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ON INCOMPLETE CHARACTER SUMS TO A PRIME-POWER
MODULUS

BY
J. H. H. CHALK

ABSTRACT. Let x denote a primitive character to a prime-power modu-
lus k = p®. The expected estimate

> X(n) << H'~ T e
N+1=n<=N+H

for the incomplete character sum has been established for r = 1 and 2 by
D. A. Burgess and recently, he settled the case r = 3 for all primes
p > 3, (cf. [2] for the proof and for references). Here, a short proof of the
main inequality (Theorem 2) which leads to this result is presented; the
argument being based upon my characterization in [3] of the solution-set of
a related congruence.

1. Let' x be a primitive character to a prime-power modulus p*(p = 3, a = 2),

() T,.(m)= 2 xIFw],
O=x<p’
xe sf:uxpg)
where
(2 m=(m,m,...,m¢) €EZ° F(X)/gX),
3) =11 x+m), gx)= 11 &x+my,
1=i=<3 3Li=6
@) {Sn(fag) ={x EZ: fgx)# 0(p), J(f,g,x) =0(p"}, }
Sa(f.8) = {x € 8.(f.): J'(f.g.x) =0(p)}  °
and
(5) J(f, 8, X) = fX)g' X) — f(X)g(X).
In a recent letter, David Burgess wrote that he had established the estimate
(6) > |Sa(m)| < h’p*(a log p)* for 0 < h=p,
mez®
0<m;=h
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'For notation and terminology, see [3]; in particular, “mod p’ is abbreviated to “(p")”.
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where

(7 Sum) =2 xI[F®)l.
0=x<p®
fex)#Eo(p)

The connection between S,(m) and T, ,(m) is given by an inequality of the form

® | Sam)| = p"|T,..(m)| + 4p*2,

where

9) (n,r) = (@ — €)/2, (@ + €)/2),

and € = e(a) = 0 if a is even and = —1 if a is odd, (cf., Lemma 2 below). Our

estimation of S, (i) is entirely based upon that of T, ,(m), which in turn depends upon
the fact (cf. [3], Theorem pp. 434—435) that S, (f, g) is a union of at most 4 arithmetic
progressions. Thus, for fixed m € Z°® for which S,(f,g) # 9,

(10) S.(f,8) = U A(r, 0)

T.0

where, form = n — p, p = ord,[f(X) — g(X)], and [[8]] = —[—0],

_[x€Z,x=x(p" )}, if 0=0<([[m/2]]
(an AT, o) {{x €Z, x=p", if o={[m/2]]
and? (1, o) takes on at least one and at most four values. For o # 0,

(12) (t,0) = (t,v), (¢t + vz, v), (tr, v), (6, + vizy, vy)
which satisfy the conditions
(13) () 0 <wv=1[[m/2]], 0 <v = [[m/2]]

3z+2=0(p)

(14) (i) (ZZ]) is defined uniquely, ((” m_zv)) with (321 + 2= 00

(pm‘Zvl)

otherwise, v = 0 = (7,0) = (¢, 0) and the case v, = 0 is anomalous in that (1, o) =
(t;,0)withi=2ifv# 0andi = 3 if v = 0. We show, in Lemma 3, that F(X) satisfies

(15) F'(y =F"(1) = 0(p*"*), F"(1) = 0(p*"), (r = 1),

) , respectively;

for some pair (i, o) with 0 = p < n, 0 = o < [[m/2]] and since T € A(1, o) C
S.(f, g), trivially, it follows that

(16) meE B(p, . + o,h),

where

7 B(u,s,h) ={m € Z% 0 <m; < h: Ix F'(x) =F"(x) = 0(p*),
F"(x) = 0(p"), fg(x) # O(p)}.

*It should be noted that the conditions above in the case ¢ = 0 are not explicitly stated in the theorem
itself (see, however, part (ii), (a) for the case v, = 0).
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Thus, by the decomposition of S,(f, g) in (10), and, since A(T,0) C S°(f, 8) > p+
o > 0, it follows that

