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Abstract. An Lp operator norm estimate of the difference between the Kac
operator and the Schrόdinger semigroup is proved and used to give a variant of
the Trotter product formula for Schrόdinger operators in the Lp operator norm.
The method of the proof is probabilistic based on the Feynman-Kac formula.
The problem is discussed in the relativistic as well as nonrelativistic case.

§1. Introduction

In [8], we have given an estimate in the Lp operator norm of the dif-
ference between the Kac operator e~

tv/2

e~
tHo e-

tv/2

 a n d the Schrodinger
semigroup e"tH = e~^Ho+v\ where H = Ho + V = - ± Δ + V is the non-
relativistic Schrodinger operator with mass 1 and scalar potential V(x), a
real-valued continuous function bounded below, in the space LP(R ), 1 <
p < oo, and also in the Banach space Coo(Rd) of the continuous functions in
R^ vanishing at infinity. Here as the Kac operator we mention the transfer
matrix/operator for a Kac model [12] in statistical mechanics associated
with a potential V(x). The operator norm of this difference is estimated
by a power of small t > 0 with order greater than or equal to 1. As a
by-product a variant of the Trotter product formula for the nonrelativistic
Schrodinger operator in the Lp operator norm is obtained.

Helffer ([5],[6]) was the first to treat this problem in L2, when V(x) is
a C°°-function in ΈLd bounded below by a constant b and satisfying
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for every multi-index a where α + = max{α, 0} = a V 0, in order to relate in

some asymptotic limit the spectral properties of the Kac operator to those

of the nonrelativistic Schrodinger operator — ̂ Δ + V. We have used in [8]

probabilistic methods to extend his result to the case of more general scalar

potentials V(x). For the related L2 result with operator-theoretic methods,

we also refer to Doumeki-Ichinose-Tamura [2], where the problem in the

trace norm is also treated.

The aim of this paper is to present a unified approach to the relativistic

case as well as nonrelativistic case for this problem. The new result of the

paper is to give the proof for the relativistic case, which employs slightly

modified, though probabilistic, arguments of [8]. However, the present

method unifies the idea of proof in both the nonrelativistic and relativistic

cases. In fact, it enables us not only to improve slightly our previous result

in [8] for the nonrelativistic Schrodinger operator H = HQ + V = — | Δ + V,

but also to obtain an analogous new result for the relativistic Schrodinger

operator Hr = HQ + V = \/—A + 1 — 1 + V. In this case the operator norm

of the difference between the Kac operator and the relativistic Schrodinger

semigroup reveals a slightly different behavior for small t > 0, compared

with the nonrelativistic case.

In Section 2 we state our results, Theorems 2.1 and 2.2 for the nonrel-

ativistic case and Theorems 2.3 and 2.4 for the relativistic case. They are

proved in Sections 3 and 4, respectively, in a unified way.

§2. Statement of the results

To formulate our theorems we want to consider the nonrelativistic

Schrodinger operator

(2.1) H = Ho + V = ~A+V

and the relativistic Schrodinger operator

(2.2) Hr = Hr

Q+V = V - Δ + 1-1 + 1/

with mass 1 and scalar potential V(x), not only in L2 — L2(Rd) but also

in IP = Lp(R r f), 1 < p < oo, and also in the Banach space C^ = C o o(R d)

of the continuous functions in Hd vanishing at infinity, equipped with L°°

norm.

If V(x) is a real-valued locally square-integrable function in Έld and

bounded below, both H and Hr are essentially selfadjoint on CQ° = Co°(Rrf),
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which is shown by use of Kato's inequality (Kato [13], Ichinose-Tsuchida

[11]). So their unique selfadjoint extensions are also denoted by the same

H = Ho + V and Hr = Hr

0 + V.

Then their semigroups e~tH and e~tHr have the following path integral

representations (e.g. Simon [15], Ichinose-Tamura [10]):

(2.3) (e-tHf)(x) = Ex[exp(- J*V(X(s))ds)f(X(t))},

(2.4) (e'tHTf){x) = El[eκV(- j\{X{s))ds)f{X{t))},

for / 6 L2. Here Ex (resp. E%) means the expectation or integral with

respect to the probability measure μx (resp. λx) on the space of the contin-

uous (resp. right-continuous) paths X : [0, oo) —> R^ starting at X(0) = x

such that

(2.5) E χ A

(2.6) Er

x[eip(χV-χϊ] = exp(-t( v ^ T Ϊ - 1)).

The measure μx is the Wiener measure and (2.3) is called the Feynman-Kac

formula, while the measure λx is the probability measure associated with a

Levy process with characteristic function (2.6).

We can see via (2.3) and (2.4) that the operators e~tH and e~~tHr defined

as bounded operators on L2 extend from IP Π L2 to bounded operators on

Lp for 1 < p < oo (cf. Simon [16]). Both e~tH and e~tRr are strongly

continuous semigroups obeying

(2-7) l | e- t H / | | P < e-

(2-8) l|e- t ί r7llP < e-

for / G IP^ 1 < p < oo. We denote also the generators Hp and ϋT of these

semigroups in LP by the same H" = Ho + V and Hr — H$ + V. When

p = oc, e~tH and e~tHr are defined on L°° as the duals of the L1 operators.

