TWO TERM CONDITIONS IN = EXACT COUPLES
MICHEAL N. DYER

1. Introduction. In achieving his celebrated results on the homology
groups of fibre spaces, J. P. Serre used the exact couple of a fibring defined by
J. Leray. One of his main tools was the so-called two-term condition on the E?
term of this exact couple, which, if satisfied, yielded exact sequences, such as
those of Gysin and Wang (see (5), Chapter 1X). H. Federer, in (3), defined
an exact couple €(X, Y, v) on the mapping space M(X, V) = {f: X -> V| X,V
are spaces and f is continuous} with the compact-open topology, where X is a
locally finite CW complex and Y is arc-connected and #z-simple for all #. The
purpose of this paper is to find a two-term condition for the exact couple of
H. Federer and to see what results can be derived from this condition.

In Chapter I we formulate a two-term condition for = exact couples, of
which €(X, YV, v) is a special case. We also give a necessary condition that the
differential operator

an Ez,o - E:l,—l,’l

in €*(X, Y, v) be zero forz > 2.

In Chapter II we give necessary conditions on ¥ (Gap Theorem I) and on
X (Gap Theorem II) that a two-term condition hold on €(X, ¥, v). These
theorems yield exact sequences involving =;(M (X, ¥), v) and H{(X, =,(Y)).
Using these theorems, we then compute some of the homotopy groups of
M(X, V) where ¥ = U, the infinite unitary group, or O, the infinite orthogonal
group, and dim X < 4 or 5, respectively.

CHAPTER I. PRELIMINARIES

2. = Exact couples. Let € = {D, E, 1, j, k} be an exact couple in the sense
of Federer; i.e., D is a (not necessarily abelian) group, E is an abelian group,
and 4, j, and k are homomorphisms such that the following triangle is exact

(see (3)):
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Suppose that D and E are bigraded, i.e.,
D= % oD, E=3% okE,, (p, q € Z, the integers),

and 1, j, k are homomorphisms such that degz = (0, —1), degj = (—1, 1),
and deg £ = (0, 0). It can easily be shown that deg:® = (0, —1), deg j* =
(—=1,n), deg &* = (0,0), and deg d® = (—1, n), where d* = j* o k", in the
derived couple €" (see (5), Chapter VIII).

Definition 2.1. We call an exact couple € satisfying the above a m exact couple
if and only if € satisfies:

(1) Dy, =0ifp < 0,9 <0,

(2) E,,, =0if¢g <0,

(3) there exists a positive integer k such that £, , = 0 forg > k.
Condition (3) ensures the finite convergence of the spectral sequence.

ProrositioN 2.2, Let € be a 7 exact couple. Then

(4) Ep,q = 0for p <0,

(5) for any p, and if ¢ > k, then D, , = D, via 1" ((q¢ — k)th iterate of 1),

(6) for m > max(q, k — q) we have

E,,=Efl=...=E,.
Definition 2.3. Let D, ; be denoted by 7,(€). We filter ,(€) as follows:
Wp(@) = Tp,—1 D Tp,0 D Tp,1 D . .. D Tp,k—1 D Tp,x = 01

where 7,,, = ker {¢%2: D, , — D, for ¢ < k and m,, = 0. This is called
the filtration of 7, (€). See (6).

The following proposition shows that , ..y is an extension of =, , by E2,
The proof is given in (3, p. 351).

PROPOSITION 2.4, 7y, ,—1/mp,q = Ep o for ¢ < k.

3. The two-term condition. Let € be a = exact couple.

Definition 3.1. We say that € satisfies the two-term condition {\, u; v},
where )\, u, and » are integers such that N < g, » > 1, if and only if E” satisfies
(@), (b), and (c) below.

(a) For each integer m such that N < m < u, E,,,, = 0 unless ¢ = a,, or
bmy @ < .

) Eme1,,=0if g > by + v(A < m < ).

) Eni1,, =0if g < am — v(A < m < M.

TuroRrREM 3.2. If € satisfies the two-term condition {\, u; v}, then the following
sequence is exact:

v [/} O y

B2 m(0) 25 By, 2
ﬂ’ 71'm((-') Hl’m Emam"—”*Bm—l bm— 1211‘_»:_)1...
123 RIS
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The proof of Theorem 3.2 is similar to the proof in (5, p. 240).

Note: 1t is of interest for §§7 and 10 to see how the homomorphism

gm: E:ﬂ.am - E:;L—l.bm-l
is defined. Let 7,,_1 = b_1 — a,, for m > \. Then

o Jdmt i >,
m 0 if Tm—1 < V.

CoroLLARY 3.3. Let 0 < @ < b < k, where k is that number such that E, , = 0
for ¢ > k. If E, ;=0 unless ¢ = a, b for some v > 1 and all p > 0, then the
following beginningless sequence is exact:

y @ Yo o 0 v G
- Ep.b % 771)(@) z E, ., A Ep—l,b ? 1, .
1 12

— m(€) 5 El, =, Eoy—— 0.

CoROLLARY 3.4. Let {b;} (N < i < ) be a sequence of integers such that, for
somev > 1,b; —v <bafor n\<t1<pandb;, < kfor N\<:i<u IfE,,=0
unless ¢ = by for N\ < p < pand if Ex_1,y = 04f ¢ > by + v, then

(€) = Epp,  (N<p < p).
Proof. Letting

_ 0 itb, #0
%‘{—1 ith, =0 (N<P<H
we obtain a two-term condition {\, u; »} and E, ,, = 0for A < p < u. Theorem
3.2 does the rest.

CorOLLARY 3.5. If E,, =0 for 1< N<p<p then m,(C) =0 for
A<pP <

4, Extended two-term conditions. Let € be a 7 exact couple. The next
two theorems give conditions under which the exact sequence of Theorem 3.2
may be extended one extra term.