(18) 2 T, m)]
mez®
0<m;=h

cannot exceed the sum of at most four expressions of the type

(19) by by 2 XFe)
n.o meEB(p,p+o.h) 0<x<p”
0=p<n xEA(1.0)
0=<o=|[{m/2]]
ptao>0

since (7, o) takes at most four values in (12). Now, by Burgess’ recent work (cf. {2],
Theorem 7), we have an upper bound to the cardinality of B(w., s, k), which takes the

shape
(20) #B(W,s,h) < k(s + 1)’M(w,s, h),
where
6 5
= - 4
@n M(p,s,h) = JREIA— +h

and k is a numerical constant <6.2’. My contribution is a bound for the summand and
this is stated in Theorem 1.

THEOREM 1. For p + o > 0,

22) Y XIF®)] | = No(p, 0, h),

Osx<p”

XEA(T,0)
where

B p(p+0+€)/2’ if 0<o</{[m/21],
(23) Nu(l“" 07h) - {2p("+l‘-+2€)/3, if o= [[m/2]]

By Lemma 5, we have
. [P i o < [[m/2]]

Q4 M, p+ o, BN, 0, h)p" = {6h3p“, if o= {[lm/2]]

and this is the final ingredient for our version of Burgess’ estimate in (6).

THEOREM 2.
(25) 2 |Sum)| = 24)(a + 3)*h%p°, if 0 < h=pt
mez®
0<m;=h
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2. Proof of Theorem 2. By (8), (9), (18), (19), we have

(26) > |Sutm)| = 4h°pe” + 61h'p"
O'Zjizsh
+ 4p” > #B(p, . + 0, h)N (R, 0, h)
R

Osp<n.pto>0
O0=o=|[m/2)]

upon inserting the bounds in (20) and (22) into each of the sums of the type in (19),
at most 4 in number, and noting that, for the special case p = n, the trivial bound p*
is sufficient when f(X) = g(X)(p"), and the roots of f are merely a permutation of those
of g, (as h’ = p"). Now by (20), (21) and (24),

Q7 p" 2 #B(w,p+ o, hN(p,0,h)

[T
Osp=n
O=o={lm/2}]

= k2 (pto+1)PMp,p+0o, N 0, h)p"
[T 3

O=p<n
0<o<|[m/2)]

O=p<n O=p<n
0=0<|[[m/2]] a=[lm/2}]

= 6Kh3p“{ 2 p‘”/(’(p, +o+ 1)+ 2 (p + o+ 1)3}

= 6kh'p" {[ S pe+ 1)3] +n 1)“}

O=p<nO=c=n

= 6Kh3p"{l + > p*“/"}(n + 1y

Osp<=
< 6’kh’p(n + 1)*
< 6% 2%(a + 3)*h’pe.
Thus, the sum on the left of (26) does not exceed
[4 + 6! + 4.6°2°(a + 3)*]h’p* = 2°6°(a + 3)*h'p~.

3. The Auxiliary Lemmata. In subsequent arguments, we shall need a finite form
of the Taylor expansion of F(x) or F(a + x) and Lemma 1 provides the justification.

LEMMA |. (n = 2). Let k, = pd(p") — 1,
GX) = fX)g(X), F(X) = f(X)/g(X).
Then
(i) for any x with g(x) # 0(p),
(28) Gx)=Fx),G'x)=F'(x),...,G"(x) =F"(x),...,(p"),
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and
ord, F”(x)/r! = 0, forall r.
(ii) If g(a) # O(p), then

F'(a) F"(a)
+

, F'"(a)
X x° +

(29) F(a + x) = F(a) +
2! ln!

x'(p"),

where 1, = deg G(X).
PrROOF:

(i) Use induction on r, noting that

fr(x)
N G"(x) = f,(x)g(x)""(p")

FOx) =

r

for a suitable polynomial f,(x), and that k, = —1(p").

(i) Since G(a + x) = F(a + x)(p"), and G(a + x) is a polynomial in x, part (i) gives
the result.

LEMMA 2.
(30) |So(m)| = 4p°? + p"|T,,_,(m)|.

