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Abstract

We give complexity analysis for the class of short generating functions. Assuming #P 6⊆ FP/poly,
we show that this class is not closed under taking many intersections, unions or projections of
generating functions, in the sense that these operations can increase the bit length of coefficients of
generating functions by a super-polynomial factor. We also prove that truncated theta functions are
hard for this class.
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1. Introduction

1.1. Combinatorics and complexity of GFs. A short generating function
(short GF) is a rational generating function written in the form

(∗) f (t) =
M∑

i=1

ci tai

(1− tbi1) · · · (1− tbiki )
,

where ci = pi/qi ∈ Q, ai , bi j ∈ Z and bi j 6= 0 for all i, j . The index( f ) :=
max{k1, . . . , kM} is the maximum number of terms in the denominators. This is
always assumed to be bounded by some constant. The length `( f ) is defined as the
total bit lengths of all constants in (∗). Of course, the same generating function
can have many presentations as a short GF. (We also caution the reader that in
general, the word short in ‘short GF’ only means that the GF is given in the form
(∗). It does not necessarily mean the GF has polynomial length.)

In this paper we initiate the study of complexity of short GFs with bounded
index and polynomial lengths. For a finite set S ⊂ N, denote by fS(t) =

∑
n∈S tn
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the GF of S. We are interested in deciding if it is possible to write fS as a short
GF with polynomial length for a variety of sets S coming from Combinatorics,
Number Theory and Discrete Geometry. Showing that some sets do not have short
GFs of polynomial lengths turns out to be a surprisingly difficult problem. We are
also interested in operations on short GFs and how they affect the short GFs’
lengths.

Our approach is motivated by ideas from the study of integer points in convex
polyhedra in fixed dimension (see Section 12.1). All such polyhedra turn out
to have (multivariate) short GFs of polynomial lengths (see Definition 3.4 and
Barvinok’s Theorem 3.16 below). We refer to [B2, B3] for a thorough review of
past and recent work on short GFs in Discrete Geometry, and to Section 12 for
connections to Arithmetic Combinatorics and other areas.

1.2. Squares. Define the truncated theta function ϑr to be the GF over the
squares 6 2r:

ϑr (t) =
2r/2∑
n=0

tn2
.

CONJECTURE 1.1 (= Conjecture 9.1). For every fixed k > 1, the truncated theta
function ϑr (t) cannot be written a short GF of length poly(r) and index(ϑr ) 6 k.

The following result is the most surprising result of this paper:

THEOREM 1.2 (= Theorem 9.3). If #P 6⊆ FP/poly, then Conjecture 1.1 holds.

In other words, if each truncated theta function can be represented as a short
GF of polynomial length and bounded index, then any counting problem can be
solved with polynomial size circuits. See Section 12.5 for more on the complexity
assumption, and Section 9 for the related results on primes.

1.3. One variable operations. Recall that we only consider GFs of finite sets.
We define operations on GFs based on their supports. For example, taking the
union of two GFs f (t) and g(t) means finding another GF h(t) with supp(h) =
supp( f ) ∪ supp(g). We can similarly define other Boolean operations.

Short GFs are known to be very versatile and useful in applications. Notably,
given a bounded number of short GFs, all Boolean operations on them can be
performed in polynomial time (see [B3, BP]). The result is again a short GF with
polynomial length. However, when the number of short GFs is large, no such
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polynomial time procedures are known. The following result gives a strong
evidence against such possibility:

THEOREM 1.3 (= Theorem 8.1). If #P 6⊆ FP/poly, then taking intersection/
union of many short GFs does not preserve polynomiality in length.

This says taking union of many short GFs is hard structurally. It should be
compared to an earlier result by Woods, which says that taking union of many
short GFs is hard algorithmically, assuming P 6= NP (see Theorem 3.21 and the
following remark).

Next, define the Minkowski sum f ⊕ g of two GFs f (t) and g(t), to be the GF
h(t) with supp(h) = supp( f )⊕ supp(g) = {a + b | a ∈ supp( f ), b ∈ supp(g)}.

THEOREM 1.4 (= Theorem 8.4). If #P 6⊆ FP/poly, then taking Minkowski sum
of two short GFs does not preserve polynomiality in length.

Giving precise formulations of these results requires some effort, see Section 8.
Let us mention that in both theorems we can substitute the complexity
assumptions with Conjecture 1.1. These results show strong limitations of
the ‘short GF technology’ from a geometric point of view (see Section 12.1).
Below we give further evidence of this phenomenon.

1.4. Projections. For multivariate short GFs, taking projections is a key
operation. Projection is crucial for applications such as Integer Programming (see
for example, [Eis, Kan, NP2]), and theoretical considerations such as Presburger
Arithmetic (see for example, [B2, NP1, W2] and Section 3.2). In a crucial
development, Barvinok and Woods [BW] showed that given a polytope P in
bounded dimension, the projections of its integer points on some subspace have
a short GF of polynomial length, which can also be computed in polynomial
time (Theorem 3.19). This result exploited the polytopal structure of P and its
convexity in a crucial way. Unfortunately, these are also the reasons that prevent
their result to apply on a nongeometric level. In other words, the algorithm by
Barvinok and Woods cannot produce a short GF for the projections if the input is
presented only as short GF, without a polytope associated to it.