TureoreM 4.1 (Left Extended Two-Term Condition). Suppose G satisfies
the two-term condition {\, u;v}. In addition suppose that for p = N\ — 1 and
g>an+ v, Epp=0unlessqg=qo(an+v<q <bx+v) and for p =\ — 2,
E,,=0,q +v<qg<gqo+r where r = go — ar (see Figure 4.1). Then the
sequence

~ A N v dr v
Einy %, .5 m(¢€) L Ex.o, = Ex—1,00
18 exact.

TureoreM 4.2 (Right Extended Two-Term Condition). Let € satisfy the
two-term condition {\, u;v}. In addition, let E,,=0 for p =pu-+1 and
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4 A I I |
’ (?\—2,q0+r) ‘ I
I | |
@ (\-2,q,+) | I
I I I
| é (7\—1,b}\+v) |
I I I
I ‘ ()\-1,%) |
I I I
v L : + (A-1,2,4) + ()
I I | _
I ' ? (X,a)\)
I | I
+ ] I >
A-2 A-1 A

FIGURE 4.1. E*

q<b“—vunlessg=go(g0>a“_,,) andE;’q=Oforp=#+2’go_V>
q > go — r where r = b, — qo. Then
v dr 14 v
En+1,t10 '_)Eu,b,, Sb—“) 7";;(@) !‘I“) . e —)E}\,a)\

s exact.

5. Description of €(X, Y, v). Let X be a locally finite CW complex, Y be
an arc-connected space, and v be a map from X to Y. In this section we give a
description of the exact couple (X, Y, v) (see (3)).

Let X" be the n-dimensional skeleton of X. Consider M (X", V) = {f: X" —
Y| f is a map}. Let U, be the arc-component of M (X’, ¥ containing v, = 9|X".
Define the map

r: U;— U
by r(f) = f] X (f € M(X, Y)). Since X is locally finite, 7 is a fibring in the
sense of Serre (see (5)); i.e., r satisfies the covering homotopy theorem for
polyhedra. Let F; = r"1(v;_1) = {f € Uy fIX7! = v,.4}. F; is a fibre of 7.
The usual sequence

ks ,
(5.1) e 1i(F0) B iUy o) B iUy, v501)
d

'—)Wi_l(Fj,'Uj)ﬁ...

for the fibring 7 is exact.
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Define
D= Z ® Dy,
D,q
where D, , = 7,(U,, v,) if ,¢ > 0 and D,,, = 0 otherwise, and
E=2 0E,,
»,q

where E,,, = m,(F,, v,) if p, ¢ > 0and E,,, = 0 otherwise. Then (5.1) becomes

(5.2) o E B D, Db B,

where & = kx, © = 7+, and j = 9. This makes {D, E, 1, j, k} an exact couple.
We denote this exact couple by €(X, Y, v).
We state the following theorem for future reference. The proof is given in

3).

THEOREM 5.3. If X is a locally finite CW complex and if Y is arc-connected
and simple (= n-simple for all n > 0), then

@) v: Ep,q = CUX, mp14(Y)), the group of g-dimensional cellular cochains
on X with coefficients in mpy((Y), for p > 1. If p = 0, then Eo,, = subgroup of
C1(X, m,(Y)); see (3, p 345).

(b) The following diagram is commutative for p > 1 and g > 0.

d=jok

q - Ezz—l,q+l
q (_l)qa g+1 v
C'(X, 7Tzz+q(Y)) =X, 7rp+q(y))
Thus if p > 1,¢ > 0, then
Epq = H'(X, mpi ().
Also, Eg,, = subgroup of H (X, ,(Y)); see (3, p. 351).

ProposiTION 5.4. If X is a locally finite CW complex of dimension k, Y arc-
connected and simple, and v € M(X, Y), then C(X, Y, v) is a w exact couple.

Proof. Theorem 5.3 implies that m1(F;, v;) = Ei,; and mo(Fy, v;) = E,,; are
abelian, as required by §2. We must show that (1), (2), and (3) of Definition
2.1 are true. Dy, = mo(Uy v,) = 0 since U, is arc-connected and D, , = 0 by
definition if p, ¢ < 0. This proves (1). (2) is true because E,,, = 0 for ¢ < 0
by definition. The dimension X = k implies that E, , = 0 for ¢ > & since

E,,=m({f€ MX, Y)|f=19},0v) =0.
This proves (3) and the proposition.
We note that if dimension X = k, then 7,(€) = D, = 7,(M (X, V), v).
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6. The differential operator d’. The main purpose of this section is to
prove the following theorem.

TueoreM 6.1. In C(X, V,v), with X an arc-connected, locally finite CW
complex, Y arc-connected and simple, and v € M (X, Y) the constant map, the
differential operator

i i i
a: En,O - En—-l,z
1s gero for any n and 1 > 2.

In order to simplify the rather long proof of this theorem, we first give
several lemmas. These lemmas are easily proved using Theorem 5.3.

LEMMA 6.2. For alli > 1, EL o = D} and the homomorphism

E:El,— Di,
1s the identity.

LeMMA 6.3. E; o = the diagonal of | Lsexo (mn(Y)), under v for n > 1.

We embed Yinto U;via themap &;: ¥V — U,;defined by £;(y) = ¢,: X* > Y
such that ¢,%(x) = y for all x € X% Let v: X — Y be the constant map such
that v(X) = y,. Then since Y is arc-connected, ¢,? is homotopic to v; for all
y € Y. Thus ¢,* € U,

Proof of 6.1. The differential operator d* = j* o k% by definition. By
Lemma 6.2,
Efo=Dlo and k' E.,— D;,the identity.
Thus d* is essentially j%. The homomorphism j? is defined as follows. If
yEkerd ' CEDL, ©2<I<i),

then let n(y) denote the homology class of y in E! .. Letx € D!, Then, by
(5, p. 232),

M) = 2O @)) =
= LG @),

where 79 is the /th iterate of the process of taking homology classes and

J'x)

i x) = {y € Dy,1| 1P (y) = x, where ¥ =707 0... 017 (] times)}.

