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Heisenberg Modules over Quantum 2-tori
are Metrized Quantum Vector Bundles

Frédéric Latrémolière

Abstract. hemodular Gromov–Hausdorò propinquity is a distance on classes of modules endowed
with quantum metric information, in the form of a metric form of a connection and a le� Hilbert
module structure. his paper proves that the family of Heisenberg modules over quantum two tori,
when endowed with their canonical connections, form a family of metrized quantum vector bundles,
as a ûrst step in proving that Heisenberg modules form a continuous family for the modular Gromov–
Hausdorò propinquity.

1 Introduction

he primary purpose of our research is to bring forth an analytic framework, con-
structed aroundGromov–Hausdorò-like hypertopologies on quantummetric spaces,
to bear on problems from mathematical physics and noncommutative geometry
[3, 11–14, 16–18]. We constructed an hypertopology on classes of Hilbert modules
over quantum metric spaces in [15] as a far-reaching generalization of the Gromov–
Hausdoròpropinquity. We constructed a distance, up to full quantum isometry, called
the modular Gromov–Hausdorò propinquity, on a class of objects that generalize
Hermitian vector bundles over Riemannianmanifolds. hesemetrized quantum vec-
tor bundles are natural objects for noncommutative geometry and mathematical
physics, as they carry ametric structure and a form of generalized connection, and we
are now able to discuss such questions as continuity and approximations, not only of
quantum compactmetric spaces, but also of their associatedmodules. Asmodules are
fundamental objects in C*-algebra theory and their geometry, this new development
allows us to further our goal of a geometric theory of the class of C*-algebras.

his paper brings into our noncommutative metric geometry framework some
very important examples of modules, namely Heisenberg modules over quantum
2-tori. hese modules come naturally equipped with a connection induced by the ac-
tion of the Heisenberg Lie group. his noncommutative construct played the central
role in the beginning of Connes’ noncommutative geometry [5], where the Heisen-
berg modules over quantum 2-tori and their connections were ûrst built. Rieòel [26]
then proved that these Heisenberg modules, the ûnite rank free modules, and their
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direct sums, describe all the ûnitely generated projective modules over quantum tori.
Connes and Rieòel [7] proved that the natural connections on Heisenberg modules
solve the noncommutative Yang–Mills problem. We will now prove that Heisenberg
modules are fundamental examples of metrized quantum vector bundles. Doing so
then allows us to discuss in [19] the continuity, for the modular propinquity, of family
of Heisenberg modules as the quantum 2-tori vary continuously for the propinquity.
his will be our ûrst signiûcant application of the modular propinquity. Informally,
the continuity result in [19] can be understood as a form of continuity of K-theory.
hus, this paper and [19] are two parts of the study of the metric geometry of
Heisenberg modules.
As a matter of convention throughout this paper, we will use the following

notation.

Notation 1.1 By default, the norm of a normed vector space E is denoted by ∥ ⋅ ∥E .
WhenA is a C*-algebra, the space of self-adjoint elements ofA is denoted by sa (A).
he state space of A is denoted by S (A). In this work, all C*-algebras A will always
be unital with unit 1A.

Convention 1.2 If P is some seminorm on a vector subspace D of a vector space E,
then for all x ∈ E ∖ D, we set P(x) = ∞. With this in mind, the domain D of P is
the set {x ∈ E ∶ P(x) < ∞}, with the usual convention that 0∞ = 0, while all other
operations involving∞ give∞.

Noncommutative metric geometry [6,27,29] studies noncommutative generaliza-
tions of Lipschitz algebras, deûned as follows.

Deûnition 1.3 An ordered pair (A, L) is a Leibniz quantum compact metric space
when A is a unital C*-algebra and L is a seminorm deûned on a dense Jordan-Lie
subalgebra dom (L) of the space of self-adjoint elements sa (A) of A such that
(i) {a ∈ dom (L) ∶ L(a) = 0} = R1A;
(ii) the Monge–Kantorovich metric mkL deûned on the state space S (A) of A by

setting, for any two φ,ψ ∈ S (A),
mkL(φ,ψ) = sup{∣φ(a) − ψ(a)∣ ∶ a ∈ dom (L), L(a) ⩽ 1}

metrizes the weak* topology restricted to S (A);
(iii) L is lower semi-continuous;
(iv) max{L( ab+ba2 ) , L( ab−ba2i )} ⩽ ∥a∥AL(b) + ∥b∥AL(a).

Leibniz quantum compact metric spaces, and more generally quasi-Leibniz quan-
tum compact metric spaces (a generalization we will not need in this paper), form a
categorywith the appropriate notion of Lipschitzmorphism [20], containing such im-
portant examples as quantum tori [27], Connes–Landi spheres [21], groupC*-algebras
for Hyperbolic groups and nilpotent groups [22, 28], AF algebras [11], Podlès spheres
[2], certain C*-crossed-products [1], among others. Any compactmetric space (X , d)
gives rise to the Leibniz quantum compact metric space (C(X), Lip), where C(X)
is the C*-algebra of C-valued continuous functions over X and Lip is the Lipschitz
seminorm induced by d.
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Rieòel characterized themain property of Leibniz quantum compactmetric spaces
as follows.

heorem 1.4 ([27,heorem 1.9]) Let (A, L) be a pair with a unital C*-algebraA and
a seminorm L, deûned on a dense subspace dom (L) of sa (A). he following assertions
are equivalent:
(i) the Monge–Kantorovich metric mkL deûned for any two φ, ψ ∈ S (A) by

mkL(φ,ψ) = sup{∣φ(a) − ψ(a)∣ ∶ L(a) ⩽ 1}, metrizes the weak* topology on
S (A);

(ii) the diameter diam (S (A),mkL) is ûnite, and

{a ∈ sa (A) ∶ L(a) ⩽ 1 and ∥a∥A ⩽ 1}

is norm precompact.

In [15], we extend this idea to noncommutative analogues vector bundles. Our
classical prototype of a metrized quantum vector bundle is given by the module ΓV
of continuous sections of a vector bundle V over a compact Riemannian manifold
M with metric g, endowed with a hermitian metric h and some associated metric
connection ∇. For any two ω, η ∈ ΓV , we then set ⟨ω , η⟩V ∶ x ∈ M ↦ ∫X hx(ωx , ηx)
dVol(x), where Vol is the volume form over M for g, which turns ΓV into a C(M)-
le� Hilbert module. We also deûne, for all ω ∈ M , the norm D(ω) as the operator
norm for the operator ∇ω ∶ X ∈ Γ(TM) ↦ ∇Xω ∈ ΓV , noting that the space of
vector ûelds ΓTM of M has a norm induced by the metric g. Our general deûnition
for a metrized quantum vector bundle abstracts this picture. For this paper, we will
only deal with so-called Leibniz metrized quantum vector bundles, even though our
framework in [15] is more general. his is the main deûnition for this paper.

Deûnition 1.5 ([15, Deûnition 3.8]) A 5-tuple (M , ⟨ ⋅ , ⋅ ⟩M ,D,A, L) is ametrized
quantum vector bundle when the following hold:
(i) (A, L) is a Leibniz quantum compact metric space, called the base space;
(ii) (M , ⟨ ⋅ , ⋅ ⟩M ) is a A-le� Hilbert module;
(iii) D is a norm deûned on a dense subspace of M such that D(ω) ⩾

√
⟨ω ,ω⟩M

for all ω ∈ M , and such that the set {ω ∈ M ∶ D(ω) ⩽ 1} is compact in M ;
(iv) for all a ∈ sa (A) and for all ω ∈ M , we have

D(aω) ⩽ (∥a∥A + LA(a))D(ω),

which we call the inner Leibniz inequality for D;
(v) for all ω, η ∈ M , we have

max{LA(R⟨ω , η⟩M ) , LA(I⟨ω , η⟩M )} ⩽ 2D(ω)D(η),

which we call themodular Leibniz inequality for D.

We refer the reader to [15] for a discussion of these objects, where in particular
[15, Example 3.10] shows that the prototype of a hermitian vector bundle over a
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compact Riemannianmanifold, as sketched above, is indeed an example of ametrized
quantum vector bundle. We note that Deûnition 1.5 includes a compactness condition
that mirrors the compactness condition in heorem 1.4.

Heisenberg modules, equipped with the analogue of a connection as in [5], over
quantum 2-tori, have a similar signature to a metrized quantum vector bundle. he
key diõculty is to prove that the connection can be used to deûne a D-norm, as in
Deûnition 1.5, whose unit ball is actually compact in the Hilbert modules norm of
Heisenberg modules. he main result of this paper is to prove that this is indeed the
case.

We begin our work with a presentation of Heisenberg modules, which allow us to
ûx our notations for the rest of the paper and [19]. We then prove a series of lem-
mas about convergence in the Hilbert modules norm for the Heisenberg modules; as
these norms are complicated, these lemmas will prove very helpful both in this paper
and in [19]. We prove in the process of this second section that Heisenberg mod-
ules form a continuous ûeld of Banach spaces—a result which will prove helpful in
[19] and is of independent interest. his result uses the same tools as the proof that
the action of the Heisenberg group on Heisenberg modules is strongly continuous,
which is part of the next section of this paper, where properties of the Heisenberg
group actions that we will need in our work are established. Now, with all these basic
tools in hand, we show how to use Lie group actions to deûne D-norm candidates,
which have all the desired properties of D-norms except maybe for the key com-
pactness property of their unit ball. his compactness property for the Heisenberg
modules D-norms is the subject of the last section of this paper, which concludes our
main result.

Importantly, our methods in this paper are designed not only in support of the
main theorem here, but also as key tools for the study of the continuity of the Heisen-
berg modules in [19]. For the problem of continuity, we will need not just to be able
to pick ûnite subsets of the compact unit ball of some D-norm that are ε-dense for
some ε > 0, but also to pick such a ûnite set that is uniformly ε-dense across several
Heisenberg modules as the D-norms vary. To do so, we will use the approximation
operators introduced in the last section of this paper.

2 Background on Quantum 2-tori and Heisenberg Modules

Quantum 2-tori are the twisted convolution C*-algebras of Z2. he projective ûnitely
generated modules over quantum tori have been studied extensively, and next to the
free modules, the most important class of projective, ûnitely generated modules over
a quantum torus are the Heisenberg modules. his subsection introduces these mod-
ules, as well as the notation we will use throughout this section regarding quantum
tori.

Twisted group C*-algebras are deûned by twisting the convolution product over a
locally compact group by a representative of a continuous 2-cocycle of the group.

Notation 2.1 For any θ ∈ R, we deûne the skew bicharacter of R2 to be

eθ ∶ ((x1 , y1), (x2 , y2)) ∈ R2 ×R2 z→ exp (iπθ(x2 y1 − x1 y2)) .
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By [10], any 2-cocycle ofZ2 is cohomologous to the restriction of a skewbicharacter
eθ to Z2 ×Z2 for some θ ∈ R. We shall use the same notation for eθ and its restriction
to Z2.

Moreover, for any θ ,ϑ ∈ R, the skew bicharacters eθ and eϑ of Z2 are cohomolo-
gous if and only if θ ≡ ϑ mod 1. We note that, as skew bicharacters of R2, they are
cohomologous if and only if θ = ϑ.

For our purpose, wewill use the following faithful∗-representation of the quantum
torus Aθ = C∗(Z2 , eθ), which can be taken as the deûnition of these C*-algebras.

Notation 2.2 For any (nonempty) set E and any p ∈ [1,∞), the set ℓp(E) is the
set of all absolutely p-summable complex valued functions over E, endowed with the
norm

∥ξ∥ℓp(E) = (∑
x∈E

∣ξ(x)∣p)
1
p

for all ξ ∈ ℓp(E).
We write δn for the function that is 1 at n and 0 otherwise; this function is an

element of ℓp(E) for all p.
Moreover, if p = 2, then (ℓ2(E), ∥ ⋅ ∥ℓ2(E)) is a Hilbert space, where the inner prod-

uct ⟨ξ , η⟩ℓ2(E) = ∑x∈E ξ(x)η(x) for all ξ, η ∈ ℓ2(E).

Notation 2.3 If T ∶ E → F is a continuous linear map between two normed spaces,
we write its norm as ∣∣∣T ∣∣∣EF . When E = F, we simply write ∣∣∣T ∣∣∣F .

heorem 2.4 ([31]) Let θ ∈ R. For any n ∈ Z2 and ξ ∈ ℓ2(Z2), we deûne the function

U n
θ ξ ∶ m ∈ Z2 z→ eθ(m, n)ξ(m + n).

he map n ∈ Z2 ↦ U n
θ is a unitary eθ -projective representation of Z2, i.e., U n

θ U
m
θ =

eθ(n,m)U n+m
θ for all n,m ∈ Z2.

If, for all f ∈ ℓ1(Z2), we deûne

πθ( f ) = ∑
n∈Z2

f (n)U n
θ ,

which is a bounded operator on ℓ2(Z2) with

∣∣∣πθ( f )∣∣∣ℓ2(Z2) ⩽ ∥ f ∥ℓ1(Z2) ,

then πθ is an injective continuous linear map. he closure of πθ(ℓ1(Z2)) is the quantum
2-torus Aθ (up to ∗-isomorphism).

