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Single case designs (SCDs) allow researchers to objectively evaluate the impact
of an intervention by repeatedly measuring a dependent variable across baseline
and intervention conditions. Rooted in baseline logic, SCDs evaluate change over
time, with each participant serving as his or her own control during the course of a
study. Formative and summative evaluation of data is critical to determining causal
relations. Visual analysis involves evaluation of level, trend, variability, consistency,
overlap, and immediacy of effects within (baseline and intervention) and between
conditions (baseline to intervention). The purpose of this paper is to highlight the
process for visually analysing data collected in the context of a SCD and to provide
structures and procedures for evaluating the six data characteristics of interest.
A checklist with dichotomous responses (i.e., yes/no) is presented to facilitate
implementation and reporting of systematic visual analysis.
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Introduction
Visual analysis of data is a fundamental component
of studies utilising single case designs (SCDs), al-
lowing for in-depth evaluation of data across all
conditions in a study (Kazdin, 2010; Kennedy,
2005). SCD research is rooted in the principle
of baseline logic: each participant’s performance
is measured under a pre-intervention, or baseline,
condition and is compared to his or her perfor-
mance during the intervention condition. The term
condition refers to a group of individual sessions or
measurement opportunities that have a shared set
of planned environmental features and procedures.
The same dependent variable is measured repeat-
edly under two or more conditions, throughout the
course of a study.

Visual analysis refers to the viewing and in-
spection of all available data (i.e., for all sessions
in each condition) plotted on a line graph (i.e., time
series data), and making determinations about be-
haviour changes based on the visible data charac-
teristics. Any time condition changes occur (i.e.,
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intervention is implemented), there is an opportu-
nity for a potential demonstration of effect. When
changes in the values of the dependent variables
are observed contingent on this change, a basic
demonstration of effect is reported. When this ef-
fect is replicated across identical baseline and in-
tervention conditions at three different points in
time in the same SCD study (direct replication),
the presence of a functional relation is demon-
strated; this decision is dichotomous (i.e., a func-
tional relation is either present or absent). The ex-
tent to which an intervention is likely to be effective
for persons outside the study is determined by ob-
taining similar results in other studies (systematic
replication), which increases the external valid-
ity of findings (further answering for whom and
under what conditions is an intervention appropri-
ate) (Gast, 2014; Gast & Spriggs, 2014; Lane &
Gast, 2014). Although statistical analyses of data
are generally summative in nature, visual analysis
is critical for formative analysis, given that single
case designs are dynamic (i.e., visual analysis is
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used throughout the study for making data-based
decisions).

Historical Context
SCDs have long been used to assess effects of be-
havioural interventions, especially in special ed-
ucation; recently, they have become commonly
used across intervention types, dependent vari-
able types, and scholarly disciplines. Visual anal-
ysis is the historic and widely accepted method to
interpret data from studies using SCDs (Horner,
Swaminathan, Sugai, & Smolkowski, 2012), al-
though calls for the use of supplementary anal-
ysis via quantitative metrics have occurred for
many years (Jones, Weinrott, & Vaught, 1978;
Kratochwill & Brody, 1978). Historical arguments
against the use of visual analysis include lack of
agreement between raters (DeProspero & Cohen,
1979), although appropriate training and expertise
has been shown to lead to acceptable agreement
(Kahng et al., 2010).

When Visual Analysis should be Used
Visual analysis is the standard method for
analysing data from SCDs. Although some argue
against the use of visual analysis altogether, most
researchers who advocate for alternative methods
(e.g., statistical analysis) promote their use as sup-
plemental to visual analysis (Maggin & Odom,
2014). Regardless of the use of supplemental anal-
yses, visual analysis should always be used, in-
cluding in syntheses across studies. The use of
visual analysis and supplemental measures (gener-
ally effect sizes) might be considered analogous to
the procedures in between-groups comparison re-
search wherein a researcher tests the significance of
differences between conditions (Is there an effect?;
visual analysis), and then calculates the magnitude
of the difference (How big is the effect?; SCD ef-
fect size). However, because magnitude of effect
is less important than consistency across potential
demonstrations of effect, visual analysis continues
to be critical in the assessment of outcomes in stud-
ies using SCD. In general, effect size analyses can
help us to determine the magnitude of behaviour
change but are not helpful in determining whether
a believable effect exists (e.g., the presence of a
functional relation).

Although appropriate statistical analysis of
SCD data allows for quantification of the mag-
nitude of behaviour change, visual analysis allows
for ongoing assessment of behaviours across con-
ditions, detection of potential threats to internal
validity, and evaluation of consistency of change.
Thus, visual analysis should be used to make con-

dition change decisions and detect threats to inter-
nal validity (formative analysis); following study
completion, it should be used to determine whether
a functional relation exists (summative analysis).
Research showing inconsistent agreement among
lesser-trained visual analysts (Ledford, Wolery,
Meeker, & Wehby, 2012) also suggests that SCD
researchers should (1) follow a consistent set of
visual analysis guidelines, such as those suggested
below; (2) explicitly report visual analysis methods
and the training or expertise of the visual analysts;
and (3) explicitly report the characteristics that led
to a determination of a functional relation (or no
functional relation).