An important negative result by Woods in fact shows that given only a multi-
variate short GF f (t), computing its projection is coNP-hard (see Theorem 3.21
and Remark 3.22). The following theorem is the central result of the paper. Roug-
hly speaking, it both weakens the assumptions and strengthens the conclusions of
Woods’s theorem.
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THEOREM 1.5 (= Corollary 7.2). If #P 6⊆ FP/poly, then taking projection of a
short GF does not preserve polynomiality in length.

This says that in general not only we cannot compute the projection of a
short GF in polynomial time, any short GF that represents the projection must
have a super-polynomial length. In other words, the barriers of using the ‘short
GF technology’ in this case are structural rather than algorithmic.

The next result can be viewed as a refinement of the previous theorem, giving
a precise characterization of complexity of projections.

THEOREM 1.6 (= Theorem 6.4). Repeated projections of short GFs can encode
every language in the nonuniform polynomial hierarchy PH/poly. In fact, they
form a hierarchy that coincides with PH/poly.

We postpone the precise formulations of these results, especially of
Theorem 1.6 where the technicalities are unavoidable. Let us also mention
Proposition 7.3 which can be viewed as a partial converse of Theorem 1.5
(see Section 9.3). (By itself, Conjecture 1.1 does not necessarily imply that
#P 6⊆ FP/poly, so a stronger assumption is used in Proposition 7.3.)

1.5. Paper structure. The results in this paper are largely self-contained and
require little more than a few technical lemmas from [BP], which are all stated
in Section 3 and can be treated as black boxes. We do however employ a fair
amount of definitions and notations (Sections 2 and 3). We also assume the reader
is familiar with basic Computational Complexity, which goes to the heart of this
paper. We refer the reader to [MM, Pap] for the standard results and notation, and
to [Aar] for a comprehensive recent survey.

Our Section 4 is the key as it describes the connection between languages and
short GFs. From this point on, the reader can proceed to the development of the
short GF hierarchy, culminating in the proofs of theorems 1.5 and 1.6 (Sections 5–
7). Alternatively, modulo a few definitions in earlier section, the reader proceed
directly to the proof of theorems 1.3 and 1.4 in Section 8. Similarly, the reader can
also proceed to study complexity of squares and primes (Section 9). In Section 10
we investigate more technical questions on relative complexity of short GFs, and
in Section 11 we give a proof of a technical Lemma 4.10. We conclude with final
remarks and open problems in Section 12.

2. Notations

We use N = {0, 1, 2, . . .}.
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All constant vectors are denoted as a, b, c, d, n, and so on. The all 1 vector is also
denoted by 1.
Matrixes are denoted as A, B,C , and so on.
Single variables are denoted as x, y, z, and so on; vectors of variables are denoted
as x, y, z, and so on.
We write x 6 y if x j 6 y j for all i .
For two tuples x and t both of length n, we denote by tx the monomial t x1

1 . . . t xn
n .

GF is an abbreviation for ‘generating function’.
Single-variable GFs are denoted as f (t), g(t), h(t), p(t), q(t), and so on.
Multivariable GFs are denoted as f (t), g(t), h(t), p(t), q(t), and so on.
The support of a GF f (t) is denoted by supp( f ).
The symbols ¬,∧ and ∨ denote negation (complement), conjunction and
disjunction.
A polyhedron is an intersection of finitely many closed half-spaces in Rn .
A polytope is a bounded polyhedron.
Polyhedra and polytopes are denoted as P, Q, R, and so on.
The function `(·) denotes the bit length of a number, vector, matrix, GF, or a
logical formula when written in binary.
For a polyhedron Q described by a linear system Ax 6 b, we denote by `(Q) the
total length `(A)+ `(b).

3. Polynomial time operations on short GFs

3.1. Preliminaries on short GFs. A power series f (t) =
∑
αxtx is called a

GF if each coefficient αx is either 0 or 1. When needed, we will write f (t) =
∑

tx

to emphasize that f is a GF.

DEFINITION 3.1. The support of an n-variable GF g(t) =
∑

tx is defined as:

supp(g) := {x ∈ Zn
: [tx
]g(t) = 1}.

Here [tx
] denotes the coefficient of the monomial tx in g(t).

DEFINITION 3.2. Given a multivariable GF f (t,u) =
∑

txuy with x ∈ Zm,

y ∈ Zn , the x-projection g = projx( f ) is the unique GF g(t) =
∑

tx with support
satisfying

supp(g) = {x ∈ Zm
: ∃y ∈ Zn (x, y) ∈ supp( f )}.

If f satisfies the extra property that for every x ∈ Zm there is at most one y ∈
Zn such that (x, y) ∈ supp( f ), then projx( f ) is called the x-specialization of f ,
denoted by specx( f ).
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DEFINITION 3.3. Consider two power series f (t) =
∑
αxtx and g(t) =

∑
βxtx.

The Hadamard product of f and g, denoted by f ?g, is another GF h(t) =
∑
γxtx

with
γx = αxβx for every x.

If f and g are GFs then the above condition is equivalent to supp(h) = supp( f )∩
supp(g).

DEFINITION 3.4. For a rational function in n variables t = (t1, . . . , tn) of the
form

(>) f (t) =
M∑

i=1

ci tai

(1− tbi1) · · · (1− tbiki )
,

the length `( f ) of f is defined as

`( f ) =
∑

i

dlog2 |pi qi | + 1e +
∑
i, j

dlog2 ai j + 1e +
∑
i, j,m

dlog2 bi jm + 1e,

where ci = pi/qi ∈ Q, ai , bi j ∈ Zn, bi j 6= 0 and ta
= ta1

1 · · · t
an
n if a = (a1, . . . ,

an) ∈ Zn .

