable
model characterized dead-time losses very well, with a dead
time, τ = 2.592± 0.0062μs.
The operating range for the density gauge is defined as

nτ < 20%, ensuring that we can assume that the measured
γ-ray counts maintain a Poisson distribution (Knoll, 1989).
nτ reaches 10% at n ≈ 39000 cps which, by design, is
the open-gauge event rate, n0, in Equation (1). This gives a
fundamental understanding of the capacity of our detection
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and counting system so we can properly choose the γ-ray
source activity.

2.2.3. Source activity
The primary limitation on the activity of the source is the
collimation and dead-time characteristics of the detection
system to which it is coupled. A source with excessive
activity requires very large dead-time corrections, increasing
the influence of the dead-time uncertainty, Δτ , on the final
density uncertainty, Δρ, to unacceptable levels. A weak
source, however, will require far greater time to achieve a
given density uncertainty goal. We sought to find an n0 which
satisfies n0τ ≈ 10%, a compromise between throughput and
dead-time losses.
We calculated n0 to be 0.1/2.592× 10−6 s ≈ 39000 cps.

We then determined the source activity which would deliver
n0 γ-rays s−1 to the detector, given the geometry of the
gauge and fixed absorbers (collimators, source and detector
window materials) in the beam path.
The required source activity, Asrc, can be calculated as

Asrc =
n0

(εgeom)(εdet)(BEγ )(Tfixed)(fself )
, (4)

where εgeom is the geometric efficiency of the source/detector
pair, εdet is the efficiency of the detector, BEγ is the branching
ratio of the source isotope at Eγ, Tfixed is the gamma
transmission through all fixed materials in the beam path and
fself is the fraction of 59.5 keV γ-rays which are not lost to
self-absorption within the source pellet. All of these factors
are functions of Eγ, except the geometric efficiency. All of
these factors except fself are discussed at length by Knoll
(1989). In our case, εdet = 1 because the 59.5 keV γ-rays,
once inside the detector, are virtually guaranteed to interact
with the scintillation crystal due to its size, density and high
atomic number.
For the MADGE prototype, we used the following values

to determine the required source activity:

39 000
(1.16× 10−4)(1.0)(0.36)(0.7501)(0.33) = 3.77×10

9 Bq. (5)

A difficult problem is the absorption of γ-rays within the
source pellet itself, quantified by fself . This is a significant
problem for 241Am because Eγ is relatively low (easily
absorbed) and Am has a very high atomic number (a strong
absorber) and is distributed throughout the volume of the
source pellet. Our only successful calculation of fself was a
Monte Carlo approach which indicated that ∼67% of the
59.5 keV γ-rays are lost to self-absorption in the source
pellet, yielding fself = 0.33 used in Equation (5).

2.2.4. Mass attenuation coefficient calibration
The nuclear instrument calibration is the determination
of μm for a given γ-ray energy, detection system en-
ergy window width, detection system dead time and
source/detector/collimator geometry. In essence, the calibra-
tion consists of multiple γ-ray transmission measurements,
taken for varying absorber thicknesses. When these data are
plotted as the natural logarithm of counts vs mass thickness
of absorber, the slope of the resulting line yields μm.
There are many sources in the literature for very precise

values of μm, determined using experimental set-ups as close
to the narrow-beam ideal as possible. These values represent
the maximum value of μm attainable by any density-gauge
system. Two factors cause real systems to achieve a lower μm

than the maximum, ideal value: finite detector and counting
system energy resolution, and finite-size collimator holes.
The B380 detector has an energy resolution of 10.8%

at 59.5 keV (www.detectors.saint-gobain.com), meaning that
the measured energy of many 59.5 keV γ-rays would yield
a Gaussian distribution (called a ’photopeak’) centered at
59.5 keV with a full width at half-minimum (fwhm) of
6.4 keV. Since the photopeak has a finite width in energy, the
user must adjust the counting system energy window width
(via the single-channel analyzer) to count the events in the
photopeak.
The finite energy window width allows some unwanted

scattered γ-rays to be counted: those that have Compton-
scattered through a small angle such that they fall within the
energy window and still pass through the detector collimator.
The end result of the additional scattered counts is to make

it appear that the calibration absorber is absorbing fewer γ-
rays than predicted by Equation (1). The apparent reduction
in absorbing power results in a lower μm value than the
maximum, demonstrating that calibration is a necessary
process for all real instruments in order to properly account
for the various non-ideal aspects of a given system.
Both the energy window and collimator hole size can

be made smaller in an attempt to minimize the number of
scattered γ-rays counted, but at the cost of decreased count
rate of both scattered and unscattered γ-rays, which reduces
the instrument throughput, as the device must spend more
time on a single exposure.