We identify ℓ1(Z2) as a dense subspace of Aθ by identiûying any f ∈ ℓ1(Z2) with
the operator πθ( f ); it is well known that ℓ1(Z2) is in fact a dense ∗-subalgebra ofAθ .

Remark 2.5 Let θ ∈ R. We note that for all f ∈ ℓ1(Z2), we have ∥ f ∥Aθ ⩽ ∥ f ∥ℓ1(Z2),
a fact that we will use repeatedly in the next section.
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We take one derogation to the convention of using the same symbol for an element
of ℓ1(Z2) and its counterpart in a given quantum torus, because the following notation
is at once common and convenient.

Notation 2.6 Let θ ∈ R. he element πθ(δ1,0) is denoted by uθ and the element
πθ(δ0,1) is denoted by vθ when regarded as elements ofAθ .

he geometry, and in particular the metric geometry [27], of the quantum tori is
obtained by transport of structure using the dual action of the torus given as follows.
We will use the notation of this theorem throughout this manuscript.

heorem 2.7 ([31]) For all z = (z1 , z2) ∈ T2, there exists a unique ∗-automorphism
βzθ ofAθ such that, for any f ∈ ℓ1(Z2) and (n,m) ∈ Z2, we have

βzθ f (n,m) = zn
1 z

m
2 f (n,m).

hemap z ∈ T2 ↦ βzθ is a strongly continuous action ofT2 onAθ called the dual action.
Moreover, β is ergodic, in the sense that

{a ∈ Aθ ∶ ∀z ∈ T2 βz(a) = a} = C1Aθ .

We now turn to the class of modules to which we will apply our new modular
propinquity. We construct these modules following [5] using the universal property
of quantum 2-tori, which we now recall.

Proposition 2.8 ([31]) Let θ ∈ R. If U, V are two unitary operators on some Hilbert
space H such that UV = exp(2iπθ)VU for some θ ∈ [0, 1), then there exists a
∗-morphism ϖ ∶ Aθ → B(H ) such that ϖ(uθ) = U and ϖθ(vθ) = V. he range
of ϖ is C∗(U ,V).

Another way to state Proposition 2.8 is that, for any θ ∈ R, if ς is some projec-
tive representation of Z2 on some Hilbert space H for some multiplier of Z2 coho-
mologous to eθ , then H is a module over Aθ . Indeed, Proposition 2.8 gives us a
∗-morphism ϖ fromAθ to the C*-algebraB(H ) of all bounded linear operators on
H , with ϖ(uθ) = ς1,0 and ϖ(vθ) = ς0,1. hus,H is aAθ module.

With this observation inmind, we now turn to the construction of some particular
projective representations of Z2. he idea, found in [5] and explicit in [24], is to take
the tensor product of a projective representation of R2, restricted to Z2, and a ûnite
dimensional projective representation of Zq for some q ∈ N ∖ {0}. By adjusting the
choice of the multipliers associated with each projective representation, we get the
desired module structure.

Projective representations of R2 are naturally related to the representations of the
Heisenberg group, and we will make signiûcant use of this fact in our work. We thus
begin with setting our notations for the Heisenberg group.

Convention 2.9 he vector spaceCd is endowed by default with its standard inner
product ⟨(z1 , . . . , zd) , (y1 , . . . , yd)⟩Cd = ∑dj=1 z j y j , whose associated norm is denoted
by ∥ ⋅ ∥Cd .

D-norms on Heisenberg Modules 1049

https://doi.org/10.4153/S0008414X19000166 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000166


Notation 2.10 heHeisenberg group is the Lie group given by

H3 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 x u
0 1 y
0 0 1

⎞
⎟
⎠
∶ x , y, u ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We will identifyH3 with R3 via the natural map

(x , y, u) ∈ R3 z→
⎛
⎜
⎝

1 x u
0 1 y
0 0 1

⎞
⎟
⎠
,

which is a Lie group isomorphism once we equip R3 with the multiplication

(x1 , y1 , u1)(x2 , y2 , u2) = (x1 + x2 , y1 + y2 , u1 + u2 + x1 y2)
for all (x1 , y1 , u1), (x2 , y2 , u2) ∈ R3.

he importance of theHeisenberg group for quantummechanics [8] can be gleaned
by looking at its Lie algebra, which is given by

h =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 x u
0 0 y
0 0 0

⎞
⎟
⎠
∶ x , y, u ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

which is a 2-nilpotent Lie algebra. We easily compute that for all x , y, u ∈ R3,

exp
⎛
⎜
⎝

0 x u
0 0 y
0 0 0

⎞
⎟
⎠
=
⎛
⎜
⎝

1 x u + 1
2 xy

0 1 y
0 0 1

⎞
⎟
⎠
.

his expression for the exponential will be important for our construction. Note that
the exponential map is both injective and surjective.

We now set

P =
⎛
⎜
⎝

0 1 0
0 0 0
0 0 0

⎞
⎟
⎠
, Q =

⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠

and T =
⎛
⎜
⎝

0 0 1
0 0 0
0 0 0

⎞
⎟
⎠
.

We easily check that [P,Q] = T = −[Q , P], while other other commutators between
P, Q, and T are null, and spanC{P,Q , T} = h.

We note that in particular, T is central, and thus the relations deûning h from
the basis {P,Q , T} are the structural equations of quantummechanics, the canonical
commutation relation, as proposed byHeisenberg, in order to express the uncertainty
principle between two conjugate observables. We refer the reader to [8] for a detailed
analysis of the Heisenberg group and its connections to the Moyal product, pseudo-
diòerential calculus, and more fascinating topics.

hus, the study of the irreducible representations of H3 provide the irreducible
representations of the canonical commutation relations. We ûrst note that

H3 /{(0, 0, u) ∶ u ∈ R} = R2

is Abelian, and thus we get a collection of trivial, one-dimensional representations of
H3 by simply li�ing the irreducible representations of R2.
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For any ð ∈ R ∖ {0} and ξ ∈ L2(R), if we set

(2.1) αx ,y ,uð ,1 ξ ∶ s ∈ Rz→ exp (2iπ(ðu + sx)) ξ(s + ðy),
then we deûne a unitary representation ofH3, and any nontrivial irreducible unitary
representations of the Heisenberg group is unitarily equivalent to αð ,1 for some ð /= 0
[8]. We note that they all are inûnite dimensional (the other, trivial, unitary represen-
tations ofH3 are one-dimensional).

Let ð ∈ R ∖ {0}. For all (x , y) ∈ R2 and for all ξ ∈ L2(R), set

σ x ,y
ð ,1 ξ = α

expH3
(xP+yQ)

ð ,1 ξ

= αx ,y ,
x y
2

ð ,1 ξ ∶ s ∈ R↦ exp(iπðxy + 2iπsx)ξ(s + ðy).

he map σ x ,y
ð ,1 is a unitary on L2(R) for all (x , y) ∈ R2. Moreover, for all (x1 , y1),

(x2 , y2) ∈ R2, we note that

σ x1 ,y1
ð ,1 σ x2 ,y2

ð ,1 = eð((x1 , y1), (x2 , y2))σ x1+x2 ,y1+y2
ð ,1 ,

i.e., σð ,1 is a projective representation of R2 on L2(R) for the bicharacter eð , namely
the Schrödinger representation of “Plank constant” ð. Moreover, every nontrivial ir-
reducible unitary projective representation of R2 is unitarily equivalent to one of σð ,1
for some ð /= 0 (by nontrivial, we mean associated with a nontrivial cocycle).

We introduce onemore notation thatwill prove very useful in deûning ourD-norm
onHeisenbergmodules. If d ∈ Nwith d > 0, we deûne the following unitary operators
on L2(R) ⊗Cd :

αx ,y ,uð ,d = αx ,y ,uð ,1 ⊗ id and σ x ,y
ð ,d = σ x ,y

ð ,1 ⊗ id

for all x , y, u ∈ R, where id is the identity map on Cd . We trivially check that αð ,d is
a unitary representation ofH3 on L2(R)⊗Cd , while σð ,d is a eð-projective represen-
tation of R2 on L2(R) ⊗Cd . Moreover, we also check immediately that αx ,y ,0ð ,d = σ x ,y

ð ,d
for all x , y ∈ R.

We now turn to the projective representations of Z2
q , where q ∈ N ∖ {0}. We ûrst

note that, for any p ∈ Z, the skew bicharacter e p
q
of Z2 induces a skew bicharacter of

Z2
q , which we keep denoting by e p

q
. By [10], any multiplier of Z2

q is cohomologous to
e p

q
for some p ∈ N.
For our purpose, we will thus get, up to unitary equivalence, every possible û-

nite dimensional unitary projective representations of the groups Z2
q for arbitrary

q ∈ N ∖ {0} by considering the following family.

Notation 2.11 Let p ∈ Z and q ∈ N ∖ {0}. Let n ∈ Z ↦ [n] ∈ Zq be the canonical
surjection. Let

up ,q =

⎛
⎜⎜⎜⎜⎜
⎝

1
z

z2

⋱
zq−1

⎞
⎟⎟⎟⎟⎟
⎠

and vp ,q =

⎛
⎜⎜⎜⎜⎜
⎝

0 1
1 0

⋱
⋱

1 0

⎞
⎟⎟⎟⎟⎟
⎠

,
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with z = exp ( 2iπ p
q ) . Since uq

p ,q = vq
p ,q = 1, the map

ρp ,q ,1 ∶ (z,w) ∈ Z2
q z→ ρz ,wp ,q ,1 = exp ( iπpnm

q
)un

p ,qv
m
p ,q ,

where [n] = z and [m] = w is well deûned. An easy computation shows that ρp ,q ,1 is
a projective representation of Z2

q .
For all d ∈ qN, d > 0, we now set

ρn ,m
p ,q ,d = ρn ,m

p ,q ,1 ⊗ id d
q
,

where id d
q
is the identity map on C

d
q .

We remark that ρp ,q ,d acts on Cd , i.e., we parametrized ρ by the dimension of
the space on which it acts rather than the multiplicity of ρp ,q ,1, as it will make our
notations much simpler.

If p and q are relatively prime, the representation ρp ,q ,1 is irreducible, with range
the entire algebra of q×q matrices; it is in fact, the only irreducible e p

q
-projective rep-

resentation of Z2
q up to unitary equivalence. hus, in general, any ûnite dimensional

unitary representation of Z2
q is unitarily equivalent to some ρ l ,r ,d for some l ∈ Z,

r ∈ N ∖ {0}, d ∈ rN ∖ {0}, with l = 0 and r = 1 or l , r relatively prime.

In order to construct the inner product on the Heisenberg modules, we will need
to ûrst work on a space of well-behaved functions inside the Hilbert space ℓ2(Z2) on
which quantum tori will act. his space will consist of the Schwartz functions.

Deûnition 2.12 Let E be a ûnite dimensional vector space. A function f ∶ R→ E is
a E-valued Schwartz function over R when it is inûnitely diòerentiable on R and, for
all j ∈ N and all polynomial p ∈ R[X], we have

lim
t→±∞

∥p(t) f ( j)(t)∥ E = 0.

he space of all E-valued Schwartz functions over R is denoted by S(E).

We note that if f ∈ S(E) for some ûnite dimensional space E, then in particular,
f ∈ Lp(R) for all p ∈ [1,∞], since for any j ∈ N, there exists M > 0 such that
∥ f (s)∥E ⩽ M

1+∣s∣ j for all s ∈ R.
We now implement the scheme that we described a few paragraphs above to con-

struct modules over quantum tori. We refer to the mentioned works of Connes and
Rieòel for the details and justiûcation behind the following construction.

heorem 2.13 ( [5, 7, 23] ) Let θ ∈ R and q ∈ N ∖ {0}. Let p ∈ Z, q ∈ N ∖ {0} , and
let d ∈ qN ∖ {0}. he Heisenberg module H

p ,q ,d
θ is the module over Aθ deûned as

follows.
Let ρp ,q ,d be the projective action of Z2

q with cocycle e p
q
, consisting of the sum of dq

copies of the unique, up to unitary equivalence, irreducible representation with the same
cocycle. Up to unitary conjugation, we assume that ρp ,q ,d acts on Cd .
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Let
ð = θ − p

q
.

Let αð ,1 be the action of the Heisenberg groupH3 on L2(R) given by expression (2.1).
For (n,m) ∈ Z2, denoting the class of n and m in Z/qZ , respectively, by [n] and

[m], we set
ϖn ,m

p ,q ,d ,ð = σ n ,m
ð ,1 ⊗ ρ[n],[m]

p ,q ,d .

For all n,m ∈ Z, the map ϖn ,m
p ,q ,d ,ð is a unitary of L2(R)⊗Cd , and moreover ϖp ,q ,d ,ð

is an eθ -projective representation of Z2.
By universality, theHilbert space L2(R)⊗Cd is amodule overAθ , with, in particular,

for all f ∈ ℓ1(Z2) and ξ ∈ L2(R,Cd) = L2(R) ⊗Cd ,
f ξ = ∑

n ,m∈Z
f (n,m)ϖn ,m

p ,q ,d ,ð ξ.