They are not strongly continuous, but (2.7) and (2.8) hold for the p = oo

operators. The p = oo operators H^ and H^ are the adjoints of the p = 1

operators ϋ"i and ίf{, respectively.

In addition, if V(x) is continuous, (2.3) and (2.4) define as well the

strongly continuous semigroups e~tH and e~tHr on C^ obeying (2.7) and

(2-8).
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In the following, || \\p-+p stands for the operator norm of bounded
operators on Lp, 1 < p < oo, or on C ^ .

THEOREM 2.1. (The nonrelativistic case) Let 0 < δ < 1. Let m be a

nonnegatiυe integer such that mδ < 1. Suppose that V{x) is a Cm -function

in Έtd bounded below by a constant b which satisfies that

(2.9) \daV(x)\ < C(V(x) -b + l ) 1 " ! ^ , 0 < |α | < m,

with a constant C > 0, and further that daV(x), \a\ = m, are Holder-

continuous:

(2.10) \daV(x)-daV(y)\<C\x-y\κ, x,y€ΈLd,

with constants C > 0 and 0 < K < 1 (By K = 0 we understand daV(x), \a\
= m, bounded). Then it holds that, as t j 0,

ί
O(t1+2δ), m > 2.

Here we write min{α, b} = a Λ b. Note that the condition (2.10) with

« = 1 is equivalent to that daV(x), \a\ = m + 1, are essentially bounded.
An immediate consequence of Theorem 2.1 with telescoping is the fol-

lowing variant of the Trotter product formula.

THEOREM 2.2. (The nonrelativistic case) For the same function V(x)

as in Theorem 2.1, it holds that, as n —> oo,

(2.12) ||(c

m = O , O < f t < l ,

m > 2.

EXAMPLES. The function \x\2 (harmonic oscillator potential) satisfies
the conditions (2.9) and (2.10) for V(x) in Theorem 2.1 with (5,ra,«) =
(^,1,1) or ( i , 2, 0), and the function | # | 4 — \x\2 (double well potential) with
(6, ra, ft) = ( |,3,1) or (^,4,0). The function \x\p satisfies the conditions
(2.9) and (2.10) with (<5,ra,ft) = (1,0, p) for 0 < p < 1 and (<S,rn,ft) =
(1/p, [p],p — [p]) for p > 1, where [p] is the maximal integer that is not
greater than p. But, for instance, exp( |x | 2 + l ) α , a > 0, and exp|x | 2 do
not satisfy these conditions.
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Remark 1. It is Helffer [6] (cf. [5], [4]) that first proved (2.11) in the

L2 operator norm (p = 2), with O(t2) on the right-hand side of (2.11),

by the pseudo-differential operator calculus, when V(x) is a C°°-function

bounded below by b and satisfying \ΘaV(x)\ < C α ( l + z 2 ) ( 2 ~ | α | ) + / 2 for every

multi-index a with constants Ca. In fact, as his condition implies that

(2.13) \daV(x)\ < C(V{x) - b + i)£-\<*\/*)+

for the same α, so his result is included in the case p = 2 and (<5, ra, K) =

(^,1,1) or (δ,m,κ) = (5, 2,0) in Theorem 2.1.

With the condition (2.13) Dia-Schatzman [1] also has recently given an

operator-theoretical proof of Helffer's result.

Remark 2. Theorems 2.1 and 2.2 include [2, Theorem 2.1 and Lemma

2.2]. In fact, let — 00 < p < 2 and let b be a real constant. Suppose that

V(x) is a real-valued C2-function satisfying

V(x) >b + C 0 ( l + £ 2 ) p / 2 , \daV(x)\ < C α ( l + χ2^(P-|α|)+/2^ | α | = 1 ? 2

Then if 1 < p < 2, we have \daV(x)\ < C{V(x) -b+ I )(I-I«I/P)+, for

a\ = 1,2, so that (δ,m,κ) — (1/p, 1,1), while if — 00 < p < 1, we have

\ΘaV(x)\ <Ca< C(V(x)-b+l)1-^2, for |α| = 1,2, so that (£,m,«) =

(i , 1,1) or ( i , 2,0). Therefore we have by Theorems 2.1 and 2.2

and

||(e-t^/2ne-ti/o/ne-tV/2n)n _ e-t(H0+V) | | ^ p = ^

Remark 3. Theorems 2.1 and 2.2 are valid with the operator Ho re-

placed by the magnetic Schrodinger operator HQ(A) = \{—id — A{x))2

with vector potential A(x) including the case of constant magnetic fields

(see Ichinose-Takanobu [8], cf. Doumeki-Ichinose-Tamura [2]).

Remark 4. As for the Trotter product formula in operator norm, Ro-

gava [14] proved for nonnegative selfadjoint operators A and ΰ i n a Hubert

space that, if the domain D[A] of A is included in the domain D[B] of B

and A + B is selfadjoint on D[A + B] = D[A] Π D[B] = D[A], then, as

n —> 00,

tB/tA/ t{A+B) Q^"1/2 Inn),
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O{n~ll2 Inn).