First we give the proof for 2 = 2. At the end we indicate the easy extension
to the cases ¢ > 2. Since d? is essentially 72, we must show that

2 12 2
J 1Dy o— En—l,z
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is zero. This homomorphism is defined by the following diagram:

2

(V) = H'(X, m,(¥V)) X Eio = ker{j: m,(Us, v0) = mp—1(F1,91)} = D7,

1 | (onto)
(U1, 91) Z, ker{d: mu_1(Fs, v2) = mue2(Fs, v3)}
o (=) .
i)

Ez_l,z
Ix
Wn(Uz, 112) — Tn(U2y FZ) 7}2>

In the diagram 7.+ is induced by the restriction 7y: (Us, Fa, v2) — (Uy, vy),
t+ is induced by the inclusion ¢: (Usv;) C (Ui, Fiy9:), 8 is the boundary
operator in the homotopy sequence of the pair (U, Fe), ¢ = #/1+ is induced
by the restriction #'y: (Ui, 91) — (U, %0), and 75 is as above. By definition
j = 8 ory1, where 74« is an isomorphism by (5, p. 118). The homomorphism %
is onto by exactness. Beginning with E. , and following the diagram to El_..,
defines d? = j2 =no0j oi L.

Now to show that j2 = d? = 0. Since X is arc-connected, E; , = m,(¥).
Consider o € 7,(Y) such that & £ 0. Let v: X — Y be the constant map into
{y0}. Choose f € a such that f: (§%, 1) — (Y, ¥¢) is a map. Since

Elo = ker{j: Dyo— E,_11} = diagonal of I ;cxo (m,(¥)),
by Lemma 6.3, then « corresponds isomorphically to g,: X° — 7,(¥) such that
g.(x) = a for each x € X° g, € m,(Uo, v0) is represented by the map
i (S 1) = (Up, vo) where [f'(s)](x) = f(s) (s € S",« € X°). Note that
f' = & of, where £&: Y C U, is defined above.

Define the map f’: (S, 1) = (Uy, 1) by f/ = &1 of, &0 Y C U f7(1) =
£1(y0) = ¢yt = v1. We shall show that #; of” = f'. We claim that for any
Gf 72 (Uyyv:) = (Us—1, v4-1) is the restriction)

*) r'i0k =&
Thus ¥’y of” =1y o0& of = & of = f'. Therefore the homotopy class of f,
denoted [f"'], is such that 7"1+([f"”]) = [f'] = a. Thus 77'(«) contains [f"].

Since j(~(e)) = F([f']) = 8 ore"'([f']), we must find a map representing
ro W ([f]) in m,(Us Fa,vs). Consider f"' = g of: (S, 1) = (U, 73). This
map is such that if ry: (Us, Fy, v2) — (Uy, v1) and if f' is considered as a map
from (I, I"1, J*1) — (U,, F3, v2) as follows:

n pn— n— n " ¢
(I ) I 1’ J l) _f_) (S ] 1) _f—" (Uz, 7}2) I— (U2! F2r 7}2)7

where p pinches the boundary S of I" to a point, then

ro 0 (tof" op) =rs0( o0& of 0p)
=rh0% 0f0p (r'y =r201)
=fofop=f"0p (by ().

https://doi.org/10.4153/CJM-1967-116-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1967-116-6

1270 MICHEAL N. DYER

Thus ro+([t o f""" 0 p]) = [f"” 0 p] = [f”]. Thus
JUS'D) =0ltof" opl = d ot([f" 0p]) =0

since d otx = 0 by the exactness of the homotopy sequence. Therefore
JHa) = d*(@) = 0.
The proof for ¢ > 2 is now clear. Since
E,f,o C E:,o for 1 > 2,

any a € E, can be represented by an element f’ as above. Then i—#1(a) is
represented by f® = ¢, ; of: (S* 1) > (Ui_1, vs—1). Therefore

JEH1@) = 9 0ra ([fO) = a([t 0 fHY o))
= 3 o t([f"D 0 p]) = 0.

This proves Theorem 6.1.

We next give a theorem that will be useful in §10 for showing that certain
exact sequences split.
Let us first define some maps. Let

YCMX,Y), EYCMX,Y)

be the constant injections of ¥ into the respective mapping spaces, where X?°
is the set of vertices of X. Pick any x,in X?°. Let

ir: M(X, V) > Y,  po: M(X°, Y) > ¥

be the projections; i.e., 7,,(f) = f(xo) for any f in M (X, Y).
Consider the following maps from €(X, ¥, v):
(k—1) 7 \
Dm,k > Dm,l 4 Dm,O

where m > 0, £ is the dimension of X, 7 = 7, and

oot
Pz HM(Y: 3’0)

Dzot = Prot |D3n,0~

Throughout the rest of this section we assume that v: X — Y is such that
9(x) = v, for all x in X. We note that, by Lemmas 6.3 and 6.2, p,,+ is an
isomorphism provided X is connected.

THEOREM 6.4. Let X be a k-dimensional, connected, locally finite CW complex,
Y be simple and connected, and v: X — Y be the constant map to vo. Then

(Prot 07 01% D) 0 jy = identity on I, (Y, vo).
Preliminary to the proof we give several lemmas.

LEMMA 6.5. %#: I,(Y, yo) = IL;(M(X, V), 73(3’0)) i Hzexo (II,(Y, y0)): 1s
the diagonal injection.
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This follows because if a is a member of I1,(Y, y,), then

‘I’(%#(a)) = HIEXO (px#(%#(‘x)))z = HJ:EX" [(ﬁz o kz)#(‘x)]z = H:EX” (@),

LEMMA 6.6. The following triangle commutes:

“Dm’k %
i:co# Jv Dm.O
I, (Y, y0>4

Thus b 01y (x0 € X°) induces i®.