Conducting Systematic Visual Analysis
Data Display
The purpose of graphs is to display as much in-
formation as possible as clearly and efficiently as
possible—‘which gives to the viewer the greatest
number of ideas in the shortest time with the least
ink in the smallest space’ (Tufte, 2001, p. 11). Ac-
curate visual analysis of graphic data depends on
displaying complete data without distortion or bias
(Dart & Radley, 2017 ).

Graphing SCD data. Many options are available
when presenting serial SCD data (e.g., cumulative
graph), but contemporary standards and practical-
ity generally dictate use of a line graph to repre-
sent change over time. A line graph allows for for-
mative evaluation of performance across sessions,
as well as summative evaluation when reviewing
data collected across conditions in a study. In con-
trast, exclusively summative measures such as bar
graphs (often used in group comparison or pre–
post research paradigms) are not conducive to com-
prehensive visual analysis because these types of
graphs only provide a quantitative summary of per-
formance using a pre- and post-test format. Thus,
when reporting data collected within a SCD it is
critical to plot data from each session within each
condition on a line graph, which allows for reliable
analysis of data characteristics within and between
conditions.

Each condition shown on a line graph is differ-
entiated using A–B–C notation (Gast & Spriggs,
2014). Traditionally, the A condition refers to the
pre-intervention or baseline condition, and the B
condition the intervention condition. Each subse-
quent condition introduced during a study is la-
belled in sequential alphabetical order (e.g., C, D),
with the exception of parametric variations of the
independent variable, which are labelled as prime
(B’), or a combination of treatments, identified by
combining notation labels (e.g., BC, CD, BCD).
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FIGURE 1: Applied Example

Number of aggressive behaviours per hour for Billy. As shown in the figure, the dependent variable is the number of
aggressive behaviours per hour, and the y-axis ranges from 0 to 10. The x-axis depicts the time unit, which is ‘sessions’
in this case (typically true in single case research; Ledford, Severini, Zimmerman, & Barton, 2017). The data points are
depicted by filled in circles, and the condition is labelled with ‘A’ (baseline). This graph has a ration of approximately
1:2; if the study is relatively short (e.g., 14 sessions), the graph may need to be resized to approximately 2:3 but
if it is much longer (e.g., 40 sessions), it might be appropriate to resize the graph to something closer to 1:3. The
importance of ratio is that data points be neither ‘stretched’ along the x-axis nor so close together that they are difficult
to differentiate.

Thus, a typical withdrawal design with two base-
line conditions and two interventions conditions
is referred to as an A–B–A–B design and a mul-
titreatment design with two iterations of different
intervention conditions is referred to as an A–B–
C–B–C design. The notation is used less often with
other designs (e.g., multiple baseline designs), but
it remains critical to consider because there must
be at least three potential demonstrations of effect
between the same two conditions in every design.
Thus, an A–B–A–C design does not meet this cri-
terion, and neither does a multiple baseline design
with one intervention introduced in two tiers and
a second intervention introduced in the third tier
(i.e., there must be three A–B comparisons in a
multiple baseline design, with B representing the
same intervention).

When constructing a line graph, the ordinate
scale (y-axis) represents a previously identified
metric (e.g., number of aggressive behaviours).
Each data point indicates the extent to which the
dependent variable occurs based on this metric (y-
axis) across observations, days, or sessions (ab-
scissa or x-axis). The intersection of the ordinate
scale and the abscissa is represented by a geomet-
ric shape (marker); the markers are connected by
a line, and this collection of data points is referred

to as a data path. A single type of geometric shape
represents each dependent variable (e.g., a single
behaviour for one participant). The data points in
a data path are not connected across condition
changes; instead, a vertical line indicates a condi-
tion change in order to separate each data path into
segments according to condition. When construct-
ing line graphs for a study (a) include no more than
three data paths on each line graph (increases the
likelihood of reliable analysis) (Cooper, Heron, &
Heward, 2007), (b) ensure ordinate scales are equal
across all line graphs, and (c) ensure the proportion
of the ordinate scale to the abscissa allows for dis-
crimination between data points (e.g., ratio of 2:3
for graphs that include a few data points and 1:3
for graphs that include many data points; ensures
data are not misleading to readers). When the y-
value has a defined maximum (e.g., 100% correct
or 100% of intervals), the entire range should be
represented on the graph to avoid misleading read-
ers (Dart & Radley, 2017). Finally, line graphs may
be constructed using software such as Microsoft
Excel or Microsoft PowerPoint; graph construc-
tion is beyond the scope of this paper, but instruc-
tions are available elsewhere (Barton & Reichow,
2012; Vanselow & Bourret, 2012). Figure 1 shows
an example of appropriate SCD data display.
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Formative Analysis
One strength of visual analysis is that it can be
used for formative analysis—it allows researchers
to make data-based decisions during ongoing stud-
ies. This is consistent with most clinical objectives
and procedures, which often include making adap-
tations or modifications when a client does not
make adequate progress towards a goal and discon-
tinuing treatment on a goal once adequate progress
had been made. Graphing and inspecting data as
it is collected also allows for researchers to deter-
mine when conditions should be introduced, while
decreasing potential threats to internal validity re-
lated to history, maturation, carryover effects, or re-
gression to the mean (Crano & Brewer, 2002; Gast,
2014; Kazdin, 2010). Although guidelines for sum-
mative analyses are somewhat well-established (cf.
Council for Exceptional Children, 2014; Lane &
Gast, 2014; WWC, 2013), guidelines for formative
analysis have not been widely published.