Let S
p ,q ,d
θ = S(Cd) ⊆ L2(R) ⊗ Cd . For all ξ,ω ∈ S

p ,q ,d
θ , deûne ⟨ξ ,ω⟩

H
p,q ,d

θ
as

the function in ℓ1(Z2) given by
⟨ξ ,ω⟩

H
p,q ,d

θ
∶ (n,m) ∈ Z2 z→ ⟨ϖn ,m

p ,q ,d ,ð ξ ,ω⟩L2(R)⊗E .

heHeisenberg moduleH
p ,q ,d

θ is the completion ofS p ,q ,d
θ for the norm associated

with theAθ -inner product ⟨ ⋅ , ⋅ ⟩H p,q ,d
θ

.

We note that S p ,q ,d
θ is not closed under the action ofAθ , but it is closed under the

action of the subalgebra

{ f ∈ ℓ1(Z2) ∶ ∀p ∈ R[X ,Y] lim
n ,m→±∞

p(n,m) f (n,m) = 0}

ofAθ , o�en referred to as the smooth quantum torus. Wewill not use this observation
later on, though it is notable that the completion ofS p ,q ,d

θ is indeed aAθ-module.
We conclude this section by introducing a simpler notation for the Heisenberg

modules.

Notation 2.14 Let

Ξ = {(p, q, d) ∶ q ∈ N ∖ {0}, p ∈ Z, d ∈ qN ∖ {0}} .

For any d = (p, q, d) ∈ Ξ and θ ∈ R ∖ Q, we denote H
p ,q ,d

θ simply as H d
θ . More-

over, we denote the representations ρp ,q ,d , ϖp ,q ,d ,ð simply by ρd andϖd,ð , respectively.
Similarly, the spaceS

p ,q ,d
θ is simply denoted by S d

θ .

3 A Continuous Fields of C∗-Hilbert Norms

All Heisenberg modules are completions of S(Cd) for some d ∈ N, d > 0. For a ûxed
d ∈ Ξ, it thus becomes possible to ask whether the various C∗-Hilbert norms ∥ ⋅ ∥H d

θ
,

as θ varies in R, form a continuous family.
To this end, we establish a succession of lemmas whose primary goal is to provide

us with estimates on theHeisenbergmodules’C∗-Hilbert norms in terms of the norm
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of ℓ1(Z2). While theHeisenbergmodules’C∗-Hilbert norms are in general delicate to
work with, as they involve the no-less abstract quantum tori norms, the ℓ1(Z2) norm,
which dominates all of the quantum tori norms, is muchmore amenable to computa-
tions. For our purpose, we will take full advantage of the regularity of Schwartz func-
tions, which will enable us to apply various analytic tools to derive our desired result.

he ûrst step is a lemma that provides a ûrst upper bound to the ℓ1(Z2) norm of
the diòerence between certain Heisenberg module inner products.

Lemma 3.1 If θ ,ϑ ∈ R and d = (p, q, d) ∈ Ξ, and if ω, η and ξ are C2 functions from
R to Cd such that for all f ∈ {ω, η, ξ},
(i) each of f , f ′, and f ′′ is integrable on R and
(ii) limt→±∞ f (t) = limt→±∞ f ′(t) = limt→±∞ f ′′(t) = 0,
then, writing ðθ = θ − p

q and ðϑ = ϑ − p
q , we have

∥⟨ω , η⟩H d
θ
− ⟨ξ , η⟩H d

ϑ
∥
ℓ1(Z2)

⩽ ∑
n∈Z

1
4π2n2 (∫

R
∑
m∈Z

∥ω′′(t + ðθm) − ξ′′(t + ðϑm)∥Cd ∥η(t)∥Cd dt

+ 2∫
R
∑
m∈Z

∥ω′(t + ðθm) − ξ′(t + ðϑm)∥Cd ∥η
′(t)∥Cd dt

+ ∫
R
∑
m∈Z

∥ω(t + ðθm) − ξ(t + ðϑm)∥Cd ∥η
′′(t)∥Cd dt) .

Proof We begin with the observation that for all (n,m) ∈ Z2, we have

⟨ω , η⟩H d
θ
(n,m) − ⟨ξ , η⟩H d

ϑ
(n,m)

= ∫
R
⟨ρ[n],[m]

d ω(t + ðθm) , η(t)⟩Cd exp(2iπnt) dt

− ∫
R
⟨ρ[n],[m]

d ξ(t + ðϑm) , η(t)⟩Cd exp(2iπnt) dt

= ∫
R
⟨ρ[n],[m]

d (ω(t + ðθm) − ξ(t + ðϑm)) , η(t)⟩Cd exp(2iπnt) dt.

For all n,m ∈ Z, the function
fn ,m ∶ t z→ ⟨ρ[n],[m]

d ω(t + ðθm) − ξ(t + ðϑm) , η(t)⟩Cd
has a ûrst and continuous second derivative that are integrable, and

lim
t→±∞

fn ,m(t) = lim
t→±∞

f ′n ,m(t) = lim
t→±∞

f ′′n ,m(t) = 0.

Consequently, we may apply integration by parts and obtain, for all m, n ∈ Z,

∫
R
⟨ρ[n],[m]

d ω(t + ðθm) − ξ(t + ðϑm) , η(t)⟩Cd exp(2iπnt) dt

= ∫
R
fn ,m(t) exp(2iπnt) dt = −∫

R
f ′n ,m(t)exp(2iπnt)

2iπn
dt

= ∫
R
f ′′n ,m(t)exp(2iπnt)

4π2n2 dt.
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We compute trivially that for all t ∈ R and m, n ∈ Z,

f ′′n ,m(t) = ⟨ρ[n],[m]

d (ω′′(t + ðθm) − ξ′′(t + ðϑm)) , η(t)⟩Cd
+ 2⟨ρ[n],[m]

d (ω′(t + ðθm) − ξ′(t + ðϑm)) , η′(t)⟩Cd
+ ⟨ρ[n],[m]

d (ω(t + ðθm) − ξ(t + ðϑm)) , η′′(t)⟩Cd .

hus, using Cauchy–Schwartz and since ρ[n],[m]

d is unitary, we conclude that

∥⟨ω , η⟩
H d

θ
− ⟨ξ , η⟩H d

ϑ
∥
ℓ1(Z2)

= ∑
n ,m∈Z

∣∫
R
⟨ρ[n],[m]

d (ω(t + ðθm) − ξ(t + ðϑm)) , η(t)⟩Cd exp(2iπnt) dt∣

⩽ ∑
m ,n∈Z

∫
R

∣ f ′′n ,m(t)∣
4π2n2 dt

⩽ ∑
m ,n∈Z

1
4π2n2 (∫R ∥ω′′(t + ðθm) − ξ′′(t + ðϑm)∥Cd ∥η(t)∥Cd dt

+ 2∫
R
∥ω′(t + ðθm) − ξ′(t + ðϑm)∥Cd ∥η′(t)∥Cd dt

+ ∫
R
∥ω(t + ðθm) − ξ(t + ðϑm)∥Cd ∥η′′(t)∥Cd dt)

= ∑
n∈N

1
4π2n2 [ ∫R ( ∑

m∈N
∥ω′′(t + ðθm) − ξ′′(t + ðϑm)∥Cd)∥η(t)∥Cd dt

+ 2∫
R
( ∑

m∈N
∥ω′(t + ðθm) − ξ′(t + ðϑm)∥Cd)∥η′(t)∥Cd dt

+ ∫
R
( ∑

m∈N
∥ω(t + ðθm) − ξ(t + ðϑm)∥Cd)∥η′′(t)∥Cd dt]

by Tonelli’s theorem.

his concludes our lemma. ∎

Our next lemma focuses on the type of estimates given in Lemma 3.1, and gives a
suõcient condition for these upper bounds to converge to 0 when various parameters
are allowed to converge to appropriate values.

Lemma 3.2 Let d ∈ N, d > 0. Let N = N ∪ {∞} be the one point compactiûcation
of N.

If (ωk)k∈N and (ηk)k∈N are two families of C2-functions from R to Cd and (ðk)k∈N
is a sequence of nonzero real numbers converging to some ð∞ /= 0 such that
(i) (t, k) ∈ R ×N↦ ωk(t) and (t, k) ∈ R ×N↦ ηk(t) are jointly continuous,
(ii) there exists M > 0 such that for all k ∈ N and t ∈ R,

max{∥ωk(t)∥Cd , ∥ηk(t)∥Cd} ⩽ M
1 + t2

,
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then

(3.1) lim
k→∞

∑
n∈N

1
4π2n2 ∫R ∑m∈Z

∥ωk(t + ðkm) − ω∞(t + ð∞m)∥Cd ∥ηk(t)∥Cd dt = 0.

Proof First, we observe that expression (3.1) is le� unchanged if we replace ðk with
−ðk for all k ∈ N, thanks to the summation over m ∈ Z. Consequently, we can assume
without loss of generality that ð∞ > 0 and assume that ðk > 0 for all k ∈ N (since
(ðk)k∈N converges to ð∞ /= 0, we must have that ðk and ð∞ have the same sign for k
larger than some K ∈ N; we can thus truncate our sequence to start at K and �ip all
the signs if necessary to work with positive values).

With this in mind, since (ðk)k∈N is positive and converges to ð∞ > 0, there exists
0 < ð− < ð+ such that for all k ∈ N, we have ðk ∈ [ð− , ð+].

We shall employ the Lebesgue dominated convergence theorem. To this end, we
introduce the following function to serve as our upper bound. For all t,m ∈ R, we set

(3.2) b(t,m) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M
1+(t+mð−)2

if m > 0 and t ⩾ −ð−m,
or if m < 0 and t ⩽ −ð−m,

M otherwise.

For a ûxed t ∈ R, we note that

b(t,m) ∼m→±∞
M
ð2−m2 ,

so ∑m∈Z b(t,m) < ∞. Moreover, by construction, for all t,m ∈ R and ð ∈ [ð− , ð+],
we have

M
1 + (t + ðm)2 ⩽ b(t,m).

herefore, using our hypothesis, for all t ∈ R, m ∈ Z, k ∈ N, and ð ∈ [ð− , ð+],

∥ωk(t +mð) − ω∞(t +mð∞)∥Cd ⩽
M

1 + (t +mð)2 +
M

1 + (t +mð∞)2

⩽ 2b(t,m).

hus, for a ûxed t ∈ R, we can apply the Lebesgue dominated convergence theorem
to conclude that

(3.3) lim
k→∞

∑
m∈Z

∥ωk(t +mðk) − ω∞(t +mð∞)∥Cd = 0,

since (t, k) ∈ R ×N↦ ωk(t) is jointly continuous.
We now make another observation. For any ûxed ð > 0 and k ∈ N, the function

t ∈ R↦ ∑
m∈Z

∥ωk(t + ðm)∥Cd

is ð-periodic.
If t ∈ [0, ð+], k ∈ N and ð ∈ [ð− , ð+], then since

∥ωk(t + ðm)∥Cd ⩽ sup
x∈[0,ð+]

b(x ,m),
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while, as can easily be checked,

sup
x∈[0,ð+]

b(x ,m) ∼m→±∞
M
ð2−m2 ,

we conclude that the series

((t, k, ð) ∈ R ×N × [ð− , ð+] z→∑∥ωk(t + ðm)∥Cd )m∈Z

converges uniformly to its limit on [0, ð+] ×N × [ð− , ð+]. In particular,

(t, k, ð) ∈ [0, ð+] ×N × [ð− , ð+] z→ ∑
m∈Z

∥ωk(t + ðm)∥Cd

is continuous on a compact domain, and so it is bounded. Let C > 0 such that for all
(t, k, ð) ∈ [0, ð+] ×N × [ð− , ð+], we have

∑
m∈Z

∥ωk(t + ðm)∥Cd ⩽ C .

We conclude that t ↦ ∑m∈Z ∥ωk(t − ðkm)∥Cd is bounded by C onR, since it is an
ðk-periodic function with ðk ⩽ ð+ for all k ∈ N.

We thus have that for all t ∈ R and k ∈ N,
∑
m∈Z

∥ωk(t +mðk) − ω∞(t +mð∞)∥Cd ∥ηk(t)∥Cd ⩽ 2C∥ηk(t)∥Cd

⩽ 2CM
1 + t2

.

(3.4)

Now, t ∈ R↦ 2CM
1+t2 is integrable overR. Once again, we apply the Lebesgue dominated

convergence theorem, and we conclude from expression (3.3) that

(3.5) lim
k→∞
∫
R
∑
m∈Z

∥ωk(t +mðk) − ω∞(t +mð∞)∥Cd ∥ηk(t)∥Cd dt = 0.

Last, using inequality (3.4) again, we note that for all k ∈ N,

∫
R
∑
m∈Z

∥ωk(t +mðk) − ω∞(t +mð∞)∥Cd ∥ηk(t)∥Cd dt ⩽ ∫
R

2CM
1 + t2

dt = 2CMπ,

and thus for all n ∈ Z and k ∈ N,
1

4π2n2 ∫R ∑m∈Z
∥ω(t +mðk) − ω(t +mð∞)∥Cd ∥η(t)∥Cd dt ⩽

2CMπ
4π2n2 = CM

2πn2 ,

with∑n∈Z
CM
2πn2 < ∞; hence, we can apply the Lebesgue dominated convergence the-

orem once more to conclude from expression (3.5) that

lim
k→∞
∑
n∈Z

1
4π2n2 ∫R ∑m∈Z

∥ωk(t +mðk) − ω∞(t +mð∞)∥Cd ∥ηk(t)∥Cd dt = 0.

his concludes our lemma. ∎

Remark 3.3 One can check that Lemmas 3.1 and 3.2 together prove that if
d = (p, q, d) ∈ Ξ, if ξ,ω ∈ S(Cd), and if θ ∈ R ∖ { p

q } , then ⟨ξ ,ω⟩
H d

θ
∈ ℓ1(Z2). It is a

well-known fact (indeed a basic fact for the very construction ofHeisenbergmodules)
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though maybe not apparent from heorem 2.13 without consulting such sources
as [23].