DEFINITION 3.5. For a power series f (t) =
∑
αxtx given in the form (>), the

index of f is defined as

index( f ) = max{ki : i = 1, . . . ,M},

where ki is the number of factors in the denominator of the i th summand.

DEFINITION 3.6. For every number of variables n and integer s, we define two
classes:

GF n,s = {GFs g(t) given in the form (>) with index(g) 6 s} (3.1)

and

GF ∗n,s = {power series g(t) given in the form (>) with index(g) 6 s}. (3.2)

Members of GF n,s are called short GFs, while those of GF ∗n,s are called short
power series.

We recall the following important results from [BP] (see also [BW]):

THEOREM 3.7 [BP]. Fix a class GFm,s . Given a short GF f (t) ∈ GFm,s of finite
support. We can compute in time poly(`( f )) the following:
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(1) the norm N = max{|x| : x ∈ supp( f )}; (Here |x| can be any polyhedral norm
on x, including |x|∞ and |x|1.)

(2) the cardinality M = |supp( f )|, which is equal to f (1);

(3) the substitution q(u) = f (t(u)), where t is substituted by monomials in some
other variables u = (u1, . . . , un). Furthermore, we have q(u) ∈ GF ∗n,s .

THEOREM 3.8 [BP]. Fix two classes GFm,s1 and GFm,s2 . Given f (t) ∈ GFm,s1

and g(t) ∈ GFm,s2 of finite supports, we can compute in time poly(`( f ) + `(g))
the following:

(1) a short GF h(t) with supp(h)= supp( f )∩ supp(g), that is, h(t)= f (t)?g(t);

(2) a short GF k(t) with supp(k) = supp( f ) ∪ supp(g);

(3) a short GF p(t) with supp(p) = supp( f )\supp(g).

Moreover, we have h, k, p ∈ GFm,s1+s2 .

REMARK 3.9. In fact, a more general version of Theorem 3.8 part (1) was shown
in [BP], which also allows taking f ? g for short power series.

The following is the reason why we emphasized the bounded dimension n and
index s in Definition 3.6.

PROPOSITION 3.10. Fix n and s. Given a short power series f (t) =
∑
βxtx

in GF n,s and a vector a0 ∈ Zn , the coefficient βa0 can be computed in time
poly(`( f )+ `(a0)).

Proof. We let g(t) = ta0 and define h(t) = f (t) ? g(t). Clearly, we have h(t) =
βa0 ta0 , which implies βa0 = h(1). Applying Theorem 3.8, we can compute h(t)
(see also Remark 3.9). By Theorem 3.7, we can compute h(1). All can be done in
time poly(`( f )+ `(a0)).

REMARK 3.11. A similar result for n and s unbounded is unlikely to hold,
considering the fact that KNAPSACK is NP-complete. An instance of
KNAPSACK asks if an equation a = bx is solvable, where x = (x1, . . . ,

xn) ∈ N are variables, and a ∈ N, b ∈ Nn are given as input. This is equivalent to
checking if [ta

] f 6= 0, where:

f (t) =
1

(1− tb1) · · · (1− tbn )
.

https://doi.org/10.1017/fms.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.29


D. Nguyen and I. Pak 8

Here n is not bounded. Note that KNAPSACK has a polynomial time algorithm
if a and b are given in unary. In our case, short GFs are encoded in binary.

If f is a short GF, Proposition 3.10 allows us to decide in polynomial time
whether a0 ∈ supp( f ). Now one may ask whether is it still easy to decide if a
point a0 lies in a projection of f . The answer is still positive:

PROPOSITION 3.12. Fix m, n and s. Given a short GF f (t,u) =
∑

txuy
∈

GFm+n,s of finite support and a vector a0 ∈ Zm , checking whether a0 ∈

supp(projx( f )) can be done in time poly(`( f )+ `(a0)). Here x ∈ Zm, y ∈ Zn .

Proof. Let g(t) = f (t, 1). Clearly, we have a0 ∈ supp(projx( f )) if and only if
the coefficient of ta0 in g(t) is nonzero. By Theorem 3.7, we can compute g in
time poly(`( f )). By Proposition 3.10, we can compute [ta0]g in time poly(`(g)+
`(a0)) 6 poly(`( f )+ `(a0)).

In order to further study the projections of short GFs, we need a few tools.

3.2. Presburger arithmetic and short GFs. Presburger arithmetic (PA) is
the first order theory on the integers that allows only additions and inequalities.
Each atom (smallest term) in PA is an integer inequality of the form

a1x1 + · · · + an xn 6 b,

where x = (x1, . . . , xn) are integer variables, and a1, . . . , an, b ∈ Z are integer
constants. A general PA formula is formed by taking Boolean combinations
(negations, conjunctions, disjunctions) of such atoms, and also applying
quantifiers (∀/∃) over different variables. A sentence in PA is a formula with all
variables quantified. The length `(F) of a PA formula F is the total length of all
symbols and constants in F written in binary.