Level. In SCD research, experimenters are most
often interested in changes in the amount of be-
haviour that occurs—that is, the level of the be-
haviour. In between-groups research (e.g., ran-
domised controlled trials), differences in levels are
almost always conceptualised as mean differences,
but the relatively small number of data points in
SCD research makes the mean particularly suscep-
tible to outliers. Moreover, because SCD research
involves repeated, and often continuous, measure-
ment rather than pre- and post-assessments, the
difference in level often occurs following a period
of time in which the change is primarily charac-
terised as a change in trend. For example, a child
who performs a task with 0% accuracy in base-
line may also perform that task with 0% accu-
racy during the first intervention session, followed
by steady increases (10%, 20%, 30%, 40%, 50%)
until mastery (100% accuracy) is reached. Thus,
the mean level would not characterise intervention
data well. For formative analysis purposes, there
are two questions related to within-condition level
and between-condition level:

(1) Is the level in the current condition suffi-
ciently stable for a reliable prediction of value
assuming the condition is not changed (i.e.,
within-condition level)? If it is, and you have
at least three measurement occasions (data
points), it is prudent to change conditions.

(2) Is there a level change between the current
condition and the adjacent previous condi-
tion (i.e., between-condition level)? If yes,
you have one demonstration of effect (i.e.,
change in behaviour that occurs concurrently

with the condition change, in the expected
direction).

For multiple baseline and multiple probe de-
signs, changes in level between conditions are
complicated because not only must data change
when the intervention is applied to each tier, but
it also must not change when the intervention is
applied to subsequent tiers. For example, in the
third tier of a multiple baseline design, data must
remain at similar levels (a) during initial baseline
sessions, (b) after intervention is applied to the first
tier, and (c) after intervention is applied to the sec-
ond tier. If data change in a later tier when interven-
tion is applied to a different tier, this might sug-
gest generalisation across tiers (for designs with
multiple behaviours or contexts), contamination
(e.g., for designs with multiple participants, the im-
plementer may have used the intervention during
baseline for participants assigned to later tiers), or
history effects (e.g., something outside the study
caused behaviour change). It is imperative to vi-
sually analyse data in all tiers before intervening
in any tier—this is referred to as vertical analy-
sis. If within-condition changes in level occur in
any tier, continue in the current conditions un-
til level is stable, and then intervene in the next
tier.

Although SCD researchers are most often in-
terested in the level of data in terms of change, two
additional features often expected in SCD data—
trend and variability—are also critical for assessing
behaviour change via visual analysis.

Trend. Trend (or slope) refers to movement in
the data over time, with specific attention given
to the direction of a data path within and between
conditions, commonly referred to as an acceler-
ating, decelerating, or zero-celerating trend along
the ordinate scale. Trend is further characterised
as therapeutic or contra-therapeutic, depending
on the purpose of the study (e.g., a decelerating
trend is therapeutic when introducing an interven-
tion to decrease verbal aggression, but a deceler-
ating trend is contra-therapeutic when introducing
an intervention for increasing the number of bites
eaten independently). A within-condition analysis
of trend is necessary to avoid premature introduc-
tion or removal of an intervention. For example,
suppose under baseline conditions a participant is
displaying an accelerating trend in a therapeutic
direction; in this case, it is not necessary to in-
tervene, given that improvement is likely due to
maturation or influenced by factors independent
of the study. Similarly, under intervention condi-
tions, if data indicate a zero-celerating trend during
initial treatment sessions, but an accelerating trend
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FIGURE 2: Applied Example

Number of aggressive behaviours per hour for Billy. In Figure 1, the first three data points in the baseline (A) condition
were plotted. The data were somewhat variable (see previous figure), with the patient with aggressive behaviour
engaging in 7–9 aggressive behaviours per hour. Because the researcher is not convinced she could predict ‘about’
where the next data point might fall, she decides to collect at least three more data points. After those three data
points are collected, as shown in this figure, she determines that the data are predictably high in level and somewhat
variable, with no trend (e.g., approximately 0 slope). Thus, she decides to implement the initial intervention condition.

during subsequent treatment is present, it is recom-
mended to continue collecting data to ensure such
improvement continues in a therapeutic direction
(i.e., behaviour change is clinically significant). Fi-
nally, when comparing adjacent conditions, a basic
demonstration of effect is observed when direc-
tionality shifts across conditions. Thus, trend is
often of interest because trends are present in typi-
cal learning patterns (e.g., acquisition). Moreover,
trends occurring outside of intervention conditions
(e.g., in baseline conditions) may be indicative
of threats to internal validity (maturation) (Gast,
2014; Kazdin, 2010).