We now bring together Lemmas 3.1 and 3.2 to obtain a ûrst result of continuity
on the Heisenberg module inner products, albeit using the ℓ1(Z2) norm. his is the
core result of this section, and it is phrased at a somewhat higher level of generality
that what is needed for the proof of continuity of the family of Heisenberg C∗-Hilbert
norms. Indeed, this level of generality will prove useful twice later in this paper: when
proving that the Heisenberg group representations αð ,d deûne strongly continuous ac-
tions on Heisenberg modules, and when establishing that our prospective D-norms
on Heisenberg modules will also form a continuous family of norms in [19].

Lemma 3.4 Let d = (p, q, d) ∈ Ξ. If (ξk)k∈N is a family of Cd -valued C2-functions
over R such that
(i) there exists M > 0 such that for all k ∈ N and t ∈ R,

max{∥ξk(t)∥Cd , ∥ξ′k(t)∥Cd , ∥ξ′′k (t)∥Cd} ⩽ M
1 + t2

;

(ii) (t, k) ∈ R ×N↦ ξk(t) is continuous,
and if (θk)k∈N is a sequence converging to θ∞ such that θk − p

q /= 0 for all k ∈ N, then
we have

lim
k→∞

∥⟨ξk , ξk⟩H d
θk

− ⟨ξ∞ , ξ∞⟩
H d

θ∞
∥
ℓ1(Z2)

= 0.

Proof To ûx notation, for all k ∈ N, we set ðk = θk − p
q . Note that (ðk)k∈N is a

sequence of nonzero real numbers converging to ð∞ /= 0.
We will prove our result from the following inequality:

∥⟨ξk , ξk⟩H d
θk

− ⟨ξ∞ , ξ∞⟩H d
θ∞

∥
ℓ1(Z2)

(3.6)

⩽ ∥⟨ξk , ξk⟩H d
θk
− ⟨ξk , ξ∞⟩H d

θ∞
∥
ℓ1(Z2)

+ ∥⟨ξk , ξ∞⟩H d
θ∞

− ⟨ξ∞ , ξ∞⟩H d
θ∞

∥
ℓ1(Z2)

.

We begin with the ûrst term of the right-hand side of inequality (3.6). We observe
that

∥⟨ξk , ξk⟩H d
θk
− ⟨ξk , ξ∞⟩H d

θ∞
∥
ℓ1(Z2)

= ∥⟨ξk , ξk⟩H d
θk
− ⟨ξ∞ , ξk⟩H d

θ∞
∥
ℓ1(Z2)

.

By Lemma 3.1, we then have for all k ∈ N,
∥⟨ξk , ξk⟩H md

θk
− ⟨ξ∞ , ξk⟩H d

θ∞
∥
ℓ1(Z2)

(3.7)

⩽ ∑
n∈Z

1
4π2n2 (∫R ∑m∈Z

∥ξ′′k (t + ðkm) − ξ′′∞(t + ð∞m)∥Cd ∥ξk(t)∥Cd dt

+ 2∫
R
∑
m∈Z

∥ξ′k(t + ðkm) − ξ′∞(t + ð∞m)∥Cd ∥ξ
′
k(t)∥Cd dt

+ ∫
R
∑
m∈Z

∥ξk(t + ðkm) − ξ∞(t + ð∞m)∥Cd ∥ξ
′′
k (t)∥Cd dt) .
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Our assumptions allow us to apply Lemma 3.2 to each term in the right-hand side
of inequality (3.7) to conclude that

lim
k→∞

∥⟨ξk , ξk⟩H d
θk
− ⟨ξk , ξ∞⟩H d

θ∞
∥
ℓ1(Z2)

= 0.

We handle the second termof inequality (3.6) in a similarmanner. From inequality
(3.6), our lemma is proved. ∎

We now conclude this section with the proof that indeed, Heisenberg C∗-Hilbert
norms form continuous families of norms for a ûxed projective representation of
some Z2

q .

Proposition 3.5 Let d = (p, q, d) ∈ Ξ. Let (ξ)k∈N be a family in S(Cd) such that
(k, t) ∈ N × R ↦ ξk(t) is (jointly) continuous and there exists M > 0 such that
∥ξ(s)k (t)∥Cd ⩽ M

1+t2 for all k ∈ N, t ∈ R and s ∈ {0, 1, 2}.
If (θk)k∈N is a sequence inR converging to θ∞ and such that θk − p

q = 0 for all k ∈ N,
then

lim
k→∞

∥ξk∥H d
θk
= ∥ξ∞∥H d

θ∞
.

Proof For each k ∈ N ∪ {∞}, we set ðk = θk − p
q /= 0.

We ûrst compute

∣∥ξk∥2
H d

θk

− ∥ξ∞∥2
H d

θ∞
∣(3.8)

= ∣∥⟨ξk , ξk⟩H d
θk
∥
Aθk

− ∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθ∞

∣

⩽ ∣∥⟨ξk , ξk⟩H d
θk
∥
Aθk

− ∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθk

∣

+ ∣∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθk

− ∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθ∞

∣

⩽ ∥⟨ξk , ξk⟩H d
θk
− ⟨ξ∞ , ξ∞⟩H d

θ∞
∥
Aθk

+ ∣∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθk

− ∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθ∞

∣

⩽ ∥⟨ξk , ξk⟩H d
θk
− ⟨ξ∞ , ξ∞⟩H d

θ∞
∥
ℓ1(Z2)

+ ∣∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθk

− ∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθ∞

∣ .

We now apply Lemma 3.4 to conclude that

lim
k→∞

∥⟨ξk , ξk⟩H d
θk
− ⟨ξ∞ , ξ∞⟩H d

θ∞
∥
ℓ1(Z2)

= 0.

Now, for any f ∈ ℓ1(Z2), the function θ ∈ R↦ ∥ f ∥Aθ is continuous by [25, Corol-
lary 2.7]. Hence, using Remark 3.3,

lim
k→∞

∣∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθk

− ∥⟨ξ∞ , ξ∞⟩H d
θ∞

∥
Aθ∞

∣ = 0.
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hus, we conclude from inequality (3.8) that

lim
k→∞

∥ξk∥2
H d

θk

= ∥ξ∞∥2
H d

θ∞

which, by continuity of the square root, proves our lemma. ∎

Corollary 3.6 Let d = (p, q, d) ∈ Ξ. Let ξ ∈ S(Cd). If (θk)k∈N is a sequence in R
converging to θ∞ and such that θk − p

q = 0 for all k ∈ N, then

lim
k→∞

∥ξ∥H d
θk
= ∥ξ∥H d

θ∞
.

Proof We apply Proposition 3.5 to the family k ∈ N ↦ ξ. We note that since ξ is a
Schwartz function, our assumptions are met. ∎

4 The Action of the Heisenberg Group on Heisenberg Modules

Our goal in this paper is to prove that Heisenberg modules can be endowed with a
metrized quantum vector bundle structure over quantum 2-tori using a D-norm built
from a Lie group action and inspired by the construction of [27], albeit involving
a projective action of a locally compact group, which will not act via isometries of
the D-norm. hese changes will introduce new diõculties that we will handle in the
next few sections. As a ûrst step, we study the actions of the Heisenberg group on
Heisenberg modules.

One motivation for the results in this section is to establish the properties which
will meet the hypothesis of the main results in our next section, from which our
D-norm will emerge. We also note that the actions αð ,d , for all ð ∈ R ∖ {0} and
d ∈ N∖{0}, is a strongly continuous action by isometries of L2(R)⊗Cd , but we need
these results to be proved for the Heisenberg C∗-Hilbert norms, which dominate the
norm of L2(R) ⊗Cd .

We shall use the same hypotheses for a series of lemmas and our main deûnition
in this section, and thus we group them in the following hypothesis.

Hypothesis 4.1 Let d = (p, q, d) ∈ Ξ. Let θ ∈ R ∖ { p
q }. We write ð = θ − p

q .
We will employ the notation of heorem 2.13 and of Notation 2.14. We also recall

that the dual action of T2 on Aθ is denoted by βθ , as in heorem 2.7.

We begin with two lemmas that will prove that H3 acts via isometries of the norm
of the Heisenberg modules on the subspace of Schwartz functions — where we have
an explicit formula for our inner product — and thus can indeed be extended to the
entire module.

Lemma 4.2 We assume Hypothesis 4.1. For all (x , y, u) ∈ H3, if z1 = exp(2iπðy)
and z2 = exp(−2iπðx), and if ξ,ω ∈ S d

θ , then

⟨αx ,y ,uð ,d (ξ) , αx ,y ,uð ,d (ω)⟩
H d

θ
= βz1 ,z2θ (⟨ξ ,ω⟩H d

θ
) .
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Proof Let n,m ∈ Z. We compute

⟨αx ,y ,uð ,d (ξ) , αx ,y ,uð ,d (ω)⟩
H d

θ
(n,m)

= ⟨ϖn ,m
d,ð α

x ,y ,u
ð ,d ξ , αx ,y ,uð ,d ω⟩

L2(R)⊗Cd

= ⟨(σ n ,m
ð ,1 α

x ,y ,u
ð ,1 ⊗ ρ[n],[m]

d ) ξ , αx ,y ,uð ,d ω⟩
L2(R)⊗Cd

= ⟨(α(x ,y ,u)
−1

ð ,1 αn ,m , nm
2

ð ,1 αx ,y ,uð ,1 ⊗ ρ[n],[m]

d ) ξ ,ω⟩
L2(R)⊗Cd

= ⟨exp(2iπð(yn − xm))(σ n ,m
ð ,1 ⊗ ρ[n],[m]

d ) ξ ,ω⟩
L2(R)⊗Cd

= zn
1 z

m
2 ⟨ϖn ,m

d,ð ξ ,ω⟩
L2(R)⊗Cd .

herefore, by deûnition of the dual action β,

⟨αx ,y ,uð ,d (ξ) , αx ,y ,uð ,d (ω)⟩
H d

θ
= βz1 ,z2θ (⟨ξ ,ω⟩H d

θ
) ,

as desired. ∎

To ease our notation in this section, we set the following notation.

Notation 4.3 For all (x , y) ∈ R2 and ð > 0, we deûne

υð(x , y) = (exp(2iπðy), exp(−2iπðx)) ∈ T2 .

We now show that the Heisenberg group acts by isometries for the C∗-Hilbert
norm.

Lemma 4.4 We assume Hypothesis 4.1. For all (x , y, u) ∈ H3, the map αx ,y ,uð ,d is an
isometry of (H d

θ , ∥ ⋅ ∥H d
θ
).

Proof Let (x , y, u) ∈ H3 and ξ ∈ S d
θ . We compute

∥αx ,y ,uð ξ∥2
H d

θ
= ∥⟨αx ,y ,uð ,d ξ , αx ,y ,uð ,d ξ⟩

H d
θ
∥
Aθ

= ∥βυr(x ,y)
θ ⟨ξ , ξ⟩H d

θ
∥
Aθ

by Lemma 4.2,

= ∥⟨ξ , ξ⟩H d
θ
∥
Aθ

= ∥ξ∥2
H d

θ
.

his completes our proof. ∎

Notation 4.5 We use the notation of Hypothesis 4.1. he action αð ,d ofH3 on S d
θ

can thus be extended toH d
θ by extending by continuity αx ,y ,uð ,d for all (x , y, u) ∈ H3; we

shall keep the notation of this extension as αð ,d . We note that it also acts via isometry
on (H d

θ , ∥ ⋅ ∥H d
θ
).

We also use the same notation for σð ,d extended to (H d
θ , ∥ ⋅ ∥H d

θ
).

he actions of theHeisenberg group onHeisenbergmodules is bymorphismmod-
ules, in the sense of [15, Deûnition 3.5]. his result will play a role in the proof that
our D-norm satisûes the modular version of the Leibniz inequality.
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Lemma 4.6 We assume Hypothesis 4.1. For all a ∈ Aθ , ξ ∈ H d
θ and (x , y, u) ∈ H3,

αx ,y ,uð ,d (aξ) = βυð(x ,y)θ (a)αx ,y ,uð ,d (ξ).

Proof Let n,m ∈ Z and ξ ∈ S d
θ and fm ,m ∈ ℓ1(Z2) be deûned by

fn ,m ∶ (z,w) ∈ Z2 z→
⎧⎪⎪⎨⎪⎪⎩

1 if n = z and m = w,
0 otherwise.

We compute

αx ,y ,uð ,d ( fn ,m ξ) = αx ,y ,uð ,d ϖn ,m
d,ð ξ

= (αx ,y ,uð ,d αn ,m , nm
2

ð ,d ⊗ ρ[n],[m]

d ) ξ

= exp (2iπð(yn − xm))(αn ,m , nm
2

ð ,d αx ,y ,uð ,d ⊗ ρ[n],[m]

p ,q ,ð ,d ) ξ

= exp (2iπð(yn − xm))ϖn ,m
d,ð α

x ,y ,u
ð ,d ξ

= βυð(x ,y)θ ( fn ,m)αx ,y ,uð ,d ξ.