In this case, B is A-bounded. Notice that in our Theorems 2.1 and 2.2,

neither V is iϊo-bounded nor HQ is F-bounded.

For some complementary results to Rogava's we refer to Ichinose-

Tamura [9].

THEOREM 2.3. (The relativistic case) Let V{x) be the same function

as in Theorem 2.1. Then it holds that, as t [ 0,

(2.14) e-ίV/2 e-tHζe-tV/2 _ e-t(Hζ+V)ι

\ O{tί+K), m = 0 , 0 < « <

O(ΐ 2 | lnί |), (m,κ) = (0,1),

O(ί(ΐ2 < 5Vΐ|lnί|)), (m,κ) = (1,0),

O(ί 1 + 2 S Λ 1 ) , m = l , 0 < κ <

k O(t1+2δ), m>2.

An immediate consequence of Theorem 2.3 is the following variant of

the Trotter product formula.

THEOREM 2.4. (The relativistic case) For the same function V(x) as

in Theorem 2.1, it holds that, as n —> oo,

(2.15)

f n-κO(t1+κ),

O((n-2δt1+2δ) V I

n - 2 δ Λ l O ( ί 1 + 2 5 Λ l )
2δO{t1+2δ),n

m = 0,0 < re < 1,

(m, re) = (0,1),

! ln(ί/n)|)), (m, re) - (1,0),

m = 1,0 < K < 1,

m>2.

The method of our proof is probabilistic based on the Feynman-Kac

formulas (2.3) and (2.4).

We need only to prove Theorems 2.1 and 2.3. To prove them we shall

estimate the integral kernel of the difference between the Kac operator and

the Schrodinger semigroup. They will be proved in Sections 3 and 4.
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§3. Proof of Theorem 2.1

Put

(3.1) Q{t)^e-tvl2e-tH"e-tvl2-e-^H^v\ t > 0.

Without loss of generality, we may suppose that V(x) > 1, and the condition

(2.9) holds with 6 = 1 .

Since Q(t) are uniformly bounded operators on LP and C^ in t > 0,

and since CQ° is dense in Lp, 1 < p < oo, and CΌo , we have only to show

that for f E C%° with | | / | | p - 1, | |Q(ί)/ | | p has the order of the power of t

as in (2.11). Here note that the L°° case follows as the dual of the L1 case.

By the Feynman-Kac formula (2.3) we have for / G CQ°

(3.2) (Q(t)f)(x)

Let p(t, x) be the heat kernel, the integral kernel of e~tH°:

(3.3) p(tiX) = (2πt)-d/2e-χ2/2t.

We have

(3.4) / \x\ap(t, x)dx - C(α)W2,

with a constant C(a) depending on a > 0 and the dimension d.

To avoid notational complexity, we shall assume d — 1; there is no

essential change of the following proof in the multi-dimensional case.

We use the conditional expectation Ex[ - \ X(t) — y] to rewrite (3.2) as

(3.5a) (Q(t)f)(x)

- J f(y)p(t,x- y)Ex[exp(κ-
t-(V(x) + V(y)))

- exp(- fi V(X(s))ds) I X(t) = y]dy

Ξ f(y)p(t,x-y)d(t,x,y)dy,

where

(3.5b) d(t,x, y) - Ex[υ(t,x, y) | X{t) = y)
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with

(3.5c) υ(t,x,y) =

By Taylor's theorem

m

7

i
— L ί a -

ml r
Putting

(3.6) w{t,x,y) = l{V{x) + V(y))- ί V(X(s))ds
* Jo

= - f (V(X(s)) - V(x))ds - f (V(X(s)) - V{y))ds,
Jo Jt/2It/2

this yields the following expansion of v(t,x,y) in (3.5c).

(3.7)

v(t, x,y)

3=2

1

ml
-—]w{t,x,y)m+1

x

3

J\θ(l - ^)mexP[-(l - θ)±(V(x) + V(y)) - θ J* V(X(s))ds]

2 = 1

Note in (3.7) that if m — 1, V2(tjX,y) is absent, and if m = 0, bothvι(t,x,y)
and V2(t,x,y) are absent.

Put
3

(3.8a) d(t, x, y) = ^ di(t, x, y),
2 = 1
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(3.8b) di(t,x,y)=Ex[vi(t,x,y) | X ( ί ) = j / ] , i = 1,2,3.

Then the function

(3.9) q(t, z, y) = p{t, x - y)d(t, x, y)
3 3

is the integral kernel of the operator Q(t) in (3.1). Here, in (3.8ab), if

77i = 1, c?2(i, x, y) is absent, and if m = 0, both c?i(£, x, y) and G?2(t, £, 2/) are

absent, and so are for qi(t,x,y) in (3.9).

For m > 1, we have by Taylor's theorem

V(x + z)- V{x)

- Σ hzkγ(k)^
—
(m

λ—zm f
- l ) ! J o

+ , 1

 Λ λ λ z m ί
( m - l ) ! Jo

Applying this to the integrands of the last member of (3.6) yields

(3.10) w(t,x,y)
rt/2 m -j rt/2

= - / (X(s)-x)V'(x)ds-ΣτJ

( m - 1)! JQxf (X(s)-xΓ(v^(x + τ(X(s)-x))-

— / (X{s) — y)V'(y)ds — V^ — / (X{s) • y)

Jt/2 k=2 kl Jt/2

~(m-l)\j0

 {
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f {X{s) ~ yΓ(V(m)(y + r(X(s) - y)) -X

It/2

where the second and fifth terms — ΣT=2 o n the right are absent if m = 1.