Proof. 1t is clear that 4,0 = p,¢ 04®. Thus the triangle looks like this:
Dm,k

1®
i l \
Dm,O Dm.O
pxo#l /
k#
Hm( Yy y())

Consider a € D,, . Then

i® (@) € Dp,o = diagonal of [ ] zexo (I (Y, y0)).
by Lemmas 6.2 and 6.3. Thus

Bt 0 dpgb(@) = ht O Prot 010 () = i (a)
because k¢ 0 pro#|dia Il exo (IL, (Y, ), = identity by Lemma 6.5.

Proof of 6.4. Since ¢™® is induced by k 0 44, and 4y, o}' = identity on Y,

= (ﬁzo# o (% Oizo)#) O;#
(P20 0 R)# O (14 o)+
identity on IL, (Y, yo).

(Buot 07 05%D) 0]

Il

This proves Theorem 6.4.

CHAPTER II. TWO-TERM CONDITIONS IN €(X, Y, v)

7. Two theorems. In this section we show that if Y is #-connected and onf

dimension &, then M (X, Y) is # — k connected. Also, if 7;(Y) = 0 for n > n,,
then 7;(M(X, Y),v) = 0forn > n,.

TaEOREM 7.1. Let X be a locally finite CW complex such that the dimension of
X =k > 1. Let Y be n-connected such that n > k. Then
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(i) M(X,7Y) isn — k connected,
(i) me(M (X, V), v) = H¥X, O,41(Y)),
(iii) the sequence
d $ . ¥
HE—-2,n+1)>HE,n+2)5 fppre—>HE—-1,24+1)—>0
is exact, where H(3,j) = H'(X,TU;(Y)) and 7, = I,(M(X, V), v).

Proof. Since Y is n-connected and dim X < #, it is easy to see that M (X, V)
is arc-connected. By Theorem 5.3, we have

E; (X, Y,0) = H(X, mp(Y)).

Thus E,,= 0 for ¢ <k and p + ¢ < n. This implies that E,, = 0 for
0 < p < n — k. Corollary 3.5 then gives (i). For (ii) and (iii), we let ¢,—y; =
E—1 and b,y = k for ¢ = 1,2, See Figure 7.1. This gives a two-term

n+1

Ficure 7.1. E*(X, Y, v)
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condition {# — k4 1,n — k 4+ 2;2}. Thus Theorem 3.2 implies that the
sequence

n— n— 071—‘
H(k,n+ 2) 22 7‘r"_k+2¢—'f—2>H(k —1Ln+1) 2 HEn+ 1)
¢n—lc+l ﬁn_k+1 ¢n—k+1 H(k _ 1, ’}’L)

is exact, where H(4,j) = H{(X, m;(Y)) and #;, = =,(M (X, Y),v). Since
k—k+1=1 <2, the note following Theorem 3.2 implies that 6,_,,» = 0.
H( —1,n) =0 because m,(¥Y) =0. Thus Hk,n+ 1) = 7,341. Let
go = Bk — 2. Then

Ef,_k+3,g =0 forg<k—2 and Ep 44,=0 forg <k —4.

Thus the conditions of Theorem 4.2 hold and the following is exact.

2
- ‘/’n—k+2

HE—2,n+1) LH(k,n +2) amaz: Faipr —— s H(k — 1,7 + 1) — 0.

This proves the theorem.

THEOREM 7.2. Let Y be simple, arc-connected such that w;(Y) = 0 for i > m
and X be a locally finite CW complex of dimension k. Then
1) 7:(M(X,Y),v) =0 fori>m.
(ii) mn(M(X, Y),v) = H'(X, 7u(Y)).
(iii) The following sequence is exact:

0 HA,m) 2 e Y ho,m—1) % HE, m).

2

The proof of Theorem 7.2 is similar to that of 7.1. Part (i) was known to
Thom (see (8)). We note that if v: X — Y is constant, then d*> = 0 in (iii) by
Theorem 6.1, provided X is connected. Then, Theorem 6.4 implies the following
corollary.

COROLLARY 7.3. In Theorem 7.2, if X s connected and v: X — Y is a constant
map, then (iii) reads as follows:

Tua(M (X, V), ) = H(X, mu(Y)) @ mp_1(Y).

8. Gap Theorem I. In this section we obtain two-term conditions on
C(X, Y, v) by placing restrictions on the homotopy groups of Y.

Let {a;} (1 <7 < =) be a strictly increasing sequence of positive integers.
Let {m,;} (1 <7< «) be a sequence of groups such that =,; is abelian for
2> land forz = 1if a; > 1. If a; = 1, then =, is not necessarily abelian.

Definition. An arc-connected space YV is said to be of homotopy kind
{Teiya:} (1 <4< »)ifand only if 7,;,(Y) = 7, (1 <2< ®)and 7;(Y) =0
ifjé fad 1<2< ).

Thus K(w,n) has homotopy kind (type) {=,n}, K(wn, m) X K(m,, n)
(m < n) has homotopy kind {m, m; 7, n}, and any arc-connected space X
has homotopy kind {7r;(X), 7} (1 <7 < «).
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THEOREM 8.1. Let X be a locally finite CW complex of dimension k. Let Y be of
homotopy kind {my, m; m,, n} where m < n, w, and w, are abelian, and if m = 1,
1 acts simply on w,. Then

() m(M(X, Y),v) = 0fors > n,
(i) m(M(X, Y),v) = H-4X, m,) form < 1 < n, and
(i) of 7 = 7,(M(X, Y),v) and H (X, 7;) = H(, j), the following sequence

15 exact:
0———>H(n—m n)—d)—) Tm Y qu_
(8.2) ben »yH(n — 1, n)LﬁlibiaH(m—z m)-——>H(n—¢+1 n)d)i‘
D) o1 . Y1 01

——H(n — 1, n)——> 11— H(m — 1,m)——>Eo,n-—>0,

where Ey . C H(n,n) (see Figure 8.1).

a

p+q=m p+a=n P

Ficure 8.1. B2(X, YV, v)

Proof. By Theorem 5.3, E, , = HY(X, 7y1,(Y)) for p > 1 and
Ej, C HU(X, m,(Y)).