2.2.4.1. Calibrating μm for ice
For γ-ray energies less than the pair-production threshold at
1022 keV, a density gauge is really an electron density gauge,
since all photon absorption and scattering is due to either
photoelectric absorption or Compton-scattering interactions
with electrons in the sample. This allows us to perform the
μm calibration on the material regardless of whether it is
a gas, liquid or solid (Knoll, 1989), since the number of
electrons per molecule is constant regardless of the phase
of the material. Liquid water is an ideal calibration absorber,
in that the bulk density is spatially uniform.
The MADGE calibration equipment consists of a plastic

cylinder to contain the water, a syringe, an electronic scale
to measure the mass of the cylinder and a source of deionized
water. The calibration begins with the sensor head mounted
vertically (source on bottom, detector on top) and leveled
so the cylinder can be centered over the beam path. The
mass and inner diameter of the empty cylinder are recorded
and a gamma transmission measurement is performed with
the empty cylinder in the beam path. This not only provides
a zero-water-thickness data point, but also ensures that
the attenuation effect of the cylinder is the same for all
data points. Since μm is determined by the slope of the
plotted data, the presence of the cylinder does not affect the
calibration results.
A small amount of water is then added to the cylinder,

and the water mass thickness is calculated by dividing the
total mass of water by the cross-sectional area of the cylinder
opening. Note that the water density is not required for
the mass thickness determination. A gamma transmission
measurement is performed with the cylinder centered in
the beam path, and the process is repeated for many
different mass thicknesses, ideally covering the range of mass
thickness expected for real samples.
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Table 2. Calculated μm (at Eγ = 60keV) for water with varying
major-ion concentrations and the weight fractions of hydrogen,
oxygen and the major ions used in the calculation

Element Pure water Impure water Sea water
μm = 0.2058 μm = 0.2059 μm = 0.2111

H 0.1119 0.1118 0.1083
O 0.8881 0.8879 0.8586
Na 0 50× 10−6 0.0109
Mg 0 10× 10−6 0.0014
S 0 10× 10−6 0.0009
Cl 0 100× 10−6 0.0195
K 0 10× 10−6 0.0004
Ca 0 10× 10−6 0.0004

After performing dead-time corrections for all data points,
plotting the natural logarithm of corrected counts vs mass
thickness of water yields a straight line with slope μm.
MADGE has been calibrated for 3 and 5 cm core-

diameter set-ups with μm of 0.1810± 0.0004 and 0.1874±
0.0005cm2 g−1, respectively. The longer source-to-detector
distance of the 5 cm set-up eliminates more of the small-
angle Compton-scattered photons discussed above, resulting
in a larger μm.

2.2.5. Effects of impurities on μm
Our development of the μm calibration assumes that both the
sample cores and calibration absorber are the same material:
pure water. Real firn and ice cores contain impurities,
typically in the 1 part per 109 range for the major ions.
To evaluate the effects of these impurities, we analyzed
hypothetical samples of impure water (representing an
’impure’ ice core) and sea water.
Table 2 shows the calculated mass attenuation coefficients

at 60 keV for pure water, impure water and 35-parts-per-
thousand salinity sea water, to demonstrate the effects of
increasing impurity concentrations. The mass attenuation
coefficients for these mixtures were calculated as μm =∑
i wiμm,i where wi is the weight fraction of element i and

μm,i is its mass attenuation coefficient. We use the elemental
μm,i data of Saloman and others (1988).
We chose the impure water concentrations to be at

least an order of magnitude greater than those observed
at the coastal Wilson Piedmont Glacier (Antarctica) site by
Bertler and others (2004). Even at these exaggerated impurity
concentrations, the change in μm is significantly less than the
uncertainty of the μm calibration. Therefore, for the purposes
of γ-ray density gauging, treating firn and ice cores as pure
water is well justified.