Since βθ is an action by ∗-morphisms, we conclude that for all a ∈ Aθ

(4.1) αx ,y ,uð ,d (aξ) = βυð(x ,y)θ (a)αx ,y ,uð ,d (ξ),

as desired. he lemma is concluded by extending equality (4.1) toH d
θ by continuity.∎

An important corollary of Lemma 4.6 is as follows.

Corollary 4.7 We assumeHypothesis 4.1. For all a ∈ Aθ , ξ ∈ H d
θ and (x , y, u) ∈ H3,

we observe that
∥αx ,y ,uð ,d (aξ)∥

H d
θ
⩽ ∥a∥Aθ ∥ξ∥H d

θ
.

Proof Let a ∈ Aθ , ξ ∈ H d
θ and (x , y, u) ∈ H3. We compute

∥αx ,y ,uð ,d (aξ)∥
H d

θ
= ∥βυð(x ,y)θ (a)αx ,y ,uð ,d ξ∥

H d
θ

by Lemma 4.6,

⩽ ∥βυð(x ,y)θ a∥Aθ ∥ξ∥H d
θ

by Lemma 4.4.

his completes our proof. ∎

We have checked that the actions of the Heisenberg group on Heisenberg mod-
ules, which the latter were constructed from, act by isometric module morphisms on
the entire module. Note that we already observed that Heisenberg modules can be
regarded as dense subspaces of L2(R) ⊗ Cd spaces on which the same action of the
Heisenberg group is deûned, strongly continuous and isometric; however, we needed
to ensure that these actions are well-behaved with respect to the inner product and
norm of the Heisenberg modules.

In order to deûne our D-norms, we require onemore important analytic property:
we want our actions to be strongly continuous for the Heisenberg C∗-Hilbert norms.
his is the subject of the next proposition. We actually include in the next proposi-
tion a somewhat more general hypothesis and estimate than needed for the strong
continuity of our actions, as this stronger statement will play an important role in our
study of the continuity properties of our D-norms later on in [19].
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Proposition 4.8 Let d = (p, q, d) ∈ Ξ. Let C > 0 and M > 0 be some constant. Let
0 < ð− < ð+. here exists K > 0 such that for all ξ ∈ S (Cd) satisfying

max{∥ξ(s)∥Cd , ∥sξ(s)∥Cd , ∥ξ′(s)∥Cd , ∥sξ′(s)∥Cd , ∥ξ′′(s)∥Cd , ∥sξ′′(s)∥Cd} ⩽ M
1 + s2

,

the following holds for all s ∈ R, ð ∈ [ð− , ð+] and (x , y, u) ∈ R3 with ∣x∣ + ∣y∣ + ∣u∣ ⩽ C:

(4.2) max{∥αx ,y ,uð ,d ξ(n)(s) − ξ(n)(s)∥Cd ∶ n ∈ {0, 1, 2}} ⩽ K(∣x∣ + ∣y∣ + ∣u∣)
1 + s2

.

In particular, for all ð /= 0 and θ = ð + p
q ,

lim
(x ,y ,u)→0

∥αx ,y ,uð ,d ξ − ξ∥H d
θ
= 0.

Proof Let ξ ∈ S(Cd) and (x , y, u) ∈ R3. We note that for all s ∈ R, using the
continuity of ξ, we, of course, have

αx ,y ,uð ,d ξ(s) − ξ(s) = exp(2iπ(u + xs))ξ(s + ðy) − ξ(s)
(x ,y ,u)→0ÐÐÐÐÐ→ 0.

However, we wish to apply Lemma 3.4 to obtain convergence in norm, so we seek
a more precise estimate. To this end, let

fs(t) = α tx ,t y ,tu
ð ,d ξ(s) = exp (2iπ(ðtu + txs)) ξ(s + ðty)

for all t, s ∈ R. We compute for all t, s ∈ R,
f ′s (t) = exp(2iπ(ðtu + txs))(2iπ(ðu + xs)ξ(s + ðty) + ðyξ′(s + ðty)) .

Let ∥(x , y, u)∥1 = ∣x∣+∣y∣+∣u∣ for all (x , y, u) ∈ R2; i.e., ∥ ⋅ ∥1 is the usual 1-norm on
R3. Let us now assume ∥(x , y, u)∥1 ⩽ C; in particular, ∣y∣ < C. We observe that for all
s ∈ R, using the function b introduced in expression (3.2) in the proof of Lemma 3.2,

∥αx ,y ,uð ,d ξ(s) − ξ(s)∥Cd

= ∥ fs(1) − fs(0)∥Cd = ∥∫
1

0
f ′s (t) dt∥Cd

⩽ ∫
1

0
∥exp(2iπ(ðtu + txs))(2iπ(ðu + xs)ξ(s + ðty)

+ ðyξ′(s + ðty))∥Cd dt

= ∫
1

0
∥2iπ(ðu + xs)ξ(s + ðty) + ðyξ′(s + ðty)∥Cd dt

⩽ ∫
1

0
∥(u, x , y)∥1 max {∥2iπðξ(s + ðty)∥Cd ,

∥2iπsξ(s + ðty)∥Cd ,

∥ðξ′(s + ðty)∥Cd} dt

⩽ 2πmax{1, ð+}∥(x , y, u)∥1 ∫
1

0
b(s, ty) dt

⩽ 2πmax{1, ð+}∥(x , y, u)∥1( sup
y∈[−C ,C]

b(s, y)) .
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Since

(4.3) lim
s→±∞

(1 + s2) sup
y∈[−C ,C]

b(s, y) = M ,

we conclude that there exists R > 0 such that for all s ∈ R ∖ [−R, R], we have

∥αx ,y ,uð ,d ξ(s) − ξ(s)∥Cd ⩽
M1∥(x , y, u)∥1

1 + s2

for M1 = 4Mπmax{1, ð+}. We note that M1 depends only on M, ð+, and C through
expression (4.3), and not on ξ.

Since s ∈ R↦ 1
1+s2 is continuous and strictly positive, we can adjust M1 to a larger

value if necessary such that

min
s∈[−R ,R]

M1

1 + s2
⩾ 2πM max{1, ð+}.

herefore, we have, for all s ∈ R and (x , y, u) ∈ R3 with ∥(x , y, u)∥1 ⩽ C,

∥αx ,y ,uð ,d ξ(s) − ξ(s)∥Cd ⩽
M1∥(x , y, u)∥1

1 + s2
⩽ M1C

1 + s2
.

Now, all the above computations can be applied equally well to ξ′ and ξ′′. We
conclude that indeed, expression (4.2) holds as stated.

Now let ξ ∈ S ⊗Cd be chosen. Since ξ is a Schwartz function, there exists M > 0
such that for all s ∈ R, we have

max {∥ξ(s)∥Cd , ∥sξ(s)∥Cd , ∥ξ′(s)∥Cd , ∥sξ′(s)∥Cd , ∥ξ′′(s)∥Cd , ∥sξ′′(s)∥Cd} ⩽
M

1 + s2
.

hus, we can apply our previouswork to conclude that expression (4.2) holds for some
K > 0, having chosen C = 1 for this last part of our proof.
Furthermore, we can now apply Lemma 3.4. For this part, we pick ð > 0; we need

not worry about the uniformity in ð (we may as well assume ð− = ð+ = ð here). hus,
if (xn , yn , un)n∈N converges to 0, Lemma 3.4 implies that

0 ⩽ ∥αxn ,yn ,un
ð ,d ξ − ξ∥H d

θ
⩽
√

∥⟨αxn ,yn ,un
ð ,d ξ − ξ , αxn ,yn ,un

ð ,d ξ − ξ⟩
H d

θ
∥ℓ1(Z2) ,

lim
n→∞

√
∥⟨αxn ,yn ,un

ð ,d ξ − ξ , αxn ,yn ,un
ð ,d ξ − ξ⟩

H d
θ
∥ℓ1(Z2) = 0,

which concludes the proof of our proposition for ð > 0.
To prove our result for a general ð /= 0, we simply observe that for all (x , y, u) ∈ R3,

we have αx ,y ,uð ,d = αx ,−y ,−u
−ð ,d , and thus our proposition is completely proved. ∎

We wish to use the actions of H3 on Heisenberg modules to deûne our D-norms.
he next section presents a general source of possible D-norms from actions of Lie
groups satisfying the properties we have established in this section.
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5 Seminorms from Lie Group Actions

Connes introduced a quantized diòerential calculus on quantum tori in [5] using the
dual action of the tori, using the Lie group structure of the tori. Moreover, he in-
troduced a noncommutative connection on Heisenberg modules, and these connec-
tions proved to be solutions of the Yang–Mills problem for quantum 2-tori [7]. hese
connections were also useful in Rieòel’s work on the classiûcation of modules over
quantum tori [23].

Moreover, ergodic actions of metric compact groups on C*-algebras were the ûrst
example of L-seminorms constructed by Rieòel in [27]. In this section, we begin in-
vestigating how to build D-norms from Lie group actions. We will employ as as-
sumptions the properties that we derived for the action of the Heisenberg group on
Heisenberg modules. Our construction, as we shall see, lies at the intersection of the
purely metric picture of Rieòel and the diòerential picture of Connes, and is a non-
commutative version of [15, Example 3.10].

We emphasize that the general construction in this section is not known to lead
to D-norms in general, but rather, that the D-norms in this paper are all obtained as
special case of the construction in this section. he next section will indeed complete
the proof that in the case of the Heisenberg modules, the present section indeed pro-
duces D-norms. he key diõculty addressed in the next section is the compactness
of the unit ball of our D-norms. Our D-norm will be constructed using the following
deûnition.

Deûnition 5.1 Let α be a strongly continuous action of a Lie group G on a Banach
space E . Let w be a nonzero subspace of the Lie algebra of G. An element ξ ∈ E is
α-diòerentiable with respect to w when for all X ∈ w, the limit

X(ξ) = lim
t→0

αexp(tX)ξ − ξ
t

exists.

In any vector space E, and for any function f ∶ E → R, we denote, as usual,

lim sup
x→0

f (x) = inf
δ>0

sup{ f (x) ∶ 0 < ∥x∥ ⩽ δ} .

heorem 5.2 Let α be a strongly continuous action by linear isometries of a Lie group
G on a Banach space E . Let g be the Lie algebra of G and let h ⊆ g be a nonzero subspace
of g.

Let S ⊆ E be the subspace of E consisting of α-diòerentiable elements of E with
respect to h. We note that S is dense in E .

Let ∥ ⋅ ∥ be a norm on h. For all ξ ∈ S , the norm of the linear map

∇ξ ∶ X ∈ hz→ ∇X ξ = X(ξ)

is denoted by ∣∣∣∇ξ∣∣∣.
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If ξ ∈ S , then, for any δ > 0,

∣∣∣∇ξ∣∣∣ = sup{∥α
exp(X)ξ − ξ∥E

∥X∥ ∶ X ∈ h ∖ {0}}

= sup{∥α
exp(X)ξ − ξ∥E

∥X∥ ∶ X ∈ h ∖ {0}, ∥X∥ ⩽ δ}

= lim sup
X→0

∥αexp(X)ξ − ξ∥E

∥X∥ .

Proof A smoothing argument [4] proves that the set

{ξ ∈ E ∶ t > 0z→ αexp(tX)ξ − ξ
t

has a limit at 0 for all X ∈ g}

is dense in E . herefore, sinceS contains this set,S is dense in E as well.
Fix ξ ∈ S . Let X ∈ h. We deûne

F ∶ t ∈ Rz→ αexp(tX)ξ.
he function F is continuously diòerentiable, and in particular, F(0) = ξ and

F(1) = αexp(X)ξ.
Moreover, using the fact that t ∈ R ↦ exp(tX) is a continuous group homomor-

phism,

F′(t) = lim
s→0

αexp((t+s)X)ξ − αexp(tX)ξ
h

= lim
s→0

αexp(tX)(αexp(hX)ξ − ξ)
h

= αexp(tX)∇X ξ.

hus,

αexp(X)ξ − ξ = ∫
1

0
F′(t) dt = ∫

1

0
αexp(tX)(∇X ξ) dt

so that

∥αexp(X)ξ − ξ∥E

∥X∥ =
∥ ∫

1
0 F

′(t) dt∥E

∥X∥

⩽ 1
∥X∥ ∫

1

0
∥αexp(X)(∇X ξ)∥E dt

= 1
∥X∥ ∫

1

0
∥∇X ξ∥E dt

(since αexp(tX) is an isometry by hypothesis)

⩽ 1
∥X∥ ∫

1

0
∣∣∣∇ξ∣∣∣∥X∥ dt = ∣∣∣∇ξ∣∣∣ .

his proves that

sup{
∥αexp(X)ξ − ξ∥

E

∥X∥ ∶ X ∈ h ∖ {0}} ⩽ ∣∣∣∇ξ∣∣∣ .