Thus E,,, = 0 for p + g > n. Proposition 5.4 and Corollary 3.5 imply that
mr(MX,Y),v) =0fori>mn Letb;=n—iform <7< n Sob; —2=
n—1—2<n—1— 1 = b;y1. Thus the hypotheses of Corollary 3.4 are
fulfilled for m + 1 < 72 < # and hence

ri(M(X Y),v) = H" (X, m,) form << < n.

For0<i<m+1,leta; = m —1,b; = n — 2. This gives a two-term condition
{0, m + 1, 2} on C(X, Y, v). Theorem 3.2 thus implies that the above sequence
(8.2) is exact. The zeros on each end result because Do = Ehi1—1 = 0. Note
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that if v: X — Y is constant and X connected, then 8, = 0 by Theorem 6.1
and m,(M(X, Y),v) = H*"(X; 7,(Y)) ® m,(Y) by Theorem 6.4.

The following corollary gives the effect of 2 = dim X on the exact sequence

(8.2).

COROLLARY 8.3. With the same hypothesis as Theorem 8.1, let us assume further
that
(1) B > n. Then (8.2) stands as 1t 1s.
(ii) m < k < n. Then (8.2) ends as follows:

¢n—k -

0O— Hn—m,n) — ... —s Hk,n) —5 Ty

1)bn—k

—H (m—n+km)—->0
and (M (X, Y),v) = H" X, 7) for 1 <1 < n — k (see Figure 8.2).

(iii) n — m < k < m. Then (8.2) ends as in (i) above, =, (M (X, Y),v) =
H™= (X, 7p,) for m —k <1 <n—Fk and m;(M(X, ¥Y),v) =0 for 1 <1<
m — k (see Figure 8.4).

Gv) k<n—m. Then m(MX,Y),2) =0 for 1<i<m—Fk and
m<i<n—k and w(MX,Y)v)=H"YX,m) for j—k<i1<]J
( = m, n) (see Figure 8.3).

Proof. We note that case (iii) is vacuous if # — m > m. The proof consists
of taking the exact sequence (8.2) and using the relative position of £ = dim X
to determine zeros in it.

CoroLLARY 8.4. If X s a locally finite CW complex of dimension k and
Y = K(w, n), the Eilenberg—MacLane space, where m is abelian, then

Wi(M(Xr K(Try n)),‘u) = H"_i(Xv 7")
forn —k<Li1<nand =0fori>nori<mn—k.

I
I\

n-k

m : n he)

FiGure 8.2. E*(X, Y, v)
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m-k mn n-k n

Ficure 8.3. E*(X, Y, v)

'
n
m
X
N= e - e _i_
|
| >
4 40" n P
= o

FiGure 8.4. E*(X, Y, v)

This result was known to Federer (3) and Thom (8).
Theorem 8.1 generalizes to the following theorem, utilizing regular gaps in
the homotopy groups of Y.

TaEOREM 8.5 (Gap Theorem I). Let m, n, k be positive integers such that

m < n. Define the sequence {a;} (1 <1< ®)bya; =m+j+ jeift=2j+1
and a; =n+j+jk if 1 =25+ 2. Let {my;} (1 <7< ») be a sequence of
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abelian groups (if m = 1, we let w1 act simply on w,; for © > 1). Let YV be an arc-
connected space of homotopy kind

{Tar, Q1 Tagy B2} Tagy @35« o o} = {Tmy M} Ty B} Tmprpws m -+ 1 4+ k5.0 L}

and let X be a locally finite CW complex of dimension k. Then the following
sequences Z; are exact for 1<1i1< o, where m(MX,Y),v) =7,
HI(X,n,(Y)) = H(4, p), and o is any inleger such that a; 1+ 1 < a < a;
(see Figure 8.5).

0———->H(a,~+1 — Oy ai+1) —gui) 77'1“4 iﬁf—)H(O, ai)
Ou; Pai—
—— H(ag1— (@i — 1), a1) ——1—> s
Oc o «
(2,) . .——+—1)H(ai+1 - qQ, a¢+1)—?—> fa—‘p—)H((li — a,a,-)

0 ¢a— 1

-—H—>H(di+1 - (Ol - 1),a,~+1)——> e

0“{—- ag— - az—1
et g gy St e Ve g e+ 1), a0 — 0.

If i = 1, then the sequence =1 is given by (8.2) and depends on k as in Theorem
8.3.

FIGURE 8.5. E(X, Y, v)
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Proof. 21 is the exact sequence (8.2). Let 7 > 1. We then have the situation
pictured in Figure 8.6, where

a, +1
ai—lﬂ' i

FiGure 8.6. E*(X, Y, v)

() Es;_,.,, = Ounlessq = Oora; — a;i;
(i) E,=0,ifa,1+1<p<a,unlessq=a,—porq= a1 — p;
(iii) Ej41,ounlessqg = korq = a1 — (a;+ 1).

Let
O ifp = Q-1
Cpi= a‘l—P if(li_1+1<p<aiy
a1 — (a;s+ 1) ifp=a;+1
and

(ai — Q1 ifp=a;,,,
d,' = iam —p e+ 1<p<a,
k ifp=a;+ 1.
Thus for ¢;1 < p <ea;+ 1, ¢, <d,”. This gives a two-term condition
{@i1, a¢; + 1;2} on €(X, ¥, v). Then Theorems 3.2 and 5.3 imply the exis-
tence of 3; and the note following 3.2 gives the zeros on each end, because

daicy — Casopr = (@1 —a1) — (@i — @1+ 1)) =1
and

dii — Cair1 = (@1 — @) — (@1 — (@, + 1)) = 1.
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This proves Theorem 8.5. Again, if X is connected and v is constant, then
Theorem 6.1 = 0,; = 0and Theorem 6.4 = 7,; = H(@ 141 — @4y Gip1) @ 74, (Y).

