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FIRST ORDER THEORY OF COMPLETE STONEAN ALGEBRAS 
(BOOLEAN-VALUED REAL AND COMPLEX NUMBERS) 

BY 

THOMAS JECH 

ABSTRACT. We axiomatize the theory of real and complex 
numbers in Boolean-valued models of set theory, and prove that 
every Horn sentence true in the complex numbers is true in any 
complete Stonean algebra, and provable from its axioms. 

1. Introduction. In [6] we introduced complete Stonean algebras, to describe 
axiomatically abelian algebras of normal operators in a Hilbert space. Our 
approach is based on Scott and Solovay's description of complex numbers in 
Boolean-valued models of set theory [14] and extends Takeuti's application 
of Boolean-valued models to normal operators [15]. The axiomatization in [6] 
describes algebraic as well as topological properties of complete algebras of 
mutually commuting normal operators. It is proved in [6] that every complete 
Stonean algebra is isomorphic to the set of all complex numbers in the 
Boolean-valued model VB, for some complete Boolean algebra B. Examples of 
complete Stonean algebras include: 

(a) C, the complex numbers 
(b) all measurable functions on [0, 1] modulo = a.e. 
(c) all Borel functions on [0, 1] modulo = on comeager sets 
(d) all normal operators affiliated with a given abelian von Neumann 

algebra. 

The purpose of this note is to study the first order theory of complete Stonean 
algebra, or equivalently, the first order theory of the structure of real and 
complex numbers in a Boolean-valued model. 

2. Boolean-valued complex numbers. Let B be a complete Boolean algebra, 
and let VB be the corresponding Boolean-valued model of set theory. Without 
loss of generality, we assume that ||JC = y\\ = 1 only if x = y. In VB, consider 
the set CB of all complex numbers, with addition -f, multiplication -, complex 
conjugation *, zero 0 and unit 1. 

Received by the editors March 26, 1985, and, in final revised form, March 2, 1987. 
Research supported by an NSF grant. 
AMS Subject Classification (1980): 03E40, 03C60, 13L05, 46J99. 
© Canadian Mathematical Society 1986. 

385 

https://doi.org/10.4153/CMB-1987-057-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-057-7


386 THOMAS JECH [December 

We also denote by CB the set of all x e VB such that \\x e CB\\ - 1, and 
endow it with the operations + , -, * in the obvious way: 

x + y = z if 11A: + y = z\\ = 1 

x - y = z if ||JC • y = z\\ = 1 

x* = z if ||JC* = z\\ = 1. 

The structure 

S = (C*, + , •,*,(>, 1) 

is called B-valued complex numbers, or a complete Stonean algebra. 

3. The axiomatic theory Sf. We consider the l anguage^ = { + , - , * , 0, 1} of 
rings with involution. Let ^ be the following set of axioms for «£?: 

(51) S is a commutative ring with 1 
(52) S is algebraically closed and of characteristic 0 
(53) S is von Neumann regular, i.e. \/x3y xyx = x 
(54) (a + />)* = a* + i*, (afe)* = a*Z>*, a** = a 
(55) the reals of S (i.e. a* = a) are real-closed. 

Let S be a model of £f, and let 5 be the algebra of all projections, i.e. 
B — {a G S : a = a}. B is a Boolean algebra. If S is a complete Stonean 
algebra, then B is complete, and S is isomorphic to CB. 

Let (S^) = the set of sentences indicating (i) the number « G N U {oo} of 
atoms of B, and (ii) whether or not for every nonzero b G B there is an atom a 
in B such that a ^ b. 

Let (*) be the sentence stating that the set of all atoms of B has a least upper 
bound: 

(*) 3c (c is the least upper bound of the atoms). 

We consider the theory 

%, = Sf + (SB) + (*). 

THEOREM 1. For any Boolean algebra B, £% is a complete theory. 

COROLLARY. For any complete Stonean algebra S, the first order theory of S is 
a decidable, complete axiomatizable theory. 

PROOF. 5g is model-complete and has a prime model. This can be proved in 
an analogous way to the classical result of A. Tarski and A. Robinson, that the 
first order theory of complex and real numbers is decidable. 

In fact, this result follows from the work of A. Carson [2], [3], L. Lipschitz 
and D. Saracino [8], A. Macintyre [11] and L. van den Dries [16]. • 
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We remark that if one defines the partial ordering of the reals of S by 

a ^ b if and only if 3x xx* = b — a 

then the reals of S form a real closed commutative regular /-ring as defined 
in [8]. 

In the particular case when B is the trivial Boolean algebra {0, 1}, SB 

becomes 

(SO) \fa e b {a = 0 V a = 1). 

The theory 

6^ = 9> + (SO) 

is the complete theory of complex numbers (C, + , - , * , 0, 1). 