It follows that
3

2 = 1

with

(3.11b) wi(t,x,y)
pt/2 (t

= -\V\x) \ (X(s) - x)ds + V'{y) / (X(s) - y)ds),
1 Jo Jt/2 J

(3.11c)
171

ctri pt Λ

/ (X(s)-x)kds + VW(y) / (X(s)-y)kds\,

w3(t,x,y) = - I fdτ{l-r)m-1

(X(s) - x)m(y^m\x + τ(X(s) - x)) - V

+ J* (X(s) - y)m(v{m)(y + r(x(s) - y)) -J
where the second term u>2(£, x,y) = — Σ™=2 is absent if m = 1.

According to the decomposition (3.11a) of w(t,x,y) rewrite dι(t,x,y)

as

(3.12a)

(3.12b) du(t,x,y)

= -^[^( t^, !/) I X(t) - yJβ-lί^H^)), 1 < i < 3,

where di2(t,x,y) is absent if m = 1.
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We can use (2.9), (2.10) and that for a > 0

(3.13) t«β-t/2 < ( H ^ t > 0 >

e

which for a = 0 we understand as e~t/2 < 1, to show the following lemma.

LEMMA 3.1. a) If m = 0,

(3.14) \v{t,x,y)\<\w{t,x,y)\

rt/2a t/ z ft

\X(s) - x\κds + / \X(s) - y\κds).
Jt/2 J

It/2

b) Ifm>l,

3 3

(3.15a) τ;i(t,x,y) =

(3.15b)

z ί/2 /•« .

= {V(x) {X{s)-x)ds + Vt{y) {X{s)-y)ds\
V Jo Jt/2 }

ifτn>

(3.15c)

if m>

(3.15d)

2,

1,

Ifm

(3.16)

\vi2{t,χ,y)\
m

;J]θ(ί- 1 + f c 6 )

\vis(t,x,y)

<: ί I 1

> 2 ,

\v2(t,x,y)\

|X( S )-y| f c d S );
t/2

Jt/2

mm

ft/2

/t/2at/2 f

|X(s) - x|^m + κ)(is + /
Λ
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(3.17) \v3{t,x,y)\

rt/2\X(s)-x\^^kds+ I \X(s)-

t/2a t/2 rt

\X(s) - z|(m + 1)(m +*)<Js + / \X(s) -
Jt/2

We give here only a few words for the proof of Lemma 3.1. As mentioned

before, we make use of (2.9), (2.10) with (3.13). (3.14) follows directly

from (3.6). (3.15b) follows immediately from (3.11b). (3.15c) and (3.15d)

follow from (3.11c) and (3.lid), respectively, while (3.16) and (3.17) are

obtained by using the expression (3.10) of w(t,x,y) to calculate w(t,x,yy

and w(t,x,y)m+1.

Therefore, to prove Theorem 2.1, we need to calculate the conditional

expectation Ex[ \ X(t) = y] of some basic quantities as in the following

lemma. We note here that for 0 < s < t

(3.18) Ex[φ(X(s))\X(t)=y]

= p{t, x - y)~ιEx\p{t - a, X(s) - y)φ(X(s))\

for a nonnegative measurable function φ(x).

LEMMA 3.2. Let t > 0.

(i) Let 0 < s < t.

Ex[X(s)-x\X(t) = y] =^(y-x);

(3.19)

Ex[X{s) - y \ X{t) = y\ =t^(x-y).
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(ii) Let a > 0.

Λί/2ft/2

/ £7x[|X(β)-x|α|Λ:(t) =

(3.20)
2a-\h\x-y\a+l-C(a)tal2+ί), a > 1;

ί / 2
Ex[\X{s)-y\a\X(t) =

< . ^ I x - y r + ̂ CCαjW^1,

Proof, (i) We have by (3.18), using the Parseval equality and integrat-

ing by parts,

Ex[X(8)-x\X(t) = y]

= pit,x - y)-1Ex\p(t - s, X{s) - y)(X(s) - x)}

= p(t, x - y)"1 {z- x)p(t -s,z- y)p(s, z - x)dz

= (2π)-1p(t,x- y)-1 / V ^ e - ^ ^ / V

= (2ττ)-1p(t,x-y)-1 ίeίp^-^e-(-t-s')p2/

= (2π)-1p(t,x-y)-1 ί eip(-χ-^-(-idp)e

= (2π)-1jp(t,x- y)-1 ί(idpe
ip^)e-t

= --(x - y)p{t,x- y)-1(2τr)-1 Ieip^~^e~tplI2dp

Similarly we have

Ex[X{s) - y \ X{t) = y]

= p(t, x - y)-ιEx\p{t - s, X(s) - y)(X(s) - y)}

= p(t, x - y)~λ (z- y)p(t -s,z- y)p(s, z - x)dz
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= (2π)-1p(t,x-y)~1 ί e-ipu(idpe-(-*-8

= -{2π)-χp{t,x-y)-χ f e^-^—i

= -(2π)-lt-^-p(t,x-y)-1 ί {idpM
χ-

- y)p(t,x- y)-1(2π)~1 I e^

t-s

Thus we have shown (3.19).