PrOOF. This is merely a refinement of Burgess’ Lemma 2 and Lemma 4 ([1]) in
which the non-singular solutions (p”) of the congruence F'(x) = O(p"), at most 4 in
number are separated and estimated crudely. Lemma 1 provides the justification in
replacing his f(x)g(x)*?" "' by F(x) = f(x)/g(x).

LEMMA 3. ord, F"(1) = p + 0.
Proor. If F(X) = f(X)/g(X), then
-’ XF'(X) = J(f,8,X)
and
—(*XF"X) + 28(X)g' X)F' (X)) = J'(f,8,X)
Then, by our choice of T € A(1,0) C S,(f,g), we have J(f,g,7) = 0(p") and so

F'(t) =0(p"), since g(1) # 0(p).

If 0 = v, then

(31 J'(f,8.X) =T (ft N, X) = ul'(f1,8,X), (p")

by the combinative invariance of J and J' and f,(x) is as defined in ([3], (19)). But
J'(f1,8,X) = wX — 1) + v(X — ’1g"(X) — 2B3wX — 1) + v]g(X)

and on substituting T = rand T = ¢t + vz forv # 0 and 7 = ¢ for v = 0 we have the
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required result (noting that 3z + 1 = —1 # 0(p) inthe case T = ¢t + vz). If 0 = v,
the argument is entirely similar, except that (31) is replaced by
(32) J'(fi,8,X) =T (fi,g+ Nfi,X) = uwJ'(f1,8,X), (p™)

where u, # 0(p) and g,(X) is as defined in ([3], (38)).
LEMMA 4. Suppose | = 2, k =2 and p > 3. Let
fX)y=aX'++aX+aX+a, @GEZ 0=i=<k),
where
(33) (a,a,,as,p) =1, pla,(r=3).
If pi, L2, - - ., i, denote the distinct roots of the congruence
(34) fx)=0(p), 0=x<p

let my,m,, ...,m, denote their respective multiplicities and define

m=m,+m,+ - +m, M=max(m,,m,,...,m,).
If
S(p[ f‘) — 2 el‘nif(.\)/p’
05.v<ﬁpl
then

’[lfMla |]’

IS(p'. Nl = mp
where m = k — 1.
PROOF. See e.g. [4], pp. 40—41; also [5], Ch. 1, §5 with routine changes.’

LEMMA 5. Let
hG hS

M(u,n+0,h) = p—ﬁwz t— h*

p
Then

m
(i) M(p, .+ 0, h)-p "9 p" < 3p'pep 0 if 0 = 0 < HE”

(i) M, o+ [m /211, by p"*#29p" < 30pe.

PROOF. (i) Since n = (o — €)/2 and o < [[m/2]] = 20 =n — w — 1, we have
max2o,p+o)=p +20=n-1=a/2 — (1 + €/2). Then

pR+o+e2+n=(@@—e+pt+o+e/2=a/2+ @+ )2
=(a/2 = p) + (0 + 3p/2)

*Alternatively, refer to my version (to appear in Mathematika).
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and h°p*/* < h*p°. Similarly,
h5pa/2p(u+u)/2pﬂx/2 < h3pu/3pa/2pa/2 < h3p5a/6_pa/8p—p./4 < h3pap—u/4
and
h4p(a+p+o-)/2 < h3pa/6pu/2_p(u+u)/2 — (hlpap—p/é),p(p+a)/2—a/3—p/6,
where
a/3 > 2(pn + 20)/3 =2un/3 + /2 = n/6 + (b + 0)/2.
i)o=[m/2]],n=(a~€/2>20 —(a—€/2+pn=00r1=>0=a/4
— /2. But, (n + p + 2¢)/3 + n = Qa + p)/3 and so

3
hﬁp(z"‘ + m/zp_(_zH ! (,)

< h3p7a/6+p—u’
where 70/6 — p — 0 < 7a/6 — p. — (a/4 — n/2) < a.