3. UNCERTAINTY AND THROUGHPUT
Having discussed all of the measurement systems, cal-
ibrations and individual uncertainties, we now need to
combine them through Equation (2) to determine the final
1σ uncertainty in the density measurement, denoted as Δρ.

3.1. Uncertainty propagation
Applying the error-propagation formula (Bragg, 1974) to
Equation (2), we obtain three terms which describe the
contributions of the nuclear counting, the core diameter and

Table 3. Contributions to overall uncertainty in the calculated
density, Δρ, for typical MADGE operating parameters and several
different values for x uncertainty: N = 1.5×105, t = 7.0±10−7 s,
N0 = 1.5×106, t0 = 42.0±10−7 s, μm = 0.187±0.001 cm2 g−1
and x = 5.0 cm

Δx Nuclear Diameter μm Timing Δρ
term term term term

cm % % % % gcm−3

0.01 74.2 8.9 16.9 <10−12 0.004
0.02 58.6 28.1 13.3 <10−12 0.004
0.05 23.7 70.9 5.4 <10−13 0.006
0.10 7.6 90.7 1.7 <10−13 0.011

the mass attenuation coefficient, to the overall uncertainty in
the calculated density:

(Δρ)2 =
(

∂ρ

∂ ln(n/n0)

)2
[Δ ln(n/n0)]

2

+
(
∂ρ

∂x

)2
(Δx)2 +

(
∂ρ

∂μm

)2
(Δμm)2. (6)

Here, Δx and Δμm are the measurement uncertainties of
the core diameter and the mass attenuation coefficient,
respectively.
Terms involving Δt are ignored because the time base

(internal clock) in a modern nuclear counter/timer instrument
is very accurate, with Δt and Δt0 around ±0.1μs (Canberra
Industries, 2002). Therefore, the contribution of the timing
uncertainty to the overall density uncertainty is negligible in
comparison to the other measurements (see Table 3).
Performing the indicated derivatives in Equation (6), we

obtain the following final expression:

(Δρ)2 =
1

x2μ2mn2

{[
1

1−mτ
+

mτ

(1−mτ )2

]2 (m
t

)

+
[

m2

(1−mτ )2

]2
(Δτ )2

}

+
1

x2μ2mn20

{[
1

1−m0τ +
m0τ

(1−m0τ )2
]2(

m0
t0

)

+
[

m2
0

(1−m0τ )2
]2
(Δτ )2

}

+
[
ln(n/n0)
x2μm

]2
(Δx)2

+
[
ln(n/n0)
xμ2m

]2
(Δμm)

2, (7)

where n = m/(1−mτ ) and n0 = m0/(1−m0τ ).
The uncertainty calculated by Equation (7) depends on the

values chosen by the operator for N and N0, as well as using
proper values for Δx, Δμm and Δτ . We tested Equation (7)
by conducting sets of 100 repeat measurements on the same
location of a firn core and varying N for each set. The results
of this testing are shown in Figure 5 and demonstrate the
close relationship between N, throughput and Δρ.
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Fig. 5. Box-and-whisker plots for repeated density measurements of
the same location on a 3 cm wide firn core for various exposure
counts, N. Measurements were repeated 100 times for each
exposure count setting. The observed standard deviation (g cm−3)
and average throughput (mh−1) are shown above and below each
box plot, respectively. Note that the lower axis scale changes at
N = 100× 103.

Note that the observed standard deviation shown above
each box plot is not the same as the calculated standard devi-
ation, Δρ, from Equation (7). The calculated values are larger
than the observed standard deviation by ∼0.001 g cm−3 for
all values of N. Therefore, Equation (7) slightly overestimates
the uncertainty in the density measurements and can be

confidently and conservatively applied to MADGE density
data.
We also tested the repeatability of the instrument by

performing repeated density scans of the same 1m section
of core and observing the variability, shown in Figure 6.
The average standard deviation of all 303 measurements was
0.0082, while the calculated Δρwas 0.009 g cm−3, showing
again that Equation (7) provides a conservative estimate for
the measurement uncertainty for varying densities and core
diameters observed over the length of a core segment.