Variability. Variability refers to the extent to
which data points are similar in regards to value
(ordinate scale). Generally, data points are con-
sidered stable when approximately 80% of values
are within +25% of the median value in a given
condition (sometimes referred to as a stability
envelope) (Lane & Gast, 2014). Data that are
considerably variable in baseline are problematic
because as mentioned above, it impedes your
ability to accurately predict the level of the next
data point, given no change in condition (see
Figure 2). This, in turn, limits your conclusions
about whether an observed change in level is a
result of the variability of the data or the change
in condition. If data are considerably variable
during baseline conditions, you should continue

data collection until data are stable. Alternatively,
if you have a strong a priori assumption that the
condition change will result in a large level change
and variability in baseline was expected, you can
collect at least five data points and then intervene.
If data change in level, are less variable, and do
not overlap with baseline, you can be confident
changes occurred due to changes in condition. If
data remain variable or the intervention condition
includes considerable data points that overlap
with the data points in baseline, your confidence is
decreased. Although changes in variability alone
could theoretically be of practical importance (e.g.,
improving consistency of checking blood sugar for
a patient with diabetes) and could result in a deter-
mination of a functional relation, we are not aware
of any published SCD studies in which decreased
variability was the primary treatment goal.

Formative analysis summary. Readers should
note that although suggested minimums exist re-
garding the number of data points in each condition
(e.g., 5 data points; What Works Clearinghouse,
2013), decisions about changing conditions should
be made by assessing the data for level, trend,
and variability. It is only appropriate to change
conditions after collecting a minimum number of
data points and characterising the level, trend, and
variability of the data. Table 1 includes informa-
tion related to common baseline data patterns and
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TABLE 1
Using Visual Analysis to Make Condition Change Decisions

Data in baseline Decision Rationale

Level is at zero (floor), with
no variability and no
discernable trend (3 data
points)

Implement intervention
condition

When data are consistently at floor levels,
additional data provide little additional
information

Level is low, with some
variability, and no
discernable trend (3 data
points)

Collect more data, unless you
are certain intervention
condition will result in
immediate and large
changes in level

When data are somewhat variable,
additional data points might provide
additional information helpful for
evaluating change

Level is low, with little
variability, and a slight
deteriorating trend (4 data
points)

Collect more data Variable data can sometimes appear to
show a trend when only a few data points
are collected; regression to the mean may
result in an improving level difference
without the influence of intervention

Level is low, with little
variability, and a slight
therapeutic trend (4 data
points)

Collect more data If data are trending in a therapeutic
direction, you may not be able to
differentiate the effects of intervention
from those related to maturation or history

Data are highly variable (5
data points)

Collect more data, unless you
are certain intervention
condition will result in
immediate and large
changes in level and
reduction in variability

If data are highly variable, it is not possible
to predict the level of the next data point;
this makes assessing changes in level
difficult

Note: All decisions are based on data that are low in baseline and that researchers intend to increase during intervention
conditions. Rules can also be applied for data intended to change in the opposite direction.

resulting decisions about condition changes. As
Table 1 depicts, formative decisions about continu-
ing baseline conditions or introducing the interven-
tion condition should include assessment of level,
trend, and variability. These data characteristics are
critical regardless of design type; however, some
specific considerations are notable for particular
designs. These design-specific considerations are
described in Table 2.

Summative Analysis: Between
Conditions
Three additional data characteristics should be
considered, in addition to level, trend, and
variability—including consistency of data within
conditions and of changes between conditions,
overlap of data in adjacent conditions, and immedi-
acy of change in data following condition changes.

Consistency. Consistency refers to the extent to
which data patterns are the same within like con-
ditions (e.g., in both baseline conditions in an A–
B–A–B design; in baseline conditions for all par-
ticipants in a multiple baseline across participants
design) and the extent to which changes (in level,

trend, or variability) are the same for each poten-
tial demonstration of effect. In SCD research, the
critical factor in determining a functional relation
is the consistency of behaviour change between
conditions; consistent but small changes in level
between conditions are superior to inconsistent
changes of larger magnitude. Sometimes incon-
sistencies are expected; for example, in A–B–A–B
designs, we may expect the dependent variable to
fail to fully reverse to baseline levels (for an exam-
ple of this in the published literature, see Ahearn,
Clark, MacDonald, & Chung, 2007). When de-
termining whether a functional relation occurred,
the most important question is whether lack of
consistency in data patterns and changes between
conditions impedes confidence that differences in
data between conditions occurred due to condition
changes and only condition changes.

Overlap. Overlap refers to the extent to which data
from one condition are at the same level as data
from an adjacent condition; it may helpful to think
of overlap as the proportion of data points in the
intervention condition that are not improved rel-
ative to baseline. Because level is often the data
change that is most important to interventionists,
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TABLE 2
Design-Specific Considerations for Visual Analysis

Design Issue Considerations

Sequential
introduction
and withdrawal
designs

Partial return to baseline
It is possible that responding

during the second baseline
condition will approximate
the first baseline condition,
but change in level will not
be identical.

• A delayed change in level and trend of the data path
is not uncommon with this type of design (observed
during the first few sessions of the second baseline
condition).

• Only change conditions when a clear pattern of
responding is observed in the data path (e.g.,
accelerating trend in a therapeutic direction during
the intervention conditions) (Gast & Baekey, 2014)

• Explicate (a priori) assumptions about data reverting
to baseline levels.