On the other hand, let us now ûx some δ > 0. We now assume that ∥X∥ = 1. We
ûrst note that
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∇X ξ = F′(0)

= lim
t→0

F(t) − F(0)
t

where lim is used for the topology of (E , ∥ ⋅ ∥E ),

= lim
t→0

αexp(tX)ξ − ξ
t∥X∥ = lim

t→0

αexp(tX)ξ − ξ
∥tX∥ .

hus, for all X ∈ h with ∥X∥ = 1, since ∥tX∥ ⩽ δ for all t ∈ R with ∣t∣ < δ,

∥∇X ξ∥ ⩽ sup{∥α
exp(Y)ξ − ξ∥E

∥Y∥ ∶ Y ∈ h ∖ {0}, ∥Y∥ ⩽ δ} ,

and thus,

∣∣∣∇ξ∣∣∣ ⩽ sup{∥α
exp(X)ξ − ξ∥E

∥X∥ ∶ X ∈ h ∖ {0}, ∥X∥ ⩽ δ}

⩽ sup{∥α
exp(X)ξ − ξ∥E

∥X∥ ∶ X ∈ h ∖ {0}} .

We have thus concluded our argument, as the function

δ ∈ (0,∞) z→ sup{
∥αexp(X)ξ − ξ∥

E

∥X∥ ∶ X ∈ h ∖ {0}, ∥X∥ ⩽ δ}

has been shown to be constant. ∎

We note that the seminorms constructed in heorem 5.2 include Rieòel’s
L-seminorms in [27] from actions of compact Lie groups.

Corollary 5.3 Let α be a strongly continuous action by linear isometries of a compact
connected Lie group G on a Banach space E . As a compact Lie group, G admits an
Ad-invariant inner product ⟨ ⋅ , ⋅ ⟩g on g. Let ∥ ⋅ ∥ be the norm associated with ⟨ ⋅ , ⋅ ⟩g.
For any g ∈ G, since G is connected and compact, we can deûne ℓ(g) as the distance
from 1G to g for the Riemannian metric induced by ⟨ ⋅ , ⋅ ⟩g.

If ξ ∈ S , then

sup{∥α
g ξ − ξ∥E

ℓ(g) ∶ g ∈ G ∖ {1G}} = ∣∣∣∇ξ∣∣∣ .

Proof As G is a compact group, it admits a right Haar probability measure µ. Let
⟨ ⋅ , ⋅ ⟩ be any inner product on g. If we set, for all X ,Y ∈ g,

⟨X ,Y⟩G = ∫
G
⟨AdgX , AdgY⟩ dµ(g),

then one easily veriûes that ⟨ ⋅ , ⋅ ⟩G is an Ad-invariant inner product on g.
Now, we endow G with the Riemannian metric induced by le� translation of the

inner product ⟨ ⋅ , ⋅ ⟩G . As this metric is induced by an Ad-invariant inner product, it
is in fact right invariant as well.

In particular, G, as a connected compact Riemannian manifold, is geodesically
complete by the Hopf–Rinow theorem. As a ûrst application, we let ℓ(g) be the
distance from 1G to g in G for this Riemannian metric, for all g ∈ G. As a second
application, we note that the Riemannian exponential map of G for our metric is in-
deed surjective.
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It is now possible to check that the exponential map for the Lie group G and the
exponential map for the Riemannian metric coincide. his is done by checking that
the Riemannian exponential map deûnes a 1-parameter subgroup of G.

With this in mind, we conclude that for all X ∈ g, we have
ℓ(exp(X)) = inf {∥Y∥ ∶ exp(X) = exp(Y)} .

We note that the Lie exponential map is certainly not injective, at least as long as G is
of dimension at least one, though this does not aòect our conclusion.

Moreover, since G is a compact connected Lie group, exp is surjective, since
the Riemannian exponential is surjective. hus, our corollary is proved using he-
orem 5.2. ∎

Now, Rieòel proved in [27] that the obvious necessary condition for a seminorm
of the type given in Corollary 5.3 to be a L-seminorm is, remarkably, suõcient as well.
his fact is highly non-trivial as well, and we record it here as it will be the source of
quantum metrics we put on quantum tori.

heorem 5.4 ([27, heorem 1.9]) Let β be a strongly continuous group action by
∗-automorphisms of a compact group G on a unital C*-algebraA. Let ℓ be a continuous
length function on G. For all a ∈ A, we deûne

L(a) = sup{∥β
g(a) − a∥A
ℓ(g) ∶ g ∈ G ∖ {e}} ,

allowing for this quantity to be inûnite. hen the following are equivalent:
(i) (A, L) is a quantum compact metric space (which is necessarily Leibniz);
(ii) {a ∈ A ∶ ∀g ∈ G βg(a) = a} = C1A.

We note that the proof of heorem 5.4 involves explicitly the fact that the spectral
subspaces of the action β are ûnite dimensional under the condition of ergodicity [9].
his result is not trivial, and worse yet for our purpose, does not carry to locally com-
pact group. In fact, besides the trivial representation, no irreducible representation of
the Heisenberg group is ûnite dimensional, so we are, as far as we can, to apply the
idea in [27]. In this paper, we shall focus on the Heisenberg modules, and we will
prove in this case that the seminorms constructed in heorem 5.2 have compact unit
balls using quite diòerent techniques from Rieòel.

he rest of this section introduces the general scheme to construct D-norms from
Lie group actions that we will employ in this paper, and prove that this construction
meets all our requirements except, maybe, for the compactness of the unit ball, which,
in the case of Heisenberg modules, will be the subject of our next section.

Proposition 5.5 Let β be the action of a connected Lie group G on a unital C*-algebra
A via ∗-automorphisms. Let α be the action by isometricC-linear isomorphisms of a Lie
group H on aHilbert module (M , ⟨ ⋅ , ⋅ ⟩M ) overA. We let g and h be the respective Lie
algebras of G and H and expG ∶ g→ G and expH ∶ h→ H the respective Lie exponential
maps of G and H.

Let w be a nonzero subspace of h. Let ∥ ⋅ ∥♭ be a norm on g and let ∥ ⋅ ∥♯ be a norm
on w ⊆ h.
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We set, for all a ∈ A,

L(a) = sup{∥β
exp(X)a − a∥A

∥X∥♭
∶ X ∈ g ∖ {0}} ,

and for all ξ ∈ E ,

D(ξ) = sup{∥ξ∥M ,
∥αexp(X)ξ − ξ∥M

∥X∥♯ ∶ X ∈ w ∖ {0}} .

If there exist two linear maps j ∶ w→ g and q ∶ g→ w such that
(i) for all ξ,ω ∈ M and X ∈ w,

βexpG(X)⟨ξ ,ω⟩M = ⟨αexpH( j(X))ξ , αexpH( j(X))ω⟩E
and

αexpH(X)(aξ) = βexpG(q(X))(a)αexpH(X)ξ,
(ii) j is an isometry from (g, ∥ ⋅ ∥♭) to (w, ∥ ⋅ ∥♯), and
(iii) q is a surjection of norm at most 1, i.e., ∥q(X)∥♭ ⩽ ∥X∥♯ for all X ∈ w,
then
(a) L is a seminorm on a dense subspace of (A, ∥ ⋅ ∥A), and moreover

L(a) = 0 ⇐⇒ ∀g ∈ G βg(a) = a;
(b) D is a norm on a dense subspace of (M , ⟨ ⋅ , ⋅ ⟩M ) and D( ⋅ ) ⩾ ∥ ⋅ ∥M ;
(c) L and D are lower semicontinuous,
(d) for all a ∈ A and ξ ∈ M ,

D(aξ) ⩽ ∥a∥AD(ξ) + L(a)∥ξ∥M ;

(e) for all ξ,ω ∈ M ,

L(⟨ξ ,ω⟩M ) ⩽ ∥ξ∥MD(ω) +D(ξ)∥ω∥M .

Proof Let Sg(A) be the subspace of A consisting of all the β-diòerentiable ele-
ments with respect to g, and Sh(M ) be the subspace of M consisting of all the
α-diòerentiable elements ofM with respect to w.
For any a ∈ Sg(A), we deûne the linear map ∂a ∶ X ∈ g ↦ X(a) whose norm is

denoted by ∣∣∣∂a∣∣∣gA, where g is endowed with ∥ ⋅ ∥♭. Since g is ûnite dimensional, ∂a is
continuous and thus has ûnite norm for all a ∈ Sg(A).
For any ξ ∈ Sw(M ), we also deûne ∇ξ ∶ X ∈ w ↦ X(ξ) whose norm is ∣∣∣∇ξ∣∣∣wM

where w is endowed by ∥ ⋅ ∥♯; since w is ûnite dimensional, the norm of ∇ξ is ûnite
as well.
By heorem 5.2, for all a ∈ Sg(A) and for all ξ ∈ Sw(M ),

L(a) = ∣∣∣∂a∣∣∣gA < ∞ and D(ξ) = ∣∣∣∇ξ∣∣∣wM < ∞.

Since Sg(A) and Sw(E ) are dense, we conclude that the domains of L and D are
indeed dense.

Since D( ⋅ ) ⩾ ∥ ⋅ ∥M by construction, D is in particular a norm on its domain.
Moreover, if L(a) = 0 for some a ∈ A, we immediately conclude that βga = a for

all g ∈ G, since the exponential map of G is surjective.
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he function ξ ∈ M ↦ αexp(X) ξ−ξ
∥X∥♯ is continuous for all X ∈ w ∖ {0} and thus D

is lower semi-continuous as the pointwise supremum of continuous functions. he
same reasoning and conclusion applies to L.

We are le� to prove the two forms of the Leibniz inequalities, which can be easily
checked by direct computation. Let ξ,ω ∈ M . We compute

L(⟨ξ ,ω⟩E ) = sup{∥β
exp(X)⟨ξ ,ω⟩E − ⟨ξ ,ω⟩E ∥A

∥X∥♭
∶ X ∈ g ∖ {0}}

= sup{∥⟨α
exp( j(X))ξ , αexp( j(X))ω⟩E − ⟨ξ ,ω⟩E ∥A

∥ j(X)∥♯ ∶ X ∈ g ∖ {0}}

⩽ sup{∥⟨α
exp(X)ξ , αexp(X)ω⟩E − ⟨ξ ,ω⟩E ∥A

∥X∥♯ ∶ X ∈ w ∖ {0}}

⩽ sup{∥⟨α
exp(X)ξ , αexp(X)ω⟩E − ⟨αexp(X)ξ ,ω⟩E ∥A

∥X∥♯ ∶ X ∈ w ∖ {0}}

+ sup{∥⟨α
exp(X)ξ ,ω⟩E − ⟨ξ ,ω⟩E ∥A

∥X∥♯ ∶ X ∈ w ∖ {0}}

⩽ sup{∥α
exp(X)ξ∥M ∥αexp(X)ω − ω∥E

∥X∥♯ ∶ X ∈ w ∖ {0}}

+ sup{∥α
exp(X)ξ − ξ∥E

∥X∥♯ ∶ X ∈ w ∖ {0}} ∥ω∥M

⩽ ∥ξ∥M sup{∥α
exp(X)ω − ω∥E

∥X∥♯ ∶ X ∈ w ∖ {0}}

+ sup{∥α
exp(X)ξ − ξ∥E

∥X∥♯ ∶ X ∈ w ∖ {0}}∥ω∥M

= ∥ξ∥MD(ω) +D(ξ)∥ω∥M .

Now, let a ∈ A and ξ ∈ M . We compute

sup{∥α
exp(X)(aξ) − aξ∥M

∥X∥♯ ∶ X ∈ w ∖ {0}}

= sup{∥β
exp(q(X))(a)αexp(X)(ξ) − aξ∥M

∥X∥♯ ∶ X ∈ w ∖ {0}}

⩽ sup{∥β
exp(q(X))(a)αexp(X)(ξ) − aαexp(X)ξ∥M

∥q(X)∥♭
∶ X ∈ w ∖ ker q}

+ sup{∥aα
exp(X)(ξ) − aξ∥M

∥X∥♯ ∶ X ∈ w ∖ {0}}

⩽ sup{∥β
exp(q(X))(a) − a∥M

∥X∥♭
∶ X ∈ g ∖ {0}}∥ξ∥M + ∥a∥AD(ξ)

= L(a)∥ξ∥M + ∥a∥AD(ξ),

as desired. ∎
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hus, Proposition 5.5 shows that if we follow the scheme suggested byheorem 5.2,
then we obtain potential D-norms onmodules. hemissing property is the compact-
ness of the closed unit ball for the D-norm candidate.

We conclude our section by connecting our metric framework with the noncom-
mutative diòerential framework of connections on modules. Let us use the notations
of Proposition 5.5. A direct computation shows that for all X ∈ w,

(5.1) ∇X(aξ) = q(X)a ⋅ ξ + a∇X ξ,

while for all X ∈ g, we also have

(5.2) X(⟨ξ ,ω⟩M ) = ⟨ j(X)ξ ,ω⟩M + ⟨ξ , j(X)ω⟩M .

We also denote A ⊗ g∗ by Ω1 and the space of β-diòerentiable elements of A by
A1. We deûne ∂ ∶ A1 → Ω1 by setting ∂a ∶ X ∈ g ↦ X(a) for all a ∈ A1. We
observe trivially that Ω1 is an A-A-bimodule and that ∂ is a derivation, i.e., ∂(ab) =
a∂(b) + ∂(a)b for all a, b ∈ A1.