Similarly, h5p'u/2p(2a+u)/3 <= h3pa/3p2u/3 — h3pa,
h4p12u+u)/3 < h3pa/6p2a/3pu/3 < h3pa,

sincep=n—1=(a—-¢€/2-1<a/2

3. Proof of Theorem 1. For convenience, we denote the sum in (22), by §, if 0 =
a < [[m/2]] and by S, if o = [[m/2]].

(i) Write x = 7 + p™ °y, where 0 = y < p**”*<; then

F.(y) — F(T)]
+ —_—_—

S =xF@ 2 x[l o

Osy<phtote

since F (1) # 0(p) where, by Lemma 2,

2(m — o) 3(m — o)

" 2
TR

F.(y) = F(r) = p" "F'(1)y + F"(t)y + -

=p " ay + ary? + o+ ay'l, (pY)
anda—(p+o+e)=2n—p—-—0oc>a/2,k=a/im— o) <aq,
F'(7) _ F'(7) _F'(n)

, a2 = , a3 =
1p" 2phto 3ip

n—pn-—20

Moreover, p*|F" (1) for r = 1 and, indeed we have

F" (1)
a, = pt, (r=3),
rip*
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where

wr)=r(m—o0)— 2n—p—0)+ pn,

Il

3m—0) — (2n —2pn — o) + (r — 3)(m — o),

n—pn— 20+ (r—3)(m-— o),

n—pwn-—20+ (r—3), since m>20.
>0, for r=3

Also, if p®""'||r!, then

r r r
8(r,p)=[—]+[—z]+---< =r—3, for r=4, p=5,
p p p—1

and so

w(r)>n—w— 20 + 8(r,p), for r=4

Hence

S =xF@) 3 ().

e[
‘ot
O=sy<prtote F(T)p“' gTe

¢ .
w) if y = o/2, where pfc, e(x) denotes e*™,

a

since x(1 + p") = e(

G(y) = ayy + a,y> + - + ayyt,
ord, a, = 0, by Lemma 4 and p|a,(3 < r = k). Now
G'(Y)=a, + 2a,Y (p)
and so, by Hua’s inequality (Lemma 4) with M = m = 1,
|S,| < pitoreorr < purwiiter
since n > w + 20.

(ii) Write x = 7 + p°y, where 0 <y < p" “**¢ and

_ _[m)2, if m even,
o = lm/2]] {(m + /2, if m odd.
Then, as in (i),

S, = 2 XIF.()]

O=y<pi-ote

F. - F
N (y) (T)]

F 1
w3 o

()S_v<p"7"+(
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where

[ 20 ko

p p P ,
F.(y) — F(1) = FF'(T)y + ;F"(T)y2 Tt FF“”(T))"- (r%

=p " ary +ary’ et ay'], (pY)

anda—(n—oc+e)=2n—n—o0)>a/2,k<afoc<a,

_F'(7) 3 F"(7) 3 F" (1) -
T T
F" (1) F" (1) o m F oo
B 3ipn - 31p* L 4!p".p
F(r)

a, = .pW(r), pulp(r)(,r)’ (r= l)

rip*
withw(r)=ro—(n+ o)+ p=(—1)o —m= (20 —m)+ (r — 3)o. Thus, for
r = 4, we have w(r) = 1 + 9(r, p) with strict inequality if m is odd.

Hence

S = XF@ 2 e[p ‘6.

Osy<pioUte n-—ote
where G(y) = a,y + a,y? + +*+ + a,y* and

0 if m iseven

ord"“z:{l if m isodd’

plad=<r=k.

Now, for m even,

G'(y) = a, + 2a,y + 3a;y*(p), pl2a,
and so, by Hua’s inequality, with M =2, m = 2

|S2| = 2p(nvo+e)(l~l/3) — zp(n+p.+2e)/3.
For m odd, when 20 — m = 1 and p||a,, p|as, we note that S, = 0 if pJa, ; otherwise,
if p|a,, we have p|G(Y) and
p'G'(y) = aip™' + 2a,p7'y + 3asp~'y*(p), pl2ap”!

and then, by Hua’s inequality, with f(X) = p"'GX),M <2, m < 2,

|Szl < 2p.p(n—u+e~n(l—1/3) — 2p(n+u~+2e)/3.
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