EXAMPLE 3.13. Let P, Q ⊆ Rn be two rational polyhedra given by two systems
A1x 6 b1 and A2x 6 b2. Then the set of integer points in P ∪ Q is described by
the PA formula:

F = {x : A1x 6 b1 ∨ A2x 6 b2}.

Here we are identifying the PA formula F with the set that it defines.

EXAMPLE 3.14. The PA formula F = {x : ∀y(5y > x + 1) ∨ (5y 6 x − 1)}
determines the set of nonmultiples of 5.
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DEFINITION 3.15. For a set S ⊆ Zn , denote by F(S; t) the GF

F(S; t) =
∑
x∈S

tx.

PA formulas are very well-suited to capture integer points in polyhedra. The
following cornerstone result by Barvinok says that integer points in a polyhedron
in bounded dimension can be effectively enumerated by a short GF.

THEOREM 3.16 [B1]. Fix n. Let Q ⊆ Rn be a rational polyhedron described by
Ax 6 b. There exists a short GF f ∈ GF n,n with F(Q ∩Zn

; t) = f (t), which can
be computed in time poly(`(Q)). (This implies that `( f ) 6 poly(`(Q)).)

We mention a useful tool about quantifier free PA formulas:

PROPOSITION 3.17 [W1, Proposition 5.2.2]. Fix n. Let Φ(x) be a Boolean
combination of linear inequalities in integer variables x = (x1, . . . , xn). Then
we have:

Φ(x) = true ⇐⇒

r∨
i=1

x ∈ Pi ∩ Zn,

where P1, . . . , Pr ⊆ Rn are disjoint polyhedra and r 6 poly(`(Φ)). The system
defining each Pi can be computed in time poly(`(Φ)).

Theorem 3.16 can be generalized to quantifier free PA formula in bounded
dimension:

THEOREM 3.18 [W1, Proposition 5.3.1]. Fix n. Let G = {x ∈ Zn
: Φ(x)} be a PA

formula with Φ a quantifier free Boolean combination of linear inequalities in x.
There exists a short GF g ∈ GF n,n with F(G; t) = g(t), which can be computed
in time poly(`(Φ)).

Proof. By Proposition 3.17, we can rewrite Φ as a disjoint union of polyhedra
P1, . . . , Pr with r 6 poly(`(Φ)). The system defining each Pi can be computed
in polynomial time. Applying Theorem 3.16, we get a short GF fi ∈ GF n,n of
polynomial length for each Pi . Summing up all fi , we get a short GF g ∈ GF n,n

of length poly(`(Φ)) for G.

Next, we consider PA formulas with quantifiers. In the simplest case, F encodes
the projection of integer points in a polyhedron. For this, we have:
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THEOREM 3.19 [BW, NP2]. Fix m, n ∈ N. Let Q ⊆ Rm be a rational polyhedron
given by a system Ax 6 b, and T : Zm

→ Zn a linear map. Consider the PA
formula

G = {y ∈ Zn
: ∃x ∈ Zm(x ∈ Q) ∧ (y = T x)}.

Then there exists a short GF g with F(G; t) = g(t), which can be computed in
time poly(`(Q) + `(T )). Furthermore, we have g ∈ GF n,s , where s = s(m) is a
constant.

REMARK 3.20. The above theorem was proved in [BW] for the case when P
is a polytope. It was recently extended in [NP2] to all (possibly unbounded)
polyhedra.

However, for general ∃-formulas, finding a short GF for F becomes coNP-
hard:

THEOREM 3.21 [W1, Theorem 5.3.2]. Let Φ(x, y) be a quantifier free Boolean
combination of linear inequalities in x and y (singletons). Consider

F = {y ∈ Z : ∃x ∈ ZΦ(x, y)}.

Then computing a short GF for F is coNP-hard.

REMARK 3.22. By Theorem 3.18, we still can find a short GF of length
poly(`(Φ)) for Φ(x, y). So this result says that projecting a short GF is hard
algorithmically. This should be compared to our Theorem 1.5, which says that
projecting short GF is hard structurally. Actually, by Proposition 3.17, we can
also decompose Φ(x, y) into a union of polynomially many polygons Pi ⊆ R2.
By Theorem 3.19, the projection of integer points in each Pi on x has a short GF,
which can be found in polynomial time. So taking union of these short GFs is
again hard algorithmically. This should be compared to Theorem 1.3.

4. Short GFs and the class P/poly

4.1. Encoding languages in P/poly as short GFs. For technical reasons
regarding the convergence of GFs under numerical evaluation, we consider only
GFs with support in Nn from this section onwards. Theorem 3.8 still applies to
short GFs supported on Nn .

DEFINITION 4.1. For every language L ∈ {0, 1}∗, and every r > 0, we denote by
Lr the segment

Lr := {̃x ∈ {0, 1}r : x̃ ∈ L}. (4.1)
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For x̃ ∈ Lr , let x be the corresponding integer with binary representation x̃ . We
will also use Lr to denote the set of all such x with x̃ ∈ Lr .

LEMMA 4.2. For every language L ∈ P/poly, and every r > 0, the segment Lr

can be characterized in PA as:

x̃ ∈ Lr ⇐⇒ x ∈ [0, 2r )∧ [∃y ∈ [0, 2p)∀z ∈ [0, 2q)3 : Φr (x, y, z)], (4.2)

where Φr is a quantifier free PA expression in x, y ∈ N and z ∈ N3. Moreover, we
have p, q, `(Φr ) 6 polyL(r). (We denote by `(Φr ) the total length of all symbols
Φr , written in binary. The notation polyL(r) denotes a polynomial in r , with the
polynomial degree depending on the language L.) If in addition L ∈ P, then there
is an algorithm to compute p, q and Φr in time polyL(r).