Time-lagged
designs

Covariation
When an intervention is

introduced to a tier (e.g.,
participant assigned to
Tier 1 of a MBD) and
improvements are
observed in an untreated
tier, covariation is present
in the data.

• Introduction of an intervention should occur only when
data are stable across all tiers of the MBD/MPD.

• Vertical analysis of data across all tiers within a
MBD/MPD should occur prior to and after
introducing an intervention to Tier 1. This is done as
a means for determining the extent to which data are
stable (Horner, Swaminathan, Sugai, & Smolkowski,
2012).

• Avoid covariation by choosing independent targets
(Gast, Lloyd, & Ledford, 2014)

Rapid iterative
alternation
designs

Differentiation between data
paths

When comparing
interventions, multiple data
paths are compared within
a single condition, with
conditions rapidly
alternated during the
comparison. Differentiation
in data paths is the
primary means by which
data are evaluated.

• Rather than changes between conditions, visual
analysis of these designs are generally related to
whether differentiation between data paths is present
(e.g., Is the level of one data path different, without
considerable overlap?)

• Ensure interventions are implemented as designed,
with adequate procedural fidelity data.

• Collect baseline data prior to and during the
comparison condition (allows detection of overlap
between conditions; participant does not
differentiate which condition is in effect)

it is perhaps not surprising that early attempts to
quantify visual analysis of change between con-
ditions were based on the degree to which data
were non-overlapping in the expected direction,
since non-overlap of data often corresponds with
differences in level (PND; Scruggs, Mastropieri,
& Casto, 1987). Thus, the degree to which overlap
occurs is important, since it speaks to level change,
although PND and other attempts to quantify over-
lap are highly sensitive to procedural parameters
(Pustejovsky, 2016a); that is, the extent to which
overlap-based metrics correspond with changes
in level is highly dependent on study procedures
in addition to outcomes. Nonetheless, overlap
between conditions can be accessed via visual
analysis by posing and answering the following
questions:

(1) What is the extent of the overlap between con-
ditions (e.g., how many data points between
conditions are at about the same level)?

(2) Does the degree of overlap change over time?

(3) Is overlap consistent between comparisons?

(4) Was overlap expected a priori?

(5) Does overlap impede confidence in a func-
tional relation?

Question (5) is critical, despite its somewhat
subjective nature. Confidence should be decreased
when many data points in adjacent conditions are at
approximately the same level, overlap does not de-
crease over time, overlap was not expected, and the
overall change in level is small. Note that overlap-
based metrics like PND only characterise overlap
based on the first consideration; all of the others
are reliant on visual analysis.

Immediacy. Immediacy is the extent to which data
change simultaneously with a condition change.
When analysing immediacy between conditions,
the following questions should be considered:
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(1) Is there an immediate and abrupt change in
the dependent variable?

(2) If not, is there a delayed increase in the depen-
dent variable (gradual therapeutic change in
level and trend or a change that occurs several
sessions after the condition change) and

(3) Is this pattern of responding replicated across
similar conditions? For example, if a partic-
ipant displays a delayed response to the in-
tervention and all other participants display
an immediate and abrupt change in the tar-
get behaviour, researchers need to first ensure
procedures and data collection occurred as in-
tended and then assess the idiosyncrasies of
that condition compared to others (e.g., im-
plementer; pre-intervention characteristics of
participants).

Some interventions might reliably lead to de-
layed increases in the dependent variable. Al-
though immediate changes are preferable, non-
immediate changes can still result in a functional
relation determination if delayed or gradual
changes were expected and these delayed/gradual
changes were consistent across demonstrations
(e.g., in all tiers of a multiple baseline design).
Thus, immediacy considerations are dependent on
visual analysis, but also on a researcher’s knowl-
edge of the participants, independent variables, and
dependent variables.

Summative Analysis: Functional
Relation Determination and Statistical
Analysis
The above description regarding level, trend, vari-
ability, consistency, overlap, and immediacy is
designed to assist the reader in evaluating SCD
research for the purposes of formative analysis.
These same characteristics can be used to deter-
mine whether changes are indicative of experi-
mental control—a demonstration that the changes
observed are the result of the planned conditions
changes and only those changes. For example,
when engaging in formative analysis, researchers
might consider variability because they need to
make a decision whether to collect more data in
the current condition. Following study completion
(or when analysing data from a study conducted by
someone else), you should analyse the variability
of the data to determine whether within-condition
data patterns decrease confidence that a causal re-
lation exists. A worksheet designed to help assist
with summative visual analysis decisions can be
found in the appendix. The worksheet contains a
series of Yes/No questions regarding data charac-

teristics; responses that are positive (indicative of
a potential functional relation) are in the middle
column; responses that are negative (indicative of
a potential problem preventing determination of a
functional relation) are in the far right column. In
the second section, based on responses about the
data, you can determine whether a functional re-
lation exists (Yes/No), rate the confidence in your
decision (on a scale of 1–4), and provide an esti-
mate of the size of the effect (negative/null, small,
medium, large). Based on the data in Figure 3, we
would make the determination that Yes there is
a functional relation, and that we are Extremely
Confident in our decision, due to the consistency
of data patterns within and across conditions, im-
mediate changes in level following all condition
changes, lack of overlapping data points, and no
concerns with variability or trends that influence
our decision. Note that the size of the effect need
not impact confidence in conclusions—consistent
small effects can be equally convincing as con-
sistent larger effects and may be more convincing
than large effects that are variable.