We ûrst note that to get an interesting connection, we want q to be injective, i.e.,
g and w to be isomorphic. It is always possible to increase the dimension of g (the
Lie algebra structure is actually not involved in the computations to follow, so this is
always possible), but this would amount to deûning ∂X = 0 for all vectors X not in g,
and this is rather awkward and artiûcial.

Since, for the diòerential picture, the norms ∥ ⋅ ∥♭ and ∥ ⋅ ∥♯ do not play a role in the
construction of the connection, we will for now identify g with w, and both maps j
and q with the identity.

With this assumption, expression (5.1) translates to the operator∇ ∶ M →M⊗g∗,
deûned by

∇(ξ) ∶ X ∈ g↦ ∇X ξ

for all α-diòerentiable ξ ∈ M with respect to g, being a noncommutative connection.
We indeed easily check that for all a ∈ A and ξ ∈ M ,

∇(aξ) = a∇(ξ) + ∂(a)ξ.

Expression (5.2) means that the connection ∇ is hermitian, i.e., it is compatible
with the noncommutative equivalent of a metric on the quantum vector bundle M .
It is tempting to call∇ a Levi–Civita connection, although we do not address here the
computation of the torsion of ∇. Nonetheless, we see that our structure provides a
noncommutative Riemannian geometry. his is the structure that inspired our deû-
nition ofmetrized quantum vector bundle, and we now can see how it is implemented
through our main example.

In summary, we have constructed a natural D-norm candidate on modules carry-
ing certain Lie group actions. he key diõculty, of course, regards the compactness
of the unit ball of such a D-norm.

6 A D-norm from a Connection on Heisenberg Modules

We now deûne our D-norms on Heisenberg modules. Our method employs the idea
of heorem 5.2 and Proposition 5.5, where the actions of the Heisenberg group on
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Heisenberg modules deûnes a norm which restricts to the operator norm of a con-
nection constructed via the associated action of the Heisenberg Lie algebra.
As noted at the end of the previous section, we want to only work with a subspace

of the Heisenberg Lie algebra to build our D-norm and its associated connection,
since the central element of the Heisenberg Lie algebra does not act, so to speak, as
a derivation; it simply acts by multiplication by a scalar. We follow a pattern that is
common in the literature on the Heisenberg group: we only consider the action of the
subspace span{P,Q} in the Lie algebra H.

We thus endow span{P,Q} with a norm. If we were to construct a metric on the
Heisenberg group using this data (by deûning the length of a curvewhose tangent vec-
tor at (almost) every point lies in span{P,Q} in the usual manner by integrating the
norm of the tangent vector along the curve, and then deûning the distance between
two points as the inûmum of the length of all so-called horizontal curves) we would
actually obtain a sub-Finslerian metric (if our choice of norm comes from a Hilbert
space structure, we would have a sub-Riemannian structure, and our construction
would give rise to a Carnot–Carathédory distance on the Heisenberg group).

However, as discussed, we do not transport the Carnot–Carathédory metric from
the Heisenberg group via its action in this paper. We prefer to carry the norm of the
subspace span{P,Q} of the Heisenberg Lie algebra to our modules. his approach
means that we work with a connection, which seems more natural. In essence, the
Carnot–Caratheodory is the metric obtained on the group, while our D-norms are
the quantum metrics obtained on our modules; as the acting group is not compact,
we have no reason to expect them to agree.

With this in mind, we now introduce the following deûnition.

Deûnition 6.1 Let d = (p, q, d) ∈ Ξ. Let θ ∈ R∖{ p
q }. Let ∥ ⋅ ∥ be a norm onR2. We

endow the Heisenberg moduleH d
θ with the norm

D
∥ ⋅ ∥,d
θ (ξ) = sup{∥ξ∥H d

θ
,
∥αexpH3

(xP+yQ)

ð ,d ξ − ξ∥H d
θ

2π∣ð∣∥(x , y)∥ ∶ (x , y) ∈ R2 ∖ {0}} ,

where ð = θ − p
q .

We now lighten our notation for the rest of our paper.

Convention 6.2 We endow R2 with a ûxed norm ∥ ⋅ ∥ for the rest of this paper.
We shall denote D∥ ⋅ ∥,d

θ simply by Dd
θ , as the norm on R2 will be understood. We

emphasize that ∥ ⋅ ∥ is independent of any of the parameters d and θ.
he norm ∥ ⋅ ∥ on R2 provides us with a continuous length function on Aθ for all

θ ∈ R. his length function arises from the invariant Finslerian metric induced by
∥ ⋅ ∥. A direct computation simply shows that

ℓ(exp(ix), exp(iy)) = inf {∥(x + 2nπ, y + 2mπ)∥ ∶ n,m ∈ Z2} .

For all θ ∈ R, we denote by Lθ the L-seminorm on Aθ associated with the action
βθ on Aθ and the length function ℓ via [27, heorem 1.9]. We note that since T2 is
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compact and Abelian, Corollary 5.3 implies that for all a ∈ Aθ ,

Lθ(a) = sup{
∥βexpT2 (x ,y)

θ ξ − ξ∥Aθ

∥(x , y)∥ ∶ (x , y) ∈ R2 ∖ {0}}

and Lθ agrees with the operator norm of derivative for the natural diòerential calculus
deûned by βθ on βθ-diòerentiable elements. We refer to the previous section for a
discussion of these matters.

We begin by listing various equivalent expressions for our D-norm candidates, as
we will use whichever may prove useful in this paper.

Remark 6.3 We recall from Notation 2.10 that

expH3
(xP + yQ) = (x , y, 1

2
xy)

for all x , y ∈ R.
For all d = (p, q, d) ∈ Ξ, θ ∈ R∖{pq−1} and ξ ∈ H d

θ , the following identities hold:

Dd
θ(ξ) = sup{∥ξ∥H d

θ
,
∥αx ,y ,

1
2 x y

ð ,d ξ − ξ∥H d
θ

2π∣ð∣∥(x , y)∥ ∶ (x , y) ∈ R2 ∖ {0}}

= sup{∥ξ∥H d
θ
,
∥σ x ,y
ð ,d ξ − ξ∥H d

θ

2π∣ð∣∥(x , y)∥ ∶ (x , y) ∈ R2 ∖ {0}} .

Proposition 6.4 Let d = (p, q, d) ∈ Ξ. Let θ ∈ R ∖ { p
q }.

We endow span{P,Q} with the norm 2π∣ð∣∥ ⋅ ∥. We also deûne, for all (x , y) ∈ R2

and ξ ∈ S d
θ ,

∇ð
x ,y ξ = lim

t→0

α
expH3

(t(xP+yQ))

ð ,d ξ − ξ
t

= lim
t→0

α tx ,t y , 12 t
2x y

ð ,d ξ − ξ
t

.

To ease notation, let ∣∣∣ ⋅ ∣∣∣2π∣ð∣ denote the operator norm for linear maps from
(R2 , 2π∣ð∣∥ ⋅ ∥) to (H d

θ , ∥ ⋅ ∥H d
θ
).

We record the following:
(i) Ddθ is a norm on a dense subspace ofH d

θ ;
(ii) for all ξ ∈ S d

θ and for all δ > 0, the following expressions hold:

Ddθ(ξ) = max{∥ξ∥H d
θ
, ∣∣∣∇ð ξ∣∣∣2π∣ð∣}

= sup{∥ξ∥H d
θ
,
∥σ x ,y
ð ,d ξ − ξ∥H d

θ

2π∣ð∣∥(x , y)∥ ∶ (x , y) ∈ R2 , 0 < ∥(x , y)∥ < δ}

= max{∥ξ∥H d
θ
, lim sup
(x ,y)→0

∥σ x ,y
ð ,d ξ − ξ∥H d

θ

2π∣ð∣∥(x , y)∥ } ;

(iii) if a ∈ Aθ and ξ ∈ H d
θ , then

Ddθ(aξ) ⩽ ∥a∥AθD
d
θ(ξ) + Lθ(a)∥ξ∥H d

θ
;
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(iv) if ξ,ω ∈ H d
θ , then

Lθ(⟨ξ ,ω⟩H d
θ
) ⩽ ∥ξ∥H d

θ
Ddθ(ω) +Ddθ(ξ)∥ω∥H d

θ
.

Proof he Lie algebra of T2 is R2 with the exponential map given as

expT2 ∶ (x , y) ∈ R2 z→ (exp(ix), exp(iy)) .

Now, according to Lemma 4.2, the map υð ∶ (x , y) ∈ R2 ↦ (2iπðy,−2iπðx)
satisûes the relation

βexpT2 (υð(x ,y))
θ ⟨ξ ,ω⟩H d

θ
= ⟨σ expH3

(x ,y)
ð ,d ξ , σ

expH3
(x ,y ,0)

ð ,d ω⟩
H d

θ
.

and, according to Lemma 4.6, the relation

σ
expH3

(x ,y)
ð ,d (aξ) = βexpT2 (υð(x ,y))

θ (a)σ expH3
(x ,y)

ð ,d (ξ).

In order to apply Proposition 5.5, since υð is indeed a linear isomorphism, we en-
dow h = span{P,Q} with the norm

∥xP + yQ∥∗ = 2π∣ð∣∥(x , y)∥.

We now are in the setting of Proposition 5.5, which allows us to conclude all but as-
sertion (ii) in our proposition. Assertion (ii), in turn, immediately follows from he-
orem 5.2, where we use the subspace h endowed with the norm ∥ ⋅ ∥∗; we then get

∣∣∣∇ξ∣∣∣2π∣ð∣ = sup{
∥σ x ,y
ð ,d ξ − ξ∥H d

θ

2π∣ð∣∥(x , y)∥ ∶ (x , y) ∈ R2 , 0 < ∥(x , y)∥ < δ}

= lim sup
(x ,y)→0

∥σ x ,y
ð ,d ξ − ξ∥H d

θ

2π∣ð∣∥(x , y)∥ .

Assertion (ii) now follows from our deûnition of Dd
θ . ∎

We now turn to the remaining, main issue of the compactness of the closed unit
balls for our D-norm candidates. he strategy we employ relies on a particular source
of ûnite rank operators naturally associated with the Schödinger representations of
R2 via the Weyl calculus.

Our ûrst step is to introduce the convolution-like operators at the core of our
analysis.

Lemma 6.5 Assume Hypothesis 4.1. If f ∈ L1(R2) and

σ fð ,d =∬R2
f (x , y)αx ,y ,

x y
2

ð ,d dxdy,

then σ fð ,d is a well-deûned operator on H d
θ and ∣∣∣σ fð ,d ∣∣∣H d

θ
⩽ ∥ f ∥L1(R2).
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Proof Let ξ ∈ H d
θ . Using Lemma 4.4, i.e., the fact that αx ,y ,uð ,d is an isometry ofH d

θ
for all (x , y, u) ∈ H3, we simply compute

∬
R2

∥ f (x , y)αx ,y ,
x y
2

ð ,d (ξ)∥
H d

θ
dxdy =∬

R2
∣ f (x , y)∣∥αx ,y ,

x y
2

ð ,d (ξ)∥
H d

θ
dxdy

=∬
R2

∣ f (x , y)∣∥ξ∥H d
θ
dxdy

= ∥ f ∥L1(R2)∥ξ∥H d
θ
.

hus, σ fð ,d is well deûned, and moreover,

∥σ fð ,d(ξ)∥H d
θ
= ∥∬

R2
f (x , y)σ x ,y

ð ,d (ξ) dxdy∥H d
θ

⩽ ∥ f ∥L1(R2)∥ξ∥H d
θ
.

his completes our proof. ∎

We now prove the ûrst of two core lemmas of this section, which provides us with
a means of approximating elements in Heisenberg modules using our convolution-
type operators, in a manner that is uniform in our prospective D-norms. his lemma
is an adjustment of [29] to our context.

Lemma 6.6 Assume Hypothesis 4.1. Let ε > 0. If f ∶ R2 → [0,∞) is measurable and
satisûes the following:
(i) ∫R2 f = 1,
(ii) ∬R2 f (x , y)∥(x , y)∥ dxdy ⩽ ε

2π∣ð∣ ,

then for all ξ ∈ H d
θ ,

∥ξ − σ fð ,d ξ∥H d
θ
⩽ εDdθ(ξ).

Proof If ξ ∈ H d
θ , then

∥ξ − σ fð ,d ξ∥H d
θ
= ∥∬

R2
f (x , y)ξ dxdy −∬

R2
f (x , y)αx ,y ,

x y
2

ð ,d ξ dxdy∥
H d

θ

⩽∬
R2
f (x , y)∥ξ − αx ,y ,

x y
2

ð ,d ξ∥H d
θ
dxdy

⩽∬
R2
f (x , y)2π∣ð∣∥(x , y)∥

∥ξ − αx ,y ,
x y
2

ð ,d ξ∥H d
θ

2π∣ð∣∥(x , y)∥ dxdy

⩽∬
R2
f (x , y)2π∣ð∣∥(x , y)∥Dd

θ(ξ) dxdy

= Dd
θ(ξ)(2π∣ð∣

ε
2π∣ð∣ ) = εDρ

θ(ξ),

as desired. ∎

We now ensure that we indeed have an ample source of functions that meet the
hypothesis of Lemma 6.6.