Proof. By definition of the class P/poly, there is a Boolean circuit Cr such that:

Lr = {̃x ∈ {0, 1}r : Cr (̃x ) = true}.

Here the circuit Cr has r input gates, and as many as p 6 polyL(r) noninput
gates, each with in-degree at most 2. We encode the values of the noninput gates
as a Boolean string ỹ ∈ {0, 1}p. Let x̃ = (x1, . . . , xr ) and ỹ = (y1, . . . , yp). By a
standard reduction (see for example [MM, Pap]), we can encode the computation
of Cr by a Boolean formula F in 3-conjunctive normal form. Explicitly, we have:

Lr = {̃x ∈ {0, 1}r : ∃ỹ ∈ {0, 1}p F (̃x, ỹ) = true}, (4.3)

where
F (̃x, ỹ) =

∧
k

(ak ∨ bk ∨ ck). (4.4)

Here each ak, bk, ck is a literal in the set {xi ,¬xi , y j ,¬y j : 1 6 i 6 r, 1 6 j 6 p}.
Let x ∈ [0, 2r ) and y ∈ [0, 2p) be the integers corresponding to x̃ and ỹ,

respectively. Every literal xi corresponds to the i th digit in x being 1, and ¬xi

corresponds that digit being 0. (The least significant digit in x corresponds to x0

in x̃ .) In other words, xi is true or false respectively when bx/2i−1
c is odd or even.

The same applies to yi and y. Observe that t = bx/2i−1
c is the only integer that

satisfies x/2i−1
− 1 < t 6 x/2i−1. Let q = max(r, p) 6 poly(r). Each term xi or

¬xi can be coded with an extra ∃z quantifier as follows:

xi ⇐⇒ ∃z ∈ [0, 2q) :

{
2z + 1 > x/2i−1

− 1
2z + 1 6 x/2i−1

}
,

¬xi ⇐⇒ ∃z ∈ [0, 2q) :

{
2z > x/2i−1

− 1
2z 6 x/2i−1

}
.

(4.5)
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Here {·} denotes a system (conjunction) of inequalities. Analogously, each y j or
¬y j can be coded using ∃z. Note that the two strict inequalities in (4.5) can be
sharpened by multiplying both sides with 2i−1 to make all coefficients integer, and
add 1 to the RHS.

Now we show how to code (4.4) using ∀z with z ∈ N3. For each clause (ak ∨

bk ∨ ck), we consider its negation (¬ak ∧ ¬bk ∧ ¬ck). Each term ¬ak,¬bk,¬ck

is still one of xi ,¬xi , yi ,¬yi . By (4.5), we have

(¬ak ∧ ¬bk ∧ ¬ck) ⇐⇒ ∃z ∈ [0, 2q)3 : Φk(x, y, z),

where z ∈ N3, and Φk is a conjunction of six inequalities. Taking negation, we
have:

(ak ∨ bk ∨ ck) ⇐⇒ ∀z ∈ [0, 2q)3 : ¬Φk(x, y, z),
⇐⇒ ∀z ∈ [0, 2q)3 : Ψk(x, y, z),

where Ψk is a disjunction of six inequalities. Taking conjunction over all k in (4.4),
we have:

F (̃x, ỹ) ⇐⇒ ∀z ∈ [0, 2q)3 : Φr (x, y, z), (4.6)

where
Φr (x, y, z) =

∧
k

Ψk(x, y, z). (4.7)

Substituting (4.6) into (4.3), we have (4.2). If we assume in addition that L ∈ P,
then the circuit Cr can be built from a Turing Machine in time polyL(r), so the
expression Φr can also be found in time polyL(r). This completes the proof.

DEFINITION 4.3. Given f = F(S; t), where S is a subset of a finite box B ⊂ Nn .
The finite complement B\ f is F(B\S; t).

DEFINITION 4.4. Given f1 = F(S1; t), . . . , fk = F(Sk; t) with S1, . . . , Sk ⊆ Nn ,
the intersection f1 ∩ · · · ∩ fk is F(S1 ∩ · · · ∩ Sk; t). The union f1 ∪ · · · ∪ fk is
F(S1 ∪ · · · ∪ Sk; t).

THEOREM 4.5. For every language L ∈ P/poly and r > 0, there exist a finite box
Br and short GF fr (t, u, v) ∈ GF 5,5 with supp( fr ) ⊆ Br , so that

F(Lr ; t) = specx(Br\projx,y( fr )) (4.8)

and `(Br ), `( fr ) 6 polyL(r). (Here `(Br) denotes the total bit length of all sides
in Br , written in binary.) Furthermore, there exist polynomially many short GFs
pr,1, . . . , pr,kr ∈ GF 2,s of finite supports, each of length polyL(r), so that:

projx,y( fr ) = pr,1 ∪ · · · ∪ pr,kr . (4.9)
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Here GF 2,s is some fixed class that does not depend on L. If we assume in addition
that L ∈ P, then there is also an algorithm to compute Br , fr and each pr,i in time
polyL(r).