4. Boolean-valued models and generic formulas. Boolean-valued models are a 
generalization of ordinary (two-valued) models. Let B be a complete Boolean 
algebra. A B-valued model for a language & = (P,...,/,...) is 

(M, MJC = y\\, \\R(2) | | , . . . , / , . . . ) 

where ||JC = j>|| is a function from M X M into 1?, ||i?(jc) || is a function with 
values in B, and / is an operation on M, such that 

(a ) ||JC = JC|| = 1 

II* =y\\ = \\y = x\\ 
\\x =y\\- \\y = z\\ ^ \\x = z\\ 

(b) IK- =y.\\- | | ^ ( . . . x / . . . ) | | ^ \\R(...yi...)\\ 

(c) 1 1 ^ = ^ 1 ^ \\A...xi...)=f(...yi...)\\ 

(d) if ||JC = y\\ = \ then x = y. 

For every formula cp of <£? one defines, by induction on the complexity of <p, the 
B-value of <p: 

l k f l „ . . . , f l w ) | | e 5 ( f l„ . . . , f lw e M). 

All theorems of predicate calculus have B-value 1. 
We shall deal with the following type of Boolean-valued models. Let M be a 

set in the Boolean-valued universe VB, and assume that 

| |Mis amode l fo r^H = 1. 

If we identify M with the set of all x e VB such that \\x <E M\\ = 1, and if 
R, f <E VB are the relations and operations of M in F 5 , then 

(4.1) (M, ||x = . y | U | * ( 3 ) | | , . . . , / , . . . ) 

is a 5-valued model for J£ 
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It is a well-known fact in the theory of Boolean-valued models of set theory 
that a B-valued model M so obtained has the following property: for any 
formula <p of J^ and any x e M, there is some a e M such that 

(4.2) MaJ)\\ = \\3z<p(zJ)\\. 

We call a 2?-valued model M that satisfies (4.2) full. 
Given a 2?-valued model M, we make M into a two-valued model as 

follows: 

(4.3) R(x) if and only if \\R(x) || = 1 (x e M). 

Thus the construction of 5-valued complex numbers in section 2 is a special 
case of the construction (4.3), for the full i?-valued model CB obtained by (4.1) 
from the complex numbers of VB. 

DEFINITION. STRONGLY GENERIC AND GENERIC FORMULAS. 

(a) Every atomic formula is strongly generic. 
(b) If qp and \p are strongly generic formulas, then 

<p A \p, 3JC<P, \fx€p 

are strongly generic. 
(c) Every strongly generic formula is generic. 
(d) If <p and \p are generic formulas, then 

tp A >//, 3x<p, Vx<p 

are generic. 
(e) If <p is strongly generic then —r<p is generic. 
(f) If <p is strongly generic and i// is generic then <p —» ̂  is generic. 

THEOREM 2. Le/ M Z>e a full B-valued model 
(a) 7̂ <p is strongly generic formula, then 

\W(x) || = 1 if and only if M 1= <p(3c) (3c e M). 

(b) If y is a generic formula, then 

||<p(x) || = 1 implies M \= <p(x) (x G M). 

PROOF. By induction on the complexity of qp. 

(a) If qp is atomic then the statement follows from (4.3). For the conjunction, 
we have 

\\<P A ^|| = 1 if and only if ||v|| = 1 and ||^|| = 1. 

Similarly, 
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IIVJCVII = 1 if and only if Vx e M\W(X) \\ = 1. 

For the existential quantifier, we use fullness (4.2): 

HBJCVII = 1 if and only if 3x <E M\\q>(x) \\ = 1. 

(b) The argument for A, V and 3 is similar to (a). 

If <p is the negation of a strongly generic formula \p and if \\q>\\ = 1, then 
| M | = 0 ¥= 1, and by (a), M does not satisfy \p. Hence M \= <p. 

Finally, consider q> —> i// where <p is strongly generic and \p is generic, and 
assume that \\<p —> \p\\ = 1. In order to show that M \= <p —> \p, assume that 
M 1= <p. By (a), \\<p\\ = 1, and therefore ||i//|| = 1. By the induction hypothesis 
on xf/, M satisfies \p. D 

Prof. M. Takahashi as well as the referee of this paper kindly pointed out to 
me that any generic formula is logically equivalent to a Horn formula: 

DEFINITION [4; p. 328] HORN FORMULAS. 

(a) A basic Horn formula is a disjunction 

where at most one of the formulas 0i is an atomic formula, the rest being 
negations of atomic formulas. 

(b) A Horn formula is built up from basic Horn formulas with the 
connectives A, 3 and V. 

PROPOSITION. Any generic formula is logically equivalent to a Horn formula, 
and vice versa. 

PROOF. By induction on formula length. • 

5. Transfer theorem. 

THEOREM, (a) Any Horn sentence true in the structure (C, + , - , * , 0, 1) is true in 
any complete Stonean algebra. 

(b) Any Horn sentence true in (C, + , -, *, 0, 1) is a theorem of &*. 