(ii) For 0 < s < t/2, we have by (3.18) and (3.4)

(3.21) Ex[\X(s)-x\a\X(t)=y]

= p(t, x - y)-λEx\p{t - *,X(s) - v)\X(s) ~ ^ Π

= p(t, x - y)~λ I \z - x\ap(t - s,z - y)p(s, z - x)dz

= pit,x - y)"1 / \z\ap(t - s,z + x- y)p(s,z)dz

< p(t, X - y)-1 J{j\x -y\ + \Z+i(χ- y)\)a

< max{l, 2a-1}p(t, x - y)-1 j((\)a\x - y\a + \z + S-(x - y)\a)

xp(t — s,z + x — y)p(s, z)dz

y\a + \z + S-(x - y)\a)

— s,z + x — y)p(s, z)dz

< max{l, 2a-ι}{\x - y\a + C{a)sa/2).

For the last inequality of (3.21) we have used

/ \z + j{χ~ y)\ap(t -s,z + x- y)p(s,z)dz

= (2π(t - s)2πs)-^ J' \z + °-{χ - y)\a exp(- {Z

= (2τr(t - s)2πs)~1/2

+

S

Ί(X- y ) r β x p ( _ _ _ ί _ ( 2 + i{x

<C{a)sal2p{t,x-y).

)
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For t/2 < s < t, we have similarly

(3.22) Ex[\X(8)-y\a\X(t)=y]

= p(t, x - y)-lEx\p(t - β, X(s) - y)\X(s) - y\a]

= p(t, x - y)~~ι \z~ y\ap(t - s,z- y)p(s, z - x)dz

= p(t, x - y)~ι j \z\ap(t - 3, z)p(s, z + y- x)dz

< max{l, 2a~1}{\x - y\a + C(a)(t - s) α / 2 ).

Integrating (3.21) and (3.22) yields (3.20). This ends the proof of Lemma

3.2.

Now we complete the proof of Theorem 2.1, using Lemmas 3.1 and 3.2.

To do so first we use (3.4) to get that for a > 0,

(3.23) || Jp(t, - y)\ . -y\a\f(y)\dy\\p < C(α)ία/2||/||p, / £ IP,

for 1 < p < oo. This is obvious for p = oo and seen for 1 < p < oo by the

Holder inequality.

Then for m = 0 we have from Lemma 3.1, (3.14), with Lemma 3.2 (ii),

(3.20)

(3.24) \d(t,x,y)\ = \Ex[υ{t,x,y) \ X{t) - y]\

/ ίt/2

<CΠ Ex[\X{s)-x\κ\X{t) =

f
Jt/2

Hence for m = 0 it follows with (3.23) that

(3-25) \\J\q(t,;y)\\f(y)\dy\\p<O(t1+κ/2)\\f\\p.

For m > 1 we note here by Lemma 3.1, (3.15b) and Lemma 3.2 (i),

(3.19) that

(3.26) <Jn(t,x,y)
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= Ex[vn{t,x,y) \X(t) = y]

ft/2
= { V'(x) / Ex[X(s) - x I X(t) = y}ds

L Jo

f
Jt/2

Ex{X(s) - y | X(t) =

= -Ux- y)(V'(x) - V

Here it is crucial in this paper that we don't take the absolute values of
X(s) — x and X(s) — y inside the conditional expectation Ex[- \ X(t) = y]
in the third member of (3.26), so as to use Lemma 3.2 (i), (3.19).

For m = 1, we have d(t,x,y) = dι(t,x,y) + d%(t,x,y) with dι(t,x,y) =
du(t,x,y) + di3(ί,x,y), so that (3.9) turns out q(t,x,y) = qι(t,x,y) +
q3(t,x,y). We have from (3.26) with (2.10)

(3.27a) |dn(t,x,l/) |< |x-l/ | 1 + l β O(t).

We have from Lemma 3.1, (3.15d) and (3.17) with Lemma 3.2 (ii),
(3.20)

(3.27b) \d13(t,x,y)\

= \Ex[v13(t,x,y) \X(t)=y]\

<CΠ Ex[\X(s)-x\1+κ\X(t) =

f
Jt/2

Ex[\X(s)-y\1+κ\X(t) =

and

(3.28) \d3(t,x,y)\

= \Ex[v3(t,x,y) \X(t) = y]\
/ Z t/2

< O(t-1+2δ)Π Ex[\X(s) - x\2 I X(t) = y]ds

f Ex[\X(s)-y\2\X(t) =
Jt/2

+O(ί)

f
Jt/2

Ex[\X(s) X(t) = y]ds
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t/2

= \x- y\2O(t2δ) + O{tι+2δ) + \x- y\2(-1+κ^O(t2) + O(t3+K).

Thus for m = 1 it follows from (3.27ab) and (3.28) by (3.9) and (3.23) that

(3-29) || J \q(t, ., y)\\f(y)\dy\\p < O(t1+2δΛi¥)\\f\\p.