Proof. For the notations proj, spec,∪ and \, we refer back to Definitions 3.2, 4.3
and 4.4. By the previous lemma, there is a PA expressionΦr satisfying (4.2). First,
define

Br = {(x, y) : x ∈ [0, 2r ), y ∈ [0, 2p)},

Dr = {(x, y, z) : x ∈ [0, 2r ), y ∈ [0, 2p), z ∈ [0, 2q)3},

where r, p and q are from (4.2). Define:

fr (t, u, v) =
∑

(x,y,z)∈Dr
¬Φr (x,y,z)

t x u yvz. (4.10)

Recall that Φr is a quantifier free PA expression with length polyL(r). Applying
Theorem 3.18 to ¬Φr , we can write fr as a short GF in GF 5,5 of finite support,
which has length `( fr ) 6 poly(`(Φr )) 6 polyL(r). For the rest of the proof, we
always assume (x, y, z) ∈ Dr . We will simply write ∃z instead of ∃z ∈ [0, 2q)3.
Projecting fr on (x, y), we have:

projx,y( fr ) =
∑

(x,y):∃z¬Φr (x,y,z)

t x u y. (4.11)

Taking the complement of projx,y( fr ), which lies within the box Br , we have:

Br\projx,y( fr ) =
∑

(x,y):∀zΦr (x,y,z)

t x u y. (4.12)

Recall that in the proof of Lemma 4.2, the variable y describes the values of
noninput gates in the circuit Cr , with input gates coming from x . Since the values
of noninput gates are uniquely determined by the input gates, for every x that
satisfies Cr we have a unique y. Substituting u ← 1, the RHS in (4.12) becomes
F(Lr ; t). We obtain (4.8).

We proceed to show (4.9). Since ¬Φr is quantifier free with five variables, we
can apply Proposition 3.17 on it and get:

¬Φr (x, y, z) ⇐⇒

kr∨
i=1

(x, y, z) ∈ Pr,i ∩ N5,

where Pr,1, . . . , Pr,kr ⊆ R5 are disjoint polytopes (in the box Dr ) and kr 6
poly(`(Φr )) 6 polyL(r). Each polytope Pr,i also satisfies `(Pr,i) 6 poly(r).
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Therefore:

∃z¬Φr (x, y, z) ⇐⇒

kr∨
i=1

∃z[(x, y, z) ∈ Pr,i ∩ N5
]. (4.13)

Combined with (4.11), we see that (x, y) ∈ supp(projx,y( fr )) if and only if it lies
in the projection of some Pr,i ∩ N5. By Theorem 3.19, for each i , we can find a
short GF pr,i ∈ GF 2,s for the projection of Pr,i ∩ N5. In other words, we have
pr,i ∈ GF 2,s that satisfies:

supp(pr,i) = {(x, y) : ∃z(x, y, z) ∈ Pr,i ∩ N5
}.

Here s is an absolute constant because each Pr,i has (fixed) dimension 5. We also
have `(pr,i) 6 poly(`(Pr,i)) 6 poly(r). The union of all short GFs pr,i contains
exactly all (x, y) satisfying (4.13). From (4.11) and (4.13), we have:

projx,y( fr ) = pr,1 ∪ · · · ∪ pr,kr .

This proves (4.9) and completes the proof.

EXAMPLE 4.6. Since SQUARES and PRIMES are both in P, we can represent
all squares or primes up to 2r in the form (4.8), with fr and Br computable in time
poly(r).

REMARK 4.7. Even though specx(Br\projx,y( fr )) may seem complicated, the
specialization and complement are ‘inexpensive operations’, which can be
performed in polynomial time by Theorems 3.7 and 3.8. The main complexity
resides in taking the projection of f .

REMARK 4.8. The same representation (4.8) applies to every language L in
the complexity class UP/poly. Such a language is characterized as follows. For
every r , there is a nondeterministic polynomial time Turing machine that accepts
only x ∈ Lr , each with a unique accepting path. Given L ∈ UP/poly, we
can obtain (4.8) by the same argument as above. In fact, (4.8) is an equivalent
characterization of the class UP/poly. Indeed, assume Lr can be represented
as (4.8). Given fr , for any x ∈ Lr there should be a unique certificate y
such that (x, y) ∈ Br\projx,y( fr ), which is checkable in polynomial time by
Proposition 3.12.

4.2. Compressing short GFs of finite supports. We describe a technical tool
which will be useful later. This section can be skipped at first reading.
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DEFINITION 4.9. Consider N = 2r and a vector x = (x1, . . . , xd) ∈ Nn with
xi ∈ [0, N ) for all 1 6 i 6 d . We define the τN map on x as:

τN (x) = x1 + N x2 + · · · + N n−1xd ∈ [0, N n).

For an array of vectors x = (x1, . . . , xn) with xi ∈ [0, N )ni , we define:

τN (x) = (τN (x1), . . . , τN (xk)) ∈ [0, N n1)× · · · × [0, N nk ).

Finally, for a set S ⊆ [0, N )n1×· · ·×[0, N )nk , we define τN (S) = {τN (x) : x ∈ S}.

The following technical tool allows us to reduce the number of variables in a
short GF of finite support.

LEMMA 4.10. Fix k, s and n1, . . . , nk ∈ N. Let n = n1 + · · · + nk .