A number of statistical procedures are also
available for quantifying level, trend, variability,
and overlap in SCD data. Below, we detail a few
of the more common procedures. No one metric is
likely to comprehensively characterise behaviour
change in SCDs in lieu of visual analysis but quan-
titative metrics can be helpful for summarising data
characteristics.

Level. There are a number of statistics designed
to characterise the average level of behaviour oc-
currence, including mean and median values. The
mean value is calculated by adding all data values
and dividing by the number of data points. How-
ever, a considerable weakness of using the mean is
its sensitivity to outlying values, which is particu-
larly a problem in SCD research because generally
only a few data points are collected per condi-
tion. The median value is the middle value of a set
of data points (i.e., the centremost value when all
data values are ranked from lowest to highest). Al-
though standard deviation is reported in most group
comparison studies, SCD researchers have histori-
cally reported a range of values (i.e., the minimum
and maximum values) to quantify the variability of
data within a condition. We should note that none
of these statistics are appropriate when quantify-
ing the level of data within a condition if trends are
present.

Trend. Traditional trend or regression lines are in-
appropriate for SCD research, given the relative
dearth of data points within a condition. Instead,
the split middle procedure is sometimes used to
quantify within-condition trends. To conduct the
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FIGURE 3: Applied Example

Number of aggressive behaviours per hour for Billy. As shown in the figure, four conditions were completed, with
three potential demonstrations of effect (A→B, B→A, A→B). Level, trend, and variability: In both A conditions, data
were somewhat stable, with a zero-celerating trend and high level. In the first B condition, data were somewhat
variable, with a slight decelerating trend and low level; in the second B condition, data were stable and low, with
a zero-celerating trend. Consistency: Data patterns were consistent across baseline conditions, with the first being
slightly more variable; similarly, data patterns were consistent across intervention conditions, with the first being
slightly more variable and with a shallow decelerating trend. Similarly, changes in data were consistent and in the
expected direction, with large changes in level for all three changes in conditions. Overlap: There were no overlapping
data between A and B conditions; all baseline data were in excess of 6 aggressive behaviours per minute and all
intervention data were at or below approximately 4 aggressive behaviours per minute. Immediacy: All condition
changes resulted in immediate changes in level; the first data point in each condition was different in level than data
point in the preceding condition, in the expected direction.

split middle procedure, median values within each
adjacent condition (A–B) are identified and used
to generate trend lines. Within each condition,
the data path is divided in half. For example, if
there are 7 data points within the A condition, di-
vide the number of data points by 2 and add .5
to the quotient to obtain the mid-date (or median
session along the x-axis; this calculation indicates
that the fourth session is the mid-date). If there
are an odd number of data points, the mid-date and
corresponding value along the ordinate are omitted
from further calculations. For the remaining points
along the data path, this calculation is repeated to
identify the mid-date of each half (3 divided by 2
plus .5 indicates the second session is the mid-date
for each half of the data path along the x-axis).
Next, identify the mid-rate, or median value, along
the ordinate (or y-axis) for each half of the data
path. Continuing with the above example, if the
values of the first half of the data path are 28%,
16%, and 32% for sessions 1–3, the median value
is 28%; this process should be repeated for the
second half of the data path. The intersections of
the mid-date and mid-rate for each half of the data

path are identified on the graph and a trend line is
created. The expectation in the baseline condition
is the data path is moving in a contra-therapeutic or
zero-celerating direction and, as such, if additional
data points were collected, the trend line would
continue in the same direction under those condi-
tions. Once the trend line is identified it should be
moved so that half the data points fall above and
below the line. The procedure is repeated for the in-
tervention condition, with directionality compared
between conditions (see Lane & Gast, 2014 for
detailed instructions).

Variability. As noted above, the range of data
values within a condition (i.e., minimum and maxi-
mum values) can serve as one metric of characteris-
ing data variability; however, this is only appropri-
ate when no trends are present. A stability envelope
can be calculated for data with or without trends
present. Stability is commonly defined as 80% of
values within +25% of the median value within a
condition. For example, suppose a baseline condi-
tion consists of 8 data points and the values along
the ordinate range from 15% to 35% (ordinal rank
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= 9, 10, 15, 15, 25, 32, 35, 35). First, identify the
median value; since there are an even number of
data points, add the fourth and fifth values and di-
vide by 2 to obtain a quotient of 20 (identify the
median value on the graph and draw a horizontal
line within condition). Second, multiply the quo-
tient by .25 (i.e., 25%), which yields a value of 5.
Thus, the stability envelope is 15–25% (identify
each value along the ordinate and draw additional
horizontal lines to denote the stability envelope),
with a median value of 20%. Finally, calculate the
percentage of data points that fall on or within the
stability envelope (three data points [15, 15, 25] di-
vided by 8 multiplied by 100 = 37.5%, indicating
data are not stable). The same stability envelope is
applied to the intervention condition. When trends
are present, the stability envelope can be super-
imposed along the trend line obtained using the
split-middle method discussed earlier, rather than
the median (Gast & Spriggs, 2014; Lane & Gast,
2014).