For m > 2 we have from (3.26) by Taylor's theorem with (2.9), (2.10)

and (3.13)

(3.30a) ί,x,y)| = \Ex[vn{t,x,y) \ X(t) = y]\

1=2

We have from Lemma 3.1, (3.15cd), (3.16) and (3.17) with Lemma 3.2

(ii), (3.20)

(3.30b) \d12(t,x,y)\

= \Ex[υ12(t,x,y) I X(t) = y]\

Ex[\X(s) - x\k I X(t) = y}ds

+ f Ex[\X{s)-y\k\X{t) =
Jt/2

kO(tkδ)\χ - y\kO(tkδ)
k=2

(3.30c) \d13(t,x,y)\

= \Ex[v13(t,x,y) \X(t)=y}\

c / rt/2

< ( y< ( y Ex[\X(s)-x\m+κ\X(t) =

f
Jt/

f Ex[\X(s)-y\m+κ\X(t)
t/2

= \x- y\m+κO(t)
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and

(3.31) \d2(t,χ,y)\

= \Ex[v2(t,x,y)

T. ICHINOSE AI

\X(t) = y]\

3=2 k=l

X(t) = y]ds

f Ex[\X{s)-yγk\X{t) =
Jt/2

Ex[\X(s) - x

{
3=2 k=l

\x -

X{t) - y]ds

f Ex[\X{s) - Ϊ,|J'<™+*) I X(t) = y]ds) }
Jt/2 J >

(3.32)

= £7α.[t;3(ί,a;,y) | X(t)=y]\

/
Jo

f Ex[\X{s) -
Jt/2

X(t) - y]ds

= y]ds)

+\x —

Thus for m > 2 it follows from (3.30abc), (3.31) and (3.32) by (3.9) and
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(3.23) that

(3-33) \\ J \q(t^y)\\f(y)\dy\\p

2
m

k=2

m+1

+o(t{m+2+κ)j/2))}\\f\\P
j=2 fc=l

This ends the proof of Theorem 2.1.

Remark. In view of (3.9) we have obtained, with (3.24) for m — 0,

(3.27ab)-(3.28) for m = 1 and (3.30abc)-(3.31)-(3.32) for m > 2 above, an

estimate of the integral kernel g(ί, x, y) in terms of p(t, x — y) times a finite

positive linear combination of powers of \x — y\ and t.

§4. Proof of Theorem 2.3

Put
(4.1) Qr(t) = e-tv/2e-tHrOe-tv/2 _ e-t(fl ϊ+v) j t > 0

For / in C£°, Qr(t)f has the same representation as Q(t)f in (3.2) and

(3.5ab) with Ex replaced by Er

x and p(t, x) replaced by

(4.2) pr(t,x) =

which is the integral kernel of e~tHo (e.g. Ichinose [7, (2.4a), p. 269]). Here

Ku(z) is the modified Bessel function of the third kind of order v. It has

the following integral representations:

Kv(t) = - / s~v-ιe-^

2 Jo

/
Jo

https://doi.org/10.1017/S0027763000006553 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006553


72 T. ICHINOSE AND S. TAKANOBU

where the first and second expressions hold for v real and the last one for

v > -1/2 (see [3, 7.12. (23), p. 82; 7.3.4. (16), p. 19]). Hence we have

(4.2)' pr(t x) = (2π)~^dJrl^2tet /

poo

JΌ

where p(ί, x) is the heat kernel in (3.3), so that

(A X\ I \r\ar>r(i rW7.-Γ' /ίπV( f l + 1)/2p ίJ

where C'(α) = (2/τr)1/2c(α) with C(α) in (3.4).

To avoid notational complexity we shall assume d = 1 again; there is

no essential change in the proof in the multi-demensional case.

The proof proceeds in the same way as that of Theorem 2.1. The

integral kernel qr(t,x,y) of Qr(t) in (4.1) is decomposed in the same way

as in (3.9) with p(t, x — y) on the right replaced by pr(t, x — y) in (4.2). We

have the same statements as in Lemma 3.1, but have to replace Lemma 3.2

by the following lemma. We note again that the formula (3.18) holds with

Ex[ I X(t) = y], p(t,x — y) andp(t — s,X(s)— y) replaced by E^[- | X(t) —

2/], p r (t, x — y) and pr(t — s, X(s) — y), respectively.

LEMMA 4.1. Let t > 0.

(i) Let 0 < s < t.

, , Er

x[X(s)-x\X(t) = y] =f(»-x);
( 4 4 )

(ii) Let a> 0 and 0 <t <1.

I Eζ[\X(s) - x\a I X(t) = y]ds

ί t | x - y | β + Ci(α)tα + 1, 0 < α < l ,

<< t | x - y | + CΊ(l)t2(| lnt| + 1), a = 1,

( 4 i 5 ) l ^ ( t | x - y | - + C l ( α ) O , α > l ;

Λ/:h/2

o =
α >
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Here C\(a) is a constant depending on a > 0.