(a) Compressing. Given a short GF g(t) =
∑

tx1
1 . . . t

xk
k of finite support in the

class GF n,s , there exist an N = 2r with supp(g) ⊆ [0, N )n1 × · · · × [0, N )nk and
a short GF f (u) =

∑
uz1

1 . . . u
zk
k in the class GF k,s so that

supp( f ) = τN (supp(g)) ⊆ [0, N n1)× · · · × [0, N nk ). (4.14)

Both f and N can be computed in time poly(`(g)) with `( f ), log N 6 poly(`(g)).

(b) Decompressing. Conversely, given f (u) =
∑

uz1
1 . . . u

zk
k ∈ GF k,s and N = 2r

such that
supp( f ) ⊆ [0, N n1)× · · · × [0, N nk ),

there exists g(t) =
∑

tx1
1 . . . t

xk
k ∈ GF n,n+s with supp(g) ⊆ [0, N )n1 × · · · ×

[0, N )nk which satisfies (4.14). The short GF g can be computed in time
poly(`( f )+ log N ).

Proof for the lemma is technical and is postponed until Section 11. We note that
the compression map τN in Definition 4.9 is similar to that used in the polynomial
identity testing algorithm of Klivans and Spielman [KS]. Using Lemma 4.10, we
can reduce the number of variables of fr in (4.8) down to 3.

COROLLARY 4.11. For every language L ∈ P/poly and r > 0, there exist a finite
box Br and short GF fr (t, u, v) ∈ GF 3,5 with supp( fr ) ⊆ Br , so that (4.8) holds.
The rest is identical to Theorem 4.5.

Proof. We have (4.8) with fr (t, u, v) =
∑

t x u yvz
∈ GF 5,5 a short GF of finite

support in five variables (t, u, v1, v2, v3). Using part (a) of Lemma 4.10, we can
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compress z into a single-variable w, leaving both x and y unchanged. In other
words, t x u yvz becomes t x u yvw. Note that projx,y is not affected by compression.
This gives us a short GF f̃r ∈ GF 3,5 with

projx,y( f̃r ) = projx,y( fr ) and `( f̃r ) 6 poly(`( fr )) 6 poly(r).

So we can substitute f̃r for fr in (4.8).

5. Short GFs and the nonuniform polynomial hierarchy

The nonuniform polynomial hierarchy PH/poly starts with P/poly =
ΣP

0 /poly = ΠP
0 /poly at the 0th level. For k > 0, a language L is in ΣP

k /poly if
for every r > 0, there is a circuit Cr of size polyL(r) so that for every string x̃ of
length r we have:

x̃ ∈ Lr ⇐⇒ ∃ỹ1∀ỹ2 . . . Qk ỹk : Cr (x, y1, . . . , yk) = 1.

Here Q1, . . . , Qk are k alternating quantifiers with Q1 = ∃, and ỹ1, . . . , ỹk are
binary strings of length polynomial in r . For ΠP

k /poly the alternating quantifiers
are reversed (Q1 = ∀). We have the following analogue to Lemma 4.2 for each
level in PH/poly:

LEMMA 5.1. For every languageL ∈ΣP
k /poly and r > 0, there exists a quantifier

free PA expression in k+4 variables x ∈ N, y ∈ Nk , z ∈ N3, so that x̃ ∈ Lr if and
only if:

x ∈ [0, 2r ) ∧ [Q1 y1 ∈ [0, 2p1) . . . Qk yk ∈ [0, 2pk )Qk+1z ∈ [0, 2q)3 : Φr (x, y, z)].
(5.1)

Here Q1, . . . , Qk+1 are k + 1 alternating quantifiers with Q1 = ∃. Moreover, we
have p1, . . . , pk, q, `(Φr ) 6 polyL(r). For the case L ∈ ΠP

k /poly, the quantifiers
Qi are reversed.

Proof. For simplicity, we prove the claim for L ∈ ΣP
1 = NP/poly. The higher

levels ΣP
k /poly and ΠP

k /poly can be argued similarly. Since L ∈ NP/poly, for
each r , there is a circuit Cr of size polyL(r) such that

x̃ ∈ Lr ⇐⇒ ∃̃c ∈ {0, 1}s : Cr (̃x, c̃ ) = 1, (5.2)

where s 6 polyL(r) is the certificate length. The circuit Cr also has p noninput
gates with p 6 polyL(r). Let p′ = s+ p. Note that the certificate gates c̃ ∈ {0, 1}s

and the noninput gates ỹ ∈ {0, 1}p can be coded by a single integer y ∈ [0, 2p′).
The argument now proceeds similarly to Lemma 4.2 with p′ in place of p.
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REMARK 5.2. In [Grä, Lemma 5.2], Grädel gave a similar representation to (5.1).
In his representation, each string x̃ = (x1, . . . , xr ) ∈ {0, 1}r is not simply mapped
to its binary integer value, but to:

x = px1
1 . . . pxr

r q1−x1
1 . . . q1−xr

r ,

where p1, . . . , pr , q1, . . . , qr are the first 2r prime numbers.

REMARK 5.3. From this result, we see that the problem of deciding PA sentences
of the form ∃y∀zΦ(y, z) is at least NP-hard. Schöning [Sch] showed that the
problem is NP-complete even for the case ∃y∀zΦ(y, z), that is, when both
variables are singletons.

DEFINITION 5.4. Let f =
∑

txuy
= F(S; t,u), where S is a subset of a finite box

I × J . The anti-projection projx( f ) is F(I ; t) − projx( f ), where the projection
projx( f ) is from Definition 3.2. The box I × J is always specified before taking
the anti-projection.