It is clear that, if dim X < &, then Theorem 8.5 still holds. However, there
will be many zeros in each Z;. An analysis of this situation would be similar
to Theorem 8.3. It is also clear that the gaps in the homotopy groups of Y are
the minimum ones for the given triplet (m, n, k) where m < n,dim X = k.
These gaps can be widened and 8.5 still holds. A statement of such a theorem
would go as follows.

THEOREM 8.6. Let X be a locally finite CW complex of dim k and {(m;, n,)}
(1 <2< ) be a sequence of pairs of integers such that
1) m; < n; < My for all 1,
(i) mygr —m; >k +1 for all 1,
Gii) g1 — ;> k41 for all 1.
Let Y be an arc-connected simple space of homotopy kind

{Tm1y M15 Tnyy N15 Tmyy M} Tng, Na; Tmgy M35+ o o).

Then sequences Z';, 2" ; stimilar to Z; of Theorem 8.5 are exact in each interval
[m;+ 1, n;] and [n; + 1, m1], respectively.

9. Gap Theorem II. Let {a;} (0 <7 < N) (N an integer or N = X,) be
a strictly ascending sequence of non-negative integers such that ay = 0; i.e.,
a=0<n<ae<...<a<....

Definition. We call a CW complex X ‘““a CW complex of cell type {a;}
(0 <7< N)” if and only if
(i) X has cells of dimension a, for each 2 < N,
(ii) X has no cells of dimension & for any & ¢ {a,}.

Examples. (a) S*is a CW complex of cell type {0, n}.
(b) A*, the unit n-simplex, is a CW complex of cell type

{0,1,2,...,n}.
(c) CP", the n-dimensional complex projective space, is a CW
complex of cell type {0,2,4,...,2n}.

d) If Y+t = S"\U e"t! where ¢*t! is joined to .S* by the map
h: S — S* of degree p 5 0, then Y, is a CW complex of cell type

{0, n, n + 1}.
TureoreM 9.1. (Gap Theorem II). Let X be a CW complex of cell type
{0, ay, . .., @y, &} and Y be m-connected (m > 1). Let o, denote the sequence

Ha,, 1 + a,) —gi T4 £>"H(a,,_1, 1+ a,_1)
and 2(1,7) (¢ < j) denote the sequence

) 6,
Hianj + ) -2 7, Hns, j + nt) 2 H(anj — 1+ a,)

j— 01 . i i .
Li)]—i...—+—1>H(a,,,¢—l—an) ¢ > Ty ¢+H(an_1,z+an_1).

https://doi.org/10.4153/CJM-1967-116-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1967-116-6

1280 MICHEAL N. DYER

Ifi = j,let 2(4,1) = o4 Then:
1) if a2 < m < @y, the following sequences are exact:
@) If apo1 — @y = 1 (bhus m = a,-1), then

1 ﬁ) E}.. —0, where Eg o, C H(an, ).

If, in addition, a, — a,—1 = 1, then
2

H(an_z, Ap—2 —I— 2) i g1 —> 0.
() If @pe1 — Gp2 > 1, 20,1 < @y + Gy, andm — a1 > 1, then

z(l:m Ap—2 — 1)'—)an"'—>0
©) If ey — @2 > 1, 2051 > @p + Gug, and m — a2 > 1, then
(1) #f @ — @n1 > 1, then

an—an—1 0 1

H(p1,Mm — Qg+ tp1) — > 21, m — y —0;

(i) 1fan — @p1 = 1, then,for 1 <i <m — a2 — 1,0 =0, > 0.

2) If m > a,—1, we have
*) m(MX,Y),v) = H»(X, 140,(Y))  forl<i<m—a,1—1
(m — Qp—1 > 1)

(if m > a, also, then =, = 0 for 1 <1 < m — a,) and the following sequences

are exact:
(@) If ap—1 — Gy = 1, then

O -2, Pm—an-1
Om—an—2 = H(anv — Qp-1 + a’n) = Tm—an—1 — 0.

In addition, if a, — a,—1 = 1, we have

Hnnm+ 1% 0paa =0 and Hagm +1) = fpogpas
) If ay—1 — y—2 > 1 and 2a,—1 < @y + Gy, then
S — @y + 1, m — @,_p — 1) T22=L LEHSEEN 5 H(aw, m — pe1 + a,)
Mx_) Py ———— 0.

(c) If a1 — @p—e > 1 and 2a,—1 > ay + @y, then
1) if aw — ap—1 > 1, 2(b) holds and extends to

an—an—1

—Zm — a1+ 1, m—ape—1)——...;

H(ap-1,m — @p2 + A1)
(i) #f @y — @y—1 = 1, we have 0 — o; — 0 for

M—0G2—1>1>m—a_1+1 and ¢n_g._,: H(ay, m + 1)

= Tm—an-1+
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Proof. Under the conditions of 1(a), we have, by Theorem 5.3, Ej,, = 0
unless ¢ = a,, E%,q = 0 unless ¢ = a,_1, a,, and Eé,,, = 0 unless ¢ = a,_9, ap_1,
a, (see Figure 9.1). Thus, if ¢; = ¢,_; and d; = a, for 2 = 0, 1, a two-term
condition {0, 1;2} is satisfied and Theorem 8.2 implies 1(a). The result for
a, — a,—1 = 11is given by Theorem 7.1 (iii).

a
°
n‘—H
| |
I |
\ Lo
an—l

8p-2 |

pHq = an—l =m

p
Ficure 9.1. EX(X, 7, v)

Suppose @1 — @2 > 1. Since E,, =0 unless ¢ = @ tny 0 <p <
m — G,—3) we clearly have the two-term condition {0,m — @, — 1; 2}
satisfied (see Figure 9.2). Then Theorem 3.2 and my(€) = 0 give 1(b). We note
that the two-term condition {0,  — a,_,; 2} does not hold because

2 . .
Qn1 — Q2 > 2=> B4, s41, G2 is not necessarily zero,

p+tqa =m

FIGURE 9.2. E(X, Y, v)
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which violates Definition 3.1(c). Since 2a,-1 — @, < @.—2, then the hypotheses
of Theorem 4.2 are not necessarily fulfilled and thus 1(b) can be extended no
further.