Proof, (i) By (3.18) we have, using the Parseval equality and integrat-

ing by parts,

Ex[X(s)-x\X(t) = y]

= pr(t,x-y)-1Ex\pr(t-s,X(s)-y)(X(s)-x)}

= pr(t,x-y)-1 / (z - x)pr(t - s, z - y)pr (s, z - x)dz

= (2π)~ V ( ί , x - y)-1

x / e-
ipye-^s^

x / e
lSP - 1 ) ,

(2ir)-1pr(t,x-y)-1 f j * *
J

(2π)- 1 p Γ (ί ,x-y)- 1 ί eip( χ

(27Γ)"1 JpΓ(ί,a; - y)"1 J(id

--(x - y)pr(t,x-

p2 + 1

^d p

/

Similarly we have

= p» (ί, x - y)-χEx]pr{t - S , X( S ) - y)(X(s) -

)-V(ί,x-y

I e-ipy(idpe

- y)pr{t - s , z - y)pr(s, z - x)dz

-{t~s){VP5+ϊ-i

t,χ -y )" 1 ί(i
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t-s
t

t-s
t
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( /γ» Oil ΠΓϊ ( T Πf* OI \ i f ΠV l I £> * \

x y)P \τiχ V) \^") I e

Thus we have shown (4.4).
(ii) First note by the integral representation of Kv that for 0 < t < 1

(4.6) 0 < Kv{t) = K-V{t) =
O(|lnί|

o(t-η, u>o,

and that for v > 0 and ί/2 < T <t

(4.7)

max {21/2,2" t2).

In fact, (4.6) is easy to see by the last expression of Ky(t). The first
half of (4.7), Ky{yjx2 +t2) < Kv{y/x2 + τ 2 ) , is evident because Kv(t) is
decreasing in t. For the second half of (4.7), we see for v — 1/2 > 0 that

x

x

PO

/

Jo

+ l
fΌ

/

Jo

and for v - 1/2 < 0 that

X /
Jo
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Jo

S + 2\/x2

because Λ/X2 + t2 — \Jx2 + r 2 <t — r. Thus we have confirmed (4.7).
Now we show (4.5). Let 0 < £ < 1. For 0 < s < ί/2, we have by (3.18),

(4.3) and (4.6), noting that

/ pr(t - s, y)pr(s,z)dz = pr(t,x - y),

(4.8) El[\X(s)-x\α\X{t)=y]

= pr(t, x - yy'E^it - s, X(s) - y)\X{s) - x\α]

= pr(t, x - y)~λ j \z - x\αpr(t - s,z- y)pr(s, z - x)dz

= pr(t,x-y)-1

x( + )\z- x\αpr(t -s,z- y)pr(s, z - x)dz
KJ\z~y\<\x-y\ J\z-y\>\x-yγ

x ( / (\z - y\ + \x - y \ ) α p r ( t -s,z- y)pr(s, z - x)dz
\z-y\<\χ-y\

I \z — x\αpr{t — s,z — y)pr(s,z — x)dz)
J\z-y\>\x-y\ J

χ-ι}pr{t,x-y)-1 ί (\z - y\α + \x - y\α)
J\z-y\<\x-y\

xpr(t — s,z — y)pr(s, z — x)dz

+pr(t,x -y)~1pr(t- s,x -y) / \z - x\αpr(s,z - x)dz

J\z-y\>\x-y\

P
2\x-y\α + C1{α)sα, 0 < α

o = 1,

Here C\ (α) is a constant depending on α and we have used the fact that

sup
ί/2<τ<ί
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which we can see in virtue of (4.7), observing the expression (4.2) of pr(t, x).
For t/2 < s < t, we have similarly

(4.9) Er

x[\X(s)-y\a\X(t) = y]

= pr(t,x - yy'Ellp^t - s, X(s) - y)\X(s) - y\a]

= pr(t, x - y)-1 / \z - y\apr(t -s,z- y)pr(s, z - x)dz

x
yJ\z-x\<\x-y\ J\z-x\>\x-y

<max{l,2"-1}2|x-y|α

+ί )\z-y\apr(t-s,z-y)pr(s,z-x)dz
-y\ J\z-x\>\x-yV

2\x-y\a + C1{a){t-s)a, 0 < a < 1,
< I 2\x - y\ + Cι(a)(t - s)(\ ln(t - s)\ + 1), α = 1,

[ 2α-χ(2|x - y\a + Ci(α)(ί - s)), a > 1.

Integrating (4.8) and (4.9) yields (4.5). This ends the proof of Lemma
4.1.

Now we can prove Theorem 2.3, using Lemmas 3.1 and 4.1.

To do so first we use (4.3) to get that for a > 0,

(4.10) \\Jir(t,.-y)\ -v\°\f(v)\dy\\P

< c'Wtί^/Vtf^/aWII/IU few,
for 1 < p < oo. This is obvious for p — oo and seen for 1 < p < oo by the
Holder inequality.