REMARK. All the axioms of <p are Horn sentences. 

PROOF, (a) Let S be a complete Stonean algebra and let a be a generic 
sentence true in C. By the representation [6], S is isomorphic to C5, for some 
complete Boolean algebra B. The sentence a, true in C, is a theorem of 
the complete theory 6^0. By absoluteness of £% for (Boolean-valued) models 
of set theory, y o h ( j holds in VB, and so a is true in the complex numbers in V . 
In other words, the 2?-valued model CB has the property 

IWI = i. 
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Since a is generic, the Theorem (b) in section 3 gives 

CB 1= a, 

and so o is true in S. 

(b) Let a be a Horn sentence true in C, and let S be a model of S? Let B be the 
Boolean algebra of projections of S, and let X be the Stone space of B. Let F be 
the algebraic closure of the field of the (complex) rationals and let P be the ring 
of all locally constant functions X —» F. By results and methods from [3] and 
[16], P is an elementary submodel of S. Furthermore (by induction on formula 
length), o holds in P. Hence o holds in S. 

6. Examples. The transfer theorem sheds light on the well known phenome­
non of operator theory, namely that normal operators can be often treated as 
complex numbers. An example of a generic sentence true in C is the existence of 
a square root: 

Va[a ^ 0 —> 3x (x x = a) ]. 

On the other hand, the existence of an inverse, 

Va[a =£ 0 -» 3x (x -a = 1) ] 

is not generic. Compare this to the fact that every positive operator in a Hilbert 
space has a square root, but not every nonzero operator is invertible. 

Also, the partial order ^ is not linear in general, while it is linear for real 
numbers. The linearity condition 

\/a\fb(a ^ b V b ^ a) 

is not generic. 

Another example of a generic sentence is the following: 

(6.1) For every n X n real symmetric matrix M there exists a unitary n X n 
matrix U such that UTMU is a diagonal matrix. 

Since (6.1) is true in R, it follows that such diagonalization is true for any 
matrix of commuting self-adjoint operators. This is a special case of Kadison's 
theorem [7]. We refer the reader to [13] for an alternate approach (using intu-
itionistic logic). 

We give one more example, a result from [17]: 

(6.2) Let a be a real number, 0 ^ a ^ 1/2, and let a be a self-adjoint element 
of a von Neumann algebra whose spectrum is included in [ — 1, 2a — 1 ] U 
[1 — 2a, 1]. Then a = aux + (1 — a)u2 for some unitaries ux and u2. 

The following statement, in the language of <Ŝ  is obviously true in C: 
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(6.3) [a* = a and (1 - la)2 ^ a*a ^ 1] 

—> 3ul3u2[uful = u*u2 = 1 and a = aux + (1 — a)u2]. 

Since it is generic, it is also true in the complete Stonean algebra generated by a, 
and (6.2) follows. 

7. Generalizations. The Transfer theorem remains valid if we expand the 
language of *-rings to the language of *-algebras, by adjoining constant symbols 
for all complex numbers (scalars). A complete axiomatization of the theory of 
C in this language is obtained by adding obvious axioms for scalar multiplica­
tion, as well as the diagram of C. 

A generalization fails, however, if we wish to include the norm. The fact that 
complete Stonean algebras have in general elements of infinite norm provides a 
counterexample. We also note that if B is atomless then the theory of CB in 
a language that includes the norm is undecidable: it is then possible to define 
the set of all scalars, which in turn, by Macintyre's argument [10], makes it 
possible to define the set of all natural numbers, and interpret an undecidable 
theory. 

The Transfer theorem can also be generalized to allow infinitary generic 
formulas (i.e. allow infinite conjunctions). An example is the sentence 

"there exists a transcendental element". 

8. Boolean-valued models and sheaves. The referee has pointed out that the 
Transfer theorem can be derived using sheaves over Boolean spaces. In 
particular, a related result is proved in [1], Section 3, and our Transfer theorem 
can be obtained from that result, using representations [12] and [5], and using 
results from [3] and [11]. 

We wish to conclude by comparing the representations of a complete Stonean 
algebra by a sheaf of fields on one hand, and by a Boolean-valued model on the 
other. 

Let B be a complete Boolean algebra, and let R = RB be the ring of all 
Z?-valued real numbers. Let X be the Stone space of B\ each u e X is an 
ultrafilter on B. 

In the representation of R by continuous global sections of a sheaf over X, R 
is identified with all continuous functions on X, with values in Ku, u e X. 
Each Ku is a field, in fact Ku is the quotient of R by the congruence relation 
\\a = b\\ G u. If u is nonprincipal then Ku is non-Archimedean; thus in general 
Ku need not be isomorphic to R. 

On the other hand, Theorem B of [6] gives a representation of R = RB by the 
space of all continuous functions f:X —» R U {oo, —oo} such that /_j(=boo) 
is nowhere dense. 
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