Overlap. Numerous overlap metrics have been de-
veloped, though none are appropriate to serve as
an ‘effect size’, as described above. However, they
can be used to describe the degree of overlap be-
tween conditions, which is one data characteristic
that we use in visual analysis. Other sources are
available that describe calculations for a number of
the metrics (Pustejovsky, 2016a; Wolery, Busick,
Reichow, & Barton, 2010); here, we will describe
the use of the percentage of non-overlapping data
(PND) and the non-overlap of all pairs (NAP). We
choose these metrics because PND is widely used
and easy to understand, while NAP is less sensi-
tive to outliers (when compared to PND) and less
sensitive to procedural variations (when compared
to PND and other metrics; Pustejovsky, 2016a).

When calculating PND, first identify the
highest value along the ordinate for the baseline
condition, assuming the goal of the intervention
is to increase a socially appropriate behaviour
(otherwise indicate the lowest value along the
ordinate). In the intervention condition, draw a
horizontal line through the condition to indicate
the most extreme value of the baseline condition;
this serves as a visual analysis tool for determining
the number of data points that are above this line
(or below this line, if the purpose is to decrease
behaviour). Count the number of values in the
intervention condition that are more extreme than
the identified value in baseline condition and
divide that sum by the total number of data points
in the intervention condition and multiple by 100;
this yields PND for the intervention condition
when compared to baseline (e.g., if the highest
value of the baseline condition is 25% and 14 of

16 data points in the intervention condition are
above 25%, PND calculations would yield 87.5%)
(Gast & Spriggs, 2014; Lane & Gast, 2014).

In contrast, NAP yields a percentage obtained
by conducting a series of pairwise comparisons of
values from the baseline and intervention condi-
tion (Pustejovsky, 2016a). First, identify all possi-
ble pairs of data points by multiplying the num-
ber of data points in the baseline condition by the
number of data points in the intervention condition
(e.g., 5 data points in baseline and 7 in the in-
tervention condition would yield 35 comparisons).
Each value in the baseline condition would be com-
pared to each value in the intervention condition
and coded as overlapping with a data point in the
baseline condition (scored as 1), non-overlapping
(scored as 0), or a tie (scored as .5). For example,
when comparing the first data point in a baseline
condition (15%) to all possible data points in an in-
tervention condition (sequential order: 14%, 13%,
15%, 20%, 25%, 30%, 45%), the following scores
would be obtained: 1, 1, .5, 0, 0, 0, 0 = 2.5. This
process would be repeated for all remaining com-
parisons, with all coded values summed (overlap
sum) and subtracted from the total number of com-
parisons and multiplied by 100 (Parker, Vannest,
& Davis, 2011). Free programmes for calculating
PND, NAP, and other metrics are available (Puste-
jovsky, 2016b).

Visual Analysis: Dissemination and
Synthesis
Recent guidelines related to SCD research (Tate
et al., 2013, 2016) emphasise the importance of ex-
plicitly reporting procedures used to analyse data,
including visual analysis. Clear reporting of pro-
cedures increases replicability and improves the
extent to which consumers understand the tech-
niques that were used to draw conclusions regard-
ing functional relations between the independent
and dependent variables.

Reporting Visual Analysis Procedures
and Results
Difficulties with visual analysis include the lack
of consistent reporting of procedures and results.
Unfortunately, reporting of visual analysis in SCD
research is generally insufficient (Barton, Meadan,
& Fettig, 2017). Often, SCD researchers simply
report the presence of a functional relation, de-
scribe behaviour changes, or characterise the data
according to a single characteristic (e.g., condi-
tion means). This is problematic for a number of
reasons: (a) it reduces the ability to conduct data
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analysis in a systematic and consistent manner
across studies; (b) visual analysis results across
studies are not comparable; (c) it is not possi-
ble to determine the rationale behind a functional
relation determination in the case of a disagree-
ment; (d) it often leads to overreliance on one
data characteristic—generally overlap or level; and
(e) it can decrease reliability between observers, a
noted problem with visual analysis (DeProspero &
Cohen, 1979).

Synthesising Results within and across
Studies
Visual analysis produces a binary decision for each
SCD (i.e., a functional relation exists or does not
exist). One way to synthesise results across a num-
ber of designs is to report a success rate (e.g.,
percentage of designs in which a functional re-
lation is demonstrated divided by a total num-
ber of designs). Of course, this metric has simi-
lar problems as other synthesis methods, including
meta-analysis—notably that inclusion of only
peer-reviewed articles may increase the likelihood
of over-estimating success (e.g., non-effects are
less likely to be published; Shadish, Zelinsky,
Vevea, & Kratochwill, 2016; Tincani & Travers,
2017). To minimise this risk, include grey liter-
ature in systematic syntheses (Ledford, Lane, &
Tate, 2018).