1(c) follows because if 2a,-1 — @, > @,—s, then the conditions on Theorem
4.2 (with qo = a,—1) are satisfied and if a, — a,—1 = 1, then 0, = 0 in 1(b);
by the note following Theorem 3.2.

If m > a,-1, then Ez,q =0 unless g =a, for 1<p<m—a,1—1
(m — an_1 > 1) and Corollary 3.4 implies (*). 2(a) follows because the two-
term condition {m — @1, m — a,_s; 2} is satisfied with ¢; = a,-4, d; = a, for
m — e < 1 < m — a,_» and because

Erzn,—an_x.an—l = Han—‘(X, 7|'m(Y)) = 0.

2(b) follows because the two-term condition {m — a@p—1 + 1, m — @u2 — 1; 2}
is satisfied with ¢; = @,—1, d; = a, in this range (see Figure 9.3). As above,

¢

% L —0-@

N

< )

m-:

|

Ficure 9.3. E*(X, Y, v)

Theorem 4.2 does not necessarily hold because 2a,_1 — @, < @,—2. 2(c) follows
for the same reason that 1(c) does. This proves the theorem.

Theorem 9.1 would perhaps be more applicable if, instead of having to
know the cell structure of X, one only needed to know the homology groups of
X. The next two corollaries give such extensions. Let the statement “X is of
homology kind {0, a1, as, . .., @Gy-1, @,}" mean H;(X) = 0 if and only if
id{a} A<j<n).
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CoROLLARY 9.2. Let X be a locally finite CW complex of dimension k and
suppose X 1is of homology kind {0, ay, ..., a1, a,} where H,(X) is a free
abelian group for 1 = ay, ay1, Gy—s. Then the conclusions of Theorem 9.1 hold
without change for any m-connected Y.

Proof. E,,= HYX, mp4,(¥)) = Hom (Hy(X), mp4o(¥)) ® Ext(H, 1(X),
1p14(¥)). (See 2.) Thus, since Ext(4, B) = 0 if 4 is free (see (4)), E;, =
Hom (H,(X), 7p1,(Y)) for ¢ > an_. Therefore E,, = 0 for ¢ > a,_» unless
g = Qn—2, Gyn—1, & Thus Theorem 9.1 holds without change. This proves the
corollary.

COROLLARY 9.3. Suppose X is a locally finite, k-dimensional CW complex such
that X s of homology kind {0, ay, . . ., @1, &}. Then, if Y is m-connected,

(1) if a1 + 1 = a,, the conclusions of Theorem 9.1 hold for the triplet
{a, + 1, ay, a, — 1} replacing the triplet {ay; an—1, @2} i1 the statement of Theorem
9.1;

(ii) if @p—1 + 1 < a,, the conclusions of Theorem 9.1 hold for the triplet
{a, + 1, @n, @n1 + 1} replacing the triplet {a,, an—1, Gu_s} in the statement of
Theorem 9.1.

Proof. E;., = Hom(H,(X), mp14(¥)) ® Ext(H,1(X), mpo(Y)). Thus if
a,—1 + 1 = a,, then E,z,,q is possibly non-zero for ¢ = a, — 1, a,, @, + 1. There-
fore Theorem 7.1 implies the result. If @, — @,—1 > 1, then the three largest
values of ¢ for which E;'q # 0 are a, + 1, a,, and a,_; + 1 since

Ez.an+1 = Ext (Han (X) s Tptantl ( Y) )
and Ez,a,,_1+1 = Ext(H,,_,(X), Tptan_1+1(¥)).
Thus Theorem 9.1 holds for these values.

10. Examples. In this section we apply the gap theorems to some special cases.
As an example of Gap Theorem I, let us consider ¥ = U, the unitary group.
Let Z = the integers. We recall that 7,(U) = Z if 7is odd and is zero otherwise.

ProrositioN 10.1. Let ¥V = U and v: X — Y be constant. Then, if X is a
connected locally finite CW complex of

0 .

(i) dimension 1: (M (X, U),v) = {H (X) (@ odd),

HY(X) (7 even);
(i) dimension 2: wo,(M(X,U),9) = H(X) ¢ =1,2,...) and
For = HX) @ Z (i =2,3,...) and 0 — HX(X) > #1— Z —0 is
exact;
(iii) dimension 3: 791 = HX(X) ® Z (1 =2,3,...)
and the sequences

P21

0— H'(X) >7?21-—¢2—’+H1(X)——>0,0——»H2(X) s T 2——0

areexact (1 = 1,2,...);
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(iv) dimension 4: the sequences

02 I ) =12

are exact (see Figure 10.1).

"dwr

Ficure 10.1. E2(X, U, v)

Proof. (i) follows from Corollary 8.3(iv). (iii) follows from Theorem 8.5
(Gap Theorem I) with m = 1and » = k = 3. The sequences 2, for 2 > 2 are
as follows:

0211 H (X) ¢“_,2II 2is 'Pzt—,z

H'(X) —— 0.

Since 02;_; is induced by d?, Theorem 6.1 implies that 05,1 = O forz = 1, 2, 3,

.. H'(X) = Z gives the isomorphism. (ii) follows from (iii) because the
dimension of X = 2 implies that H3(X) = 0.

(iv) follows because, for each j = 27, we have the two-term condition

{21, 2¢; 2} and extended two-term conditions on the right and left. This proves
the proposition.