3.2. Throughput
Throughput is the rate at which the instrument can
density-profile a unit length of core. The desired level of
measurement uncertainty, source activity, dead time and
the mass thickness of the sample all affect the throughput.
The desired measurement uncertainty will determine N, the
number of γ-rays that need to be counted during each
exposure to achieve the measurement uncertainty goals,
as shown in Figure 5. The rate of γ-ray transmission, n,
for a given sample mass thickness determines the average
time (in seconds) required for an exposure: t = N/n. The
instrument throughput, T (m h−1), can then be calculated as
T = 3600/αt where α is the number of exposures per meter.
We chose N = 1.5× 105 and N0 = 1.5× 106 counts for

field operation of MADGE on 5 cm diameter cores, resulting
in a Δρ of∼0.004 g cm−3. These values yield T=1.5mh−1 at
an average sample density of 0.5 g cm−3.

3.3. Example data
An example of MADGE data recorded in the field is shown
in Figure 7. These data were taken from a 13.5m long
section of nominal 5.2 cm diameter firn core collected
at Titan Dome (88◦30’ S, 178◦32’ E) during the 2007 US
ITASE (International Trans-Antarctic Scientific Expedition)
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Fig. 6. Eight repeated density scans of a 3 cm wide core collected from the South Pole at N = 50 × 103, yielding a calculated
Δρ = 0.009 g cm−3. (a) The entire core with a core break at 64 cm; (b) close-up view of the 20–40 cm section. Dark gray indicates
±Δρ, gray indicates ±2Δρ and light gray indicates ±3Δρ bands about the mean density. The data spread over these bands demonstrates
that Δρ calculated by Equation (7) is correctly accounting for γ-ray counting, μm and core diameter uncertainties.
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Fig. 7. Example of density data collected from a 13.5m long, 5.2 cm diameter core from Titan Dome, Antarctica. Typical Δρ (±0.004 g cm−3)
is shown in the upper left of (a) and (b). Core breaks (CB) and drilled core section boundaries (S) are shown in (b).

traverse. After a hard, dense layer at the surface, 3m of
low-density firn with thin, dense horizons can be observed.
MADGE can confidently distinguish fine-scale variability in
firn density because Δρ is small and well quantified. Beyond
3m depth, the overall density begins to increase, while
the density variability decreases. MADGE provides excellent
data continuity across core sections recovered in different
drilling runs, as shown in Figure 7b where core sections and
core breaks are shown explicitly.
A fuller analysis of these and other MADGE data is in

preparation.

4. CONCLUSIONS
This paper describes the major issues surrounding the
design of a γ-ray density gauge, both in general and
specifically for the MADGE system. Methods for determining
the crucial system parameters (optimum γ-ray energy,
appropriate source activity, mass attenuation coefficient,
density uncertainty and throughput) have all been presented
in detail, in the hope that readers may consider using or
building such a system.
MADGE offers significant benefits over existing firn- and

ice-density gauging systems:

1. Measurements are automated, highly accurate and
recorded at high spatial resolution.

2. The calibration of the instrument is straightforward,
repeatable and uses the actual measurand (water) as its
standard.

3. Operating on 5–8 cm diameter cores allows the use of
lower source activity, thereby lowering operator radiation
exposure and making shipping of the instrument easier
and less expensive.

4. Optimizing Eγ for the sample mass thickness provides the
best density measurement and allows simple, lightweight
shielding because the optimal Eγ is relatively low.

5. Using a pulse-mode γ-ray counting system with energy
discrimination ensures that the Lambert–Beer law is
correctly applied.

6. The measurement uncertainty analysis for a pulse-mode
instrument is well developed and easily calculated for
each exposure.

7. Finally, this instrument is field-portable and field-proven
in an Antarctic traverse setting.
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