Notation 6.7 If (E , d) is a metric space, then the closed ball {x ∈ E ∶ d(x0 , x) ⩽ r}
of center x0 ∈ E and radius r ⩾ 0 is denoted by E[x0 , r].
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he following lemma is valid for any norm onR2; we will work within our context
with the ûxed norm ∥ ⋅ ∥.

Lemma 6.8 For all n ∈ N, let ψn ∶ R2 → [0,∞) be an integrable function supported
on R2[0, 1

n+1 ] and with ∫R2 ψn = 1.
If f ∶ R2 → [0,∞) is integrable on some ball centered at 0 in (R2 , ∥ ⋅ ∥), and f is

continuous at 0, then

lim
n→∞∬R2

ψn(x , y) f (x , y) dxdy = f (0).

Proof Let δ > 0 such that f is integrable on R2[0, δ].
Let ε > 0. Since f is continuous at 0, there exists δc > 0 such that ∣ f (x)− f (0)∣ ⩽ ε

for all x ∈ R2[0, δc].
Let N ∈ N be chosen so that 1

N+1 ⩽ min{δ, δc}. For all n > N , we ûrst note that
since ψn is supported on a subset of R2[0, δ], the function ψn f is integrable on R2.
Moreover, for all n ⩾ N ,

∣∬
R2

ψn(x , y) f (x , y) dxdy − f (0)∣

⩽ ∫
R2

∣ψn(x , y)( f (x , y) − f (0))∣ dxdy

=∬
R2[0,n−1]

∣ψn(x , y)∣∣ f (x , y) − f (0)∣ dxdy

⩽∬
R2[0,n−1]

ψn(x , y)ε dxdy ⩽ ε.

hus, we have shown that limn→∞ ∫R2 ψn(x , y) f (x , y) dxdy = f (0). ∎

We are now ready to prove the second core lemma of this section. We begin with
an explanation of the ideas and reasons behind this lemma.
By a compact operator on a Banach space (E , ∥ ⋅ ∥Cd ), we mean, as usual, an oper-

ator that maps bounded subsets of E to totally bounded subsets of E.
he map f ∈ L1(R2) ↦ σ fð ,d is a ∗-representation of the twisted convolution al-

gebra L1(R2) for the convolution product deûned for all f , g ∈ L1(R2) and x ∈ R2

by

f ∗ð g(x) = ∫
R2
f (y)g(x − y)eð(y, x − y) dy

and the involution

f ∈ L1(R2) z→ f ∗ = x ∈ R2 ↦ f (−x),
as can be directly checked, or is established in [8]. It is an important, well-known fact
[8,heorem 1.30] that this representation is valued in the algebra of compact operators
on L2(R) ⊗Cd , and is faithful; the completion of (L1(R2), ∗ð , ∗) for the norm

f ∈ ℓ1(Z2) z→ ∥ f ∥C∗(R2 ,eð) = ∣∣∣σ fð ,1∣∣∣L2(R)

is the entire algebra of compact operators.
he fact that σ fð ,d is compact as an operator of L2(R) ⊗Cd does not immediately

imply that it is compact for the Banach space (H d
θ , ∥ ⋅ ∥H d

θ
), since in general, we only
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know that ∥ ⋅ ∥L2(R) ⩽ ∥ ⋅ ∥H d
θ
. We thus must prove compactness of these operators

for our C∗-Hilbert norm. However, we can extract the essential tools for our work
from the expansive work on Laguerre expansion of functions and the study of the
Moyal plane. We will prove that, at least when f is a radial function, we can then
approximate σ fð ,d by ûnite rank operators, in norm. To this end, we need a supply
of ûnite rank operators, which provide a mean to approximate any σ fð ,d for f radial.
he theory of the quantum harmonic oscillator provides us with a well-suited family
of ûnite rank projections, obtained as σψ

ð ,d for ψ a properly scaled Laguerre function
[8, Ch. 1, sec. 9].

To obtain the desired approximation result, however, we need to approximate our
radial functions in the norm of L1(R2) using functions obtained from Laguerre func-
tions. As Laguerre functions form an orthonormal basis for some L2 space, we cer-
tainly do have a Laguerre expansion that converges in some L2 norm, but convergence
in L1(R2) is highly not trivial.

he work of S. hangaveru in [30] comes to our rescue, however, by proving that
wemay obtain the desired convergence if we replace the Laguerre expansion series by
the sequence of its Césaro averages. We now formalize our discussion in the next key
lemma.

Lemma 6.9 If f ∶ R+ → R is a function such that r ∈ R ↦ r f (r) is Lebesgue
integrable, and if we set

f ○ ∶ (x , y) ∈ R2 z→ f (
√
x2 + y2) ,

then the operator σ f
○

ð ,d is a compact operator for the Banach space (H d
θ , ∥ ⋅ ∥H d

θ
).

Proof Our goal is to write σ f
○

ð ,d as a limit, in the operator norm, of ûnite rank oper-
ators. To this end, let us ûrst assume that ð > 0 and for all n ∈ N, we let ψn

ð be the n-th
Laguerre function, deûned for all r ∈ [0,∞) by

ψn
ð (r) = ð exp (−πðr2

2
) Ln(πðr2),

where Ln is the n-th Laguerre polynomial, given for all x ∈ R by

Ln(x) =
n

∑
j=1

(−1) j

j!
( n
n − j

)x j .

Note that these functions are given in [30, (6.1.17)] for ð = 1
π . An observation that will

be important for us in later proofs is that ψn
ð = ðψn

1 (
√
ð⋅), i.e., we can obtain all the

Laguerre functions we are considering via a simple rescaling.
By slight abuse of notation, we denote by Lp(R+ , rdr) the p-Lebesgue space for the

measure deûned, for all measurable f ∶ [0,∞] → [0,∞), by ∫
∞

0 f (r) rdr. In particu-
lar, note that the inner product of L2(R+ , rdr) is given for any two f , g ∈ L2(R, rdr),
by

⟨ f , g⟩L2(R+ ,rdr) = ∫
∞

0
f (r)g(r) rdr.
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With all these notations set, we deûne, for each n ∈ N ∖ {0}, the n-th Césaro sum
of the series given by the Laguerre expansion of f ,

Cn
ð( f ) =

n

∑
j=0

n + 1 − j
n + 1

⟨ f ψ j
ð ,ψ

j
ð⟩L2(R+ ,rdr)ψ

j
ð .

hen by the work of S. hangavelu in [30, heorem 6.2.1] — where our ψ j
ð is a

rescaled version of the function denoted by ψ0
j in [30, Chapter 6], and we use the

Césaro sums for “δ = 1” in his notations — we conclude that

lim
n→∞

∥Cn
ð f − f ∥ L1(R+ ,rdr)

= 0.

Now, a quick computation shows that for all n ∈ N ∖ {0},

∥(C j
ð( f ))

○ − f ○∥ L1(R2)
= ∥C j

ð( f ) − f ∥ L1(R+ ,rdr)
,

and therefore
lim
n→∞

∥(Cn
ð( f ))○ − f ○∥ L1(R2)

= 0,

where of course, L1(R2) stands for the 1-Lebesgue space with respect to the usual
Lebesgue measure on R2.
By Lemma 6.5, writing κn = (Cn

ð( f ))○ for all n ∈ N, we then conclude that

lim
n→∞

∣∣∣σ κn
ð ,d − σ f

○

ð ,d ∣∣∣H d
θ
= 0.

By construction, σ κn
ð ,d is ûnite rank. Indeed, the operator σ κn

ð ,d is a linear combi-
nation of the operators σ(ψ j

ð)
○

ð ,d with j ∈ {0, . . . , n}. he operators σ(ψ j
ð)
○

ð ,d are, in turn,
projections on CH j

ð ⊗Cd ⊆ L2(R) ⊗Cd , whereHn
ð is the Hermite function

H
j
ð ∶ t ∈ Rz→

(2ð) 1
4

√
j!2 j

exp (− t2
√

2πð
2

)H j(t
√

2πð) ,

where H j is the j-th Hermite polynomial, given, for instance, by

H j ∶ t ∈ Rz→ (−1) j exp(t2) d
j

dt j
exp(−t2).

Indeed, by [8, p. 65], the operators σ(ψ j
ð)
○

ð ,1 are projections on CH j ⊆ L2(R) for all
j ∈ N. We note that, reassuringly, we will not need the explicit form of the Hermite
polynomials or the Laguerre polynomials in our work.

hus, the image of the unit ball H d
θ [0, 1] of (H d

θ , ∥ ⋅ ∥H d
θ
) by σ κn

ð ,d is totally
bounded in (H d

θ , ∥ ⋅ ∥H d
θ
) for all n ∈ N, as a bounded subset of a ûnite dimensional

space (as all norms are equivalent in ûnite dimension, this observation does not de-
pend on ∥ ⋅ ∥H d

θ
).

hus, σ f
○

ð ,d is compact as the norm limit of compact operators.
We are le� to treat the case when ð < 0. We note that for all (x , y, u) ∈ H3, we have

αx ,y ,uð ,d = αx ,−y ,−u
−ð ,d .

We thus proceed as above with −ð in place of ð, and note that σ κn
ð ,d = −σ

κn
−ð ,d , since κn

is a radial function. he rest of the proof is le� unchanged. ∎
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With Lemmas 6.9 and 6.6, we are now able to prove the desired property for our
D-norms.

Lemma 6.10 We assume Hypothesis 4.1. he set

D1 (Ddθ) = {ξ ∈ H d
θ ∶ Ddθ(ξ) ⩽ 1}

is compact in (H d
θ , ∥ ⋅ ∥H d

θ
).

Proof Let (ψn)n∈N be a sequence of smooth functions from [0,∞) to [0,∞) such
that for all n ∈ N, the function ψn is supported on [− 1

n+1 ,
1

n+1 ] and

∫
∞

0
ψn(r) rdr =

1
2π

.

hus, using the notations of Lemma 6.9, we note that

∫
R2

ψ○n = ∫
π
2

− π
2
∫

∞

0
ψn(r) rdrdθ = 2π

2π
= 1.

Let ε > 0 be given. By Lemma 6.8, we have

lim
n→∞∬R2

ψ○n(x , y)∥(x , y)∥ dxdy = 0.

hus, there exists N ∈ N such that for all n ⩾ N ,

∬
R2

ψ○n(x , y)∥(x , y)∥ dxdy <
ε

4πð
.

We can thus apply Lemma 6.6 to conclude that for all ξ ∈ D1 (Dd
θ) and n ⩾ N ,

∥ξ − σψ○n
ð ,d ξ∥H d

θ
⩽ ε

2
.

Now, σψ○n
ð ,d is compact in (H d

θ , ∥ ⋅ ∥H d
θ
) by Lemma 6.9, and D1 (Dd

θ) is bounded

for ∥ ⋅ ∥H d
θ
by construction. hus the image of D1 (Dd

θ) by σψ○n
ð ,d is totally bounded

in (H d
θ , ∥ ⋅ ∥H d

θ
) for all n ∈ N. In particular, there exists a ε

2 -dense subset Bε in

σψ○N
ð ,dD1 (Dd

θ).
Consequently, if ξ ∈ D1 (Dd

θ), then there exists η ∈ Bε such that

∥η − σψ○N
ð ,d ξ∥H d

θ
⩽ ε

2
.

hus, ∥ξ − η∥H d
θ
⩽ ε.

We thus conclude that D1 (Dd
θ) is totally bounded.

Moreover, for all (x , y) ∈ R2, the map

ξ z→
∥αx ,y ,

x y
2

ð ,d ξ − ξ∥H d
θ

2π∣ð∣∥(x , y)∥
is continuous, and thus Dd

θ is lower semi-continuous with respect to ∥ ⋅ ∥H d
θ
. Hence,

D1 (Dd
θ) = (Dd

θ)−1((−∞, 1]) is closed. Since H d
θ is complete and D1 (Dd

θ) is closed
and totally bounded, it is in fact compact, as desired. ∎
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We summarize the results of this section with the following theorem announcing
that indeed, we have deûned D-norms on Heisenberg modules, turning them into
metrized quantum vector bundles over quantum 2-tori.

heorem 6.11 Let H d
θ be the Heisenberg module over Aθ for some θ ∈ R and

d = (p, q, d) ∈ Ξ. Let ð = θ − p
q and assume ð /= 0. Let ∥ ⋅ ∥ be a norm on R2. If,

for all ξ ∈ H d
θ , we set

Dk
θ(ξ) = sup{∥ξ∥H d

θ
,
∥σ x ,y
ð ,d ξ − ξ∥H d

θ

2π∣ð∣∥(x , y)∥ ∶ (x , y) ∈ R2 ∖ {0}} ,

and for all a ∈ Aθ ,

Lθ(a) = sup{
∥βexp(ix),exp(i y)θ a − a∥Aθ

∥(x , y)∥ ∶ (x , y) ∈ R2 ∖ {0}} ,

then (H d
θ , ⟨ ⋅ , ⋅ ⟩H d

θ
,Ddθ ,Aθ , Lθ) is a Leibniz metrized quantum vector bundle.

Proof Proposition 6.4 proves that Dd
θ is a norm on a dense subspace of H d

θ
that satisûes the inner and modular quasi-Leibniz inequalities and, by construction,
Dd

θ ⩾ ∥ ⋅ ∥H d
θ
.

Lemma 6.10, moreover, gives us that D1 (Dd
θ) is compact for ∥ ⋅ ∥H d

θ
. ∎
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