0 H2(X) ¢21—§ ﬁ“21_1 ‘1021—-1 HO(X)

Next let ¥ = O, the infinite orthogonal group. It is well known that
II,(0) = I 435(0) and I, (0) = Z;, I1(0) = Zz, 1,(0) = I4(0) = II5(0) =
II:(0) = 0, I;(0) = Z = 1I;(0). If O, is a component of O, then we have the
following proposition.
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ProrosiTioN 10.2. Let ¥V = Oy, v: X — Y be constant, and M = M (X, O,).
In addition, let X be a connected, locally finite CW complex of
(i) dimension 1: then, if T1,(M, v) is denoted by 11,,

ﬁ1+8t = Ly,
Moy = HY(X) = Ieyss
Iz, = Z,

1——_I4+81 = ﬁ5+81 = 0,
Mryss = HY(X; Z2) @ Z,
Meys: = HY(X;Z:) ®Z, (6=0,1,2,...).
(ii) dimension 2: then,
Ousi = 2X)® 2, (=1,2,...), 05H}X) >0, > 2Z,—0

15 exact,
ﬁ2+s¢ = HI(X)r
ﬁ3+81 = Z,
ﬁ4+Si = 0,

ﬁ5+8i = HZ(X)y
~ 0—H (X; Zy) gﬁeJ,giiHl(X)-—»Ois exact,
Meys; = HY(X; Z2) © Z, (z=0,1,2,...);
(iii) dimension 3: then
Ousi=2X)®Z, ((=12,...), 0-H(X)—>I;—Z,—0

1s exact,
Iayys = HY(X),
M348 = Z,

ﬁ4+81 = Hs(X)y

@) B, 2) B s LX) >0 (=0,1,...;
(iv) dimension 4: then
My =HX)®Z, (i=12...), 0> H2(X)—1; —2,—0
s exact,
ﬁ2+8i = HI(X):
s = HU(X) @ Z,
2 a ¢ = ¥ oo .
HX) S H(X; Z) S5 Magsi 2 H (X)—0  (G=0,1,...);
(v) dimension 5: then
Ousi= B2X)® 2, (1=1,2,...), 0->H2(X) -1, > Z;,—0
s exact,
0 HX) Sy bH(X) -0 G=0,1,...).

The proof is similar to that of Proposition 10.1 except that any sequence
involving H°(X; I1,(0,)) splits by Theorem 6.4. See Figure 10.2.
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1 L

1 2 % I 5 6 7 8 9 10 1 a2
Ficure 10.2. E¥(X, O4, v)

=Y

As an example of Gap Theorem 11, we prove

ProrositionN 10.3. Let X = CP?, the n-dimensional complex projective space
(real dim = 2n) and Y = S™ such that m > 2n, then
1) mi(M(CP", S™),9) =0for 1 <i1<m—1—2n
(wacuous if m — 1 — 2n = 0);
(1) Tp_2, (M (CP", S™), v) = H*(CP");

(i) H™(CP", 1s2(S™) B tmsur2(M(CP", S™), v)

Y 2 8 H(CP", 11 (S™) 2 Tt (M (CP", S™), 5) — 0
s exact (see Figure 10.3).

A

1 1
T T pHq = m

m-2n m-2n+2

FiGure 10.3. E*(CP", S™, v)
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Proof. The proposition follows directly from Corollary 9.2, since H*(CP*) = Z
for:=20,2,4,...,2n and is zero otherwise.

As another example, we consider M (C, Y), where C is a closed surface. If
Cis orientable of genus p (p = 0, 1, 2, .. .), written O,, then

VA (¢ =0,2),

2p

HY(0,) = o (Z); (G=1;p=0=Hi(0) = 0),

0 (z > 2).

If C is non-orientable, then C is either P2 the two-dimensional projective
space, with p handles, written P,? or K, the Klein bottle, with p handles,
written K, (see (7)). In this case

Z (@ =0),

HEY=| 0@ (=1,

Zs (= 2),
0 G>2),

and
[z G =0),

2p+1

HE)~|®@) (=1,

Z (i = 2),
0 (> 2).
PropositioN 10.4. Let C be a closed surface. Then C is a complex of cell type

{0, 1, 2}.
(i) If Y is simply connected, then

2
H(C, m(1) BB (C, (1) B m(M(C, 1),0) BHYC, m(1)) - 0.
(ii) If Y is n-connected for n > 2, then

2
HY(C, ma(1)) S H(C, mua (1)) B 7 BLH(C, maia(¥)) =0,
7, (M(C, Y),v) =0forl <1< n—2n>2)and

H*(C, mp41(Y)) = mpea (M (C, V), v).
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The proof of this is immediate from Gap Theorem II. As an example, let
(i) ¥ = S2 Then 7(S?) = Z = 73(S?). Let v: C — S? be constant. Then

2p
0—Z— m(M(0, S%),v) > @ (Z) -0,
1

2p
0— Zy— m(M(P,), S%),v) > @ (Z) -0,
1

2p+1

0— Zy— m(M(Ky, S*),0) > @ (Z) —0.
1

These groups are usually non-abelian. However, if p = 0, we see that
WI(M(Szr ‘52)1 71) = Zy 7rl(M<P21 52)1 2)) = Zs.

(i) Y = S*for n > 2. Then 7,(S*) = Z, 7,41(S*) = Z,, and v the constant
map implies that

Fua(L0 ), = & (2) @ 2,
Tu_2(M(0,, S),v) = Z,

ra(M (B, $9,9) = @ (2) @ Zs
Taa(M(Py", S"),0) = Zs,

2p+1

Wn‘_l(M(Kp, S"),v) = (—P (Z) @ Zz,

I

7rn—2(M(KIN Sn)r v) Zz,
and M(C, S*) is » — 3 connected. If p = 0, then
7rn—1(M<S2v Sn):v) = Zy = Wn—l(M(P2y Sn)r 7}).

For similar computations, see (1).
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