Then for 772 = 0 we have from Lemma 3.1, (3.14), with Lemma 4.1 (ii),
(4.5)

(4.11) \d(t,x,y)\ = \Er

x[v(t,x,y) \ X(t) = y}\

ft
+ / L

Jt/2

\x-y\κO(t) + O{t1+κ), 0 < κ < l ,

-O(ί21
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Hence for m — 0 it follows with (4.10) that

O(t1+κ)\\f\L, 0 < κr
(4.12) || \qr{t,.,y)\\f{y)\dy\\p<

J

For ra > 1 we note here by Lemma 4.1 (i), (4.4) that (3.26) again holds
with Ex[ I X(t) = y) replaced by Er

x[ \ X(t) = y).
For m = 1, we have d(t, x,y) — d\{t,x,y) +ds(t,x1y) with dι(t,x,y) =

du(t,x1y) + di3(t,x,y), so that (3.9) turns out again q(t,x,y) — qι(t,x,y) +
qs(t,x,y). We have from (3.26) with (2.10)

(4.13a) |dn(t,x,ϊ/)| = \El[Vll{t,x,y) \ X(t)=y]\ < \x -

We have from Lemma 3.1, (3.15d) and (3.17) with Lemma 4.1 (ii), (4.5)

(4.13b) \d13(t,x,y)\ = \Er

xlv13(tiX,y) \ X(t) = y]\

/ ίt/2

<CU Er

x[\X(s) - x\ι+κ I X(t) = y]ds

f El[\X{s)-y\1^\X{t)=y]ds)
Jt/2 '

O(t2\\nt\), κ = 0,

, 0 < K < 1,

and

(4.14) \d3(t,x,y)\

= \Er

x[υ3(t,x,y)\X(t) = y]\

<O(t-^26)([t/2Er

x[\X(s)-x\2\X(t) =

r*
It/2

0 - x | 2 ( 1 + κ ) I X(t) = y\ds

rt

f Er

x[\X(s)-y\2\X(t) =
Jt/2

ί/2

f
Jt

= \x- y \ 2 O { t 2 δ ) + O ( t 1 + 2 δ ) + \x-

t/2

o(t3).
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Thus for m = 1 it follows from (4.13ab) and (4.14) by (4.10) and (3.9) with
g(£, x, y) and p(t, x — y) replaced by qr (£, x, y) and pr(t, x — y) that

(4.15) \\J\q

r(t,.,y)\\f(y)\dy\\p

<

" \ O ( t 1 + 2 ί Λ 1 ) | | / | | p , 0 < « < l .
For m > 2 we have from (3.26) by Taylor's theorem with (2.9), (2.10)

and (3.13)

(4.16a) \du(t,χ,y)\ = \Er

x[vn(t,χ,y) | X{t) = y]\
m

\x - y\ιO{tlδ) + \x- y\m+κO(t).
1=2

We have

(4.16b) \d12{t,χ,y)\

= \Er

x[vu(t,x,y)\X(t) =
x

m / ft/2

( / kEl[\X{s) - x\k I X{t) = y]ds

f Ex[\X(s)-y\k\X(t)=y}ds)

Jt/2 '

k=2

(4.16c) |d 1 3(£,x,y)|

t ,x,y) \X(t)=y}\

x
m+κ

ml vo

It/2

= \x-y\™+«o(t) + o(t2y,

X(t) = y]ds

f Er

x[\X(s)-yr^\X(t) = y}ds)
Jt/2 J

and

(4.17) |d2(*,a;,y)|
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\E
r

x
[v

2
(t,x,y)\X(t)=y}\

r
t/2

T Ί y ^ O(t~1+:>k6)( / Er\\X(s) — xγk I X(t) = y]ds
j=2 k=l °̂

El[\X{s)-yγk\X{t) = y)ι

i-ι)(ΓZEx[\X(s)-x\^m+κϊ I X(t) = y]ds
rt

Jt/2It/2

- y\jkO(tjkδ){
j=2 fc=l

+\x _

(4.18) \d3(t,x,y)\

= \Eζ[υ3{t,x,y)\X(t) =

k=i

Er

x[\X{s) - X(t) = y}ds

f
Jt
f
t/2

+O(n(J Er

x[\X(s)-x\^

+ f Er

x[\X(s) -
Jt/2

χ(t) = y]ds

= y]dΛ
J

Thus for m > 2 it follows from (4.16abc), (4.17) and (4.18) by (4.10) and
(3.9) with q(t,x,y) and p(t,x — y) replaced by qr(t^x,y) and pr(t,x — y)
that

(4.19)
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{J2 o(tι+lδ) + o(t2) + Σ o(t1+kδ) + o(t2)
1=2 k=2

3=2 k=l
m

fc=l

This ends the proof of Theorem 2.3.

Remark. In view of (3.9) we have obtained, with (4.11) for m = 0,
(4.13ab)-(4.14) for m = 1 and (4.16abc) - (4.17) - (4.18) for m > 2 above,
an estimate of the integral kernel qr(t,x,y) in terms of pr(t, x — y) times a
finite positive linear combination of £2| lnt|, powers of \x — y\ and t.

Finally, before closing this final section, we make a comment on the
present approach compared with our previous work [8]. It dealt only with
the nonrelativistic case and its calculation was done by using, via the condi-
tional expectation Eo[- \ X(t) = 0], the Brownian bridge to rewrite (3.5a).
But this procedure cannot work out in the relativistic case. So in this paper
we have used the conditional expectation Ex[ \ X(t) = y] itself through-
out, so that both the nonrelativistic and relativistic cases can be discussed
in a unified way.
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