Additional supplemental analyses can be used
to characterise other aspects of the data (e.g., mag-
nitude of change). There are a number of statistical
analyses designed to estimate effect sizes for SCD
data, including overlap-based metrics (Wolery,
Busick, Reichow, & Barton, 2010) and mean-
based metrics (Shadish, Hedges, Horner, & Odom,
2014). Many of these metrics were developed for
group research (i.e., randomised controlled trials)
and modified to increase appropriateness for SCD
data (Hedges, Pustejovsky, & Shadish, 2012;
Pustejovsky, 2017). We caution against using
overlap-based metrics given known weaknesses
(Pustejovsky, 2016a; Wolery, Busick, Reichow,
& Barton, 2010; Yoder, Ledford, Harbison, &
Tapp, 2017). When mean-based statistics are
used, they should be used secondary to visual
analysis, and with explicit acknowledgment of
potential flaws (e.g., Between Case Standardised
Mean Difference [BC-SMD] is sensitive to
session length and recording system; Pustejovsky,
2016a). Visual analysis can determine whether a
functional relation exists between the independent
and dependent variables; mean-based statistics
can be used to describe the magnitude of change.
Because effect sizes generally focus on one data
characteristic (sometimes controlling for others)

and do not consider data characteristics that could
compromise internal validity (e.g., baselines with
a therapeutic trend), they are unlikely to provide
a comprehensive description of changes in data
between conditions.

Conclusions
Visual analysis of data is a long-standing tradi-
tion in the field of SCD research and continues
to be the recommended method for determining
presence of a functional relation. Application of
advanced statistical analyses continues to be a con-
troversial topic, with some indicating that such
methods should be equal to or even supersede vi-
sual analysis. Although we applaud progress and
continued study of such methods, we feel that vi-
sual analysis should continue to be the leading
method for analysing SCD data given its strength
in formative analysis and comprehensive nature
(e.g., not relying solely on one data characteris-
tic). In addition, when conducting SCD studies,
it is important to report how data were visually
analysed; such precision allows for transparency
when consumers review a manuscript, and allows
for replication of procedures in future studies. Fi-
nally, this paper provided multiple considerations
for evaluating SCD data characteristics, but it is
important for those with limited experience with
visual analysis to practice and for experts to ex-
plicitly train others in utilising these tools. When
training and in practice, independent assessment
(i.e., interobserver agreement) of graphs using vi-
sual analysis is one potential tool for decreasing
variability in functional analysis conclusions, par-
ticularly if one observer is blind or uninvolved in
the research study. Although visual analysis is a
complex skill, it is possible to systematically ap-
ply and report its use. In fact, we would argue that
doing so is critical for improving the applicability
and importance of single case research.
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Appendix: Visual Analysis Worksheet

Part 1: Characteristics of Data

Characteristic Questions + −
Level Is a consistent level established in each condition prior to condition change? Yes No

Is there a consistent level change between conditions, in the expected
direction?

Yes No

Trend Are unexpected trends present that make determination of behaviour change
difficult?

No Yes

Is there a consistent change in trend across conditions, in the expected
direction?

Yes No

Variability Does unexpected variability exist in one or more conditions? No Yes
Does within-condition variability impede determinations about

level changes between conditions?
No Yes

Consistency Are data within conditions and changes between conditions consistent? Yes No
If changes are inconsistent with regard to level, trend, or variability, was that

expected?
Yes No

Does inconsistency impede confidence in a functional relation? No Yes
Overlap Are data highly overlapping between conditions? (e.g., are there many points

in the intervention condition that are not improved relative to baseline?)
No Yes

If overlapping, does the degree of overlap improve over time? (e.g., initial
intervention data points are overlapping, but later ones are not)

Yes No

Is overlap consistent across comparisons? (e.g., Do approximately the same
number or per cent of data points overlap across A➔B comparisons?)

Yes No

Was overlap expected a priori? (e.g., Was variability or a delay in treatment
effect expected, given knowledge about participant behaviour and past
research?)

Yes No

Does presence of overlap impede confidence in a functional
relation? (Does the degree to which data are similar between conditions
result in lower confidence for �1 comparisons?)

No Yes

Immediacy Are changes between tiers immediate, in the intended direction? Yes No
If no, are delays in change consistent across tiers (e.g., if there is a 3 session

delay in Tier 1, is there a 2–4 session delay in Tier 2?)
Yes No

Does lack of immediacy impede confidence in a functional
relation?

No Yes

Part 2: Conclusions Regarding Functional Relation

Did the design allow for at least three potential demonstrations of effect? Exam-
ples include three-tiered multiple baseline or probe designs with three different
intervention start points, A–B–A–B and B–C–B–C designs, and ATD designs
with at least three data points per condition. Common non-examples are mul-
tiple baseline and multiple probe designs with two tiers or three tiers but
only two intervention start points, non-concurrent multiple baseline designs,
and multitreatment designs with inadequate replications (e.g., A–B–A–C–D).
If no, STOP. No functional relation can be demonstrated.

Yes No

What is your determination regarding the presence of a functional relation? Present Not Present
How confident are you in your
determination?

Not at all
confident

Not very
confident

Quite con-
fident

Extremely
confident

How large is the effect? Negative or null Small Medium Large

The visual analysis worksheet is intended for completion for each dependent variable in each design; in some manuscripts,
multiple designs are present. For example, in an article with an A–B–A–B designs for each of two participants, one
worksheet should be completed for each design. In an article with one multiple baseline design across participants, with two
dependent variables (DVs), one worksheet should be completed for each DV.
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