THEOREM 5.5. For every language L ∈ ΣP
k /poly and r > 0, there exists a short

GF fr ∈ GF k+2,k+4 of the form fr (t, u1, . . . , uk, v) =
∑

t x u y1
1 . . . u

yk
k v

z such that

F(Lr ; t) = projx

(
projx,y1

(projx,y1,y2
(· · · ( fr ) · · ·))

)
, (5.3)

where the k alternating projections and anti-projections are taken in a finite box

Br = [0, 2r )× [0, 2p1)× · · · × [0, 2pk )× [0, 2q).

Moreover, we have p1, . . . , pk, q, `( fr ) 6 polyL(r). For L ∈ ΠP
k /poly, the

projections and anti-projections are reversed.

Proof. By Lemma 5.1, we can represent Lr in the form (5.1). Applying the
same argument in Theorem 4.5, we get fr (t, u1, . . . , uk, v) =

∑
t x u y1

1 . . . u
yk
k vz
∈

GF k+4,k+4 that satisfy (5.3). Applying Lemma 4.10(a), we can compress the last
three variables vz

= v
z1
1 v

z2
2 v

z3
3 into just one variable vw without affecting the

projections (see the proof of Corollary 4.11). This reduces fr to a short GF in
GF k+2,k+4.

REMARK 5.6. If in addition L ∈ PH, then both Φr and fr in Lemma 5.1 and
Theorem 5.5 can be computed in time polyL(r). Indeed, if L ∈ PH, the circuit Cr

for Lr in Lemma 5.1’s proof can be automatically generated by some polynomial
time Turing Machine M . We can convert Cr to Φr in polynomial time, which
allows us to find fr .
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As a consequence, we obtain the following result.

COROLLARY 5.7. Assume we are given a0 ∈ N, a short GF f (t, u, v) =∑
t x u yvz

∈ GF 3,5, and a finite box B ⊂ N3 with supp( f ) ⊆ B. Then deciding
whether a0 ∈ supp(h) is NP-complete, where h = projx(projx,y( f )). Here the
projection and anti-projection are taken within B.

Proof. If a0 ∈ supp(h), there exists some b0 so that (a0, b0) lies in the support of
projx,y( f ). Since projx,y( f ) is taken within B, which is bounded, both a0 and b0

must have polynomial lengths. Given such a certificate b0, we can verify if (a0, b0)

lies in the support of projx,y( f ) in polynomial time, by applying Proposition 3.12.
Taking a negation, we can also check whether (a0, b0) lies in the anti-projection
projx,y( f ). This shows the problem is in NP.

The problem is also NP-hard. Indeed, let L be an NP language. Applying
Theorem 5.5 for the case L ∈ NP, we have F(Lr ; t) = projx(projx,y( fr )), where
fr is supported inside a box Br . By Remark 5.6, we can compute fr and Br in
polynomial time. So checking x ∈ Lr is equivalent to checking x ∈ supp(hr ),
where hr = projx(Br\projx,y( fr )).

REMARK 5.8. Compared to Proposition 3.12, we see that it is no longer easy to
check for membership after taking two separate projections on a short GF.

6. A hierarchy of generating functions

We introduce a hierarchy GH of languages expressible as projections of
generating functions. First, we define the lowest level G = ΣG

0 = ΠG
0 .

DEFINITION 6.1. For a language L ∈ {0, 1}∗, we say that L ∈ G if there is an
s > 0 so that for every r > 0, we can represent F(Lr ; t) = fr (t)where fr ∈ GF 1,s

and `( fr ) 6 polyL(r). In other words, every segment Lr can be represented as a
short GF of polynomial length in some fixed class GF 1,s .

We define higher classes ΣG
k and ΠG

k by taking repeated projections/anti-
projections.

DEFINITION 6.2. For a language L ∈ {0, 1}∗, we say that L ∈ ΣG
k if there is an

s > 0 so that for every r > 0, we can represent:

F(Lr ; t) = projx

(
projx,y1

(projx,y1,y2
(· · · ( fr ) · · · ))

)
, (6.1)
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where fr (t, u1, . . . , uk) =
∑

t x u y1
1 . . . u

yk
k ∈ GF k+1,s is supported inside a finite

box Br , with both `(Br ), `( fr ) 6 polyL(r). The k alternating projections/anti-
projections are taken within Br . The class ΠG

k is defined similarly, with the
projections/anti-projections in (6.1) reversed. Alternatively, L ∈ ΠG

k if and only
if the complement language ¬L is in ΣG

k .

DEFINITION 6.3. GH is the union of all ΣG
k and ΠG

k for all k > 0.

We list some properties of GH:

• ΣG
k ,Π

G
k ⊆ ΣG

k+1 ∩ΠG
k+1 for all k > 0;

• G,ΣG
1 ,Π

G
1 ⊆ P/poly (Propositions 3.10 and 3.12);

• P/poly ⊆ UΠG
1 , the subclass of ΣG

2 with only specx and projx,y (Theorem 4.5);

• in fact, UΠG
1 = UP/poly (Remark 4.8);

• ΣP
k /poly ⊆ ΣG

k+1,Π
P
k /poly ⊆ ΠG

k+1 for all k > 1 (Theorem 5.5).

The last property can actually be strengthened to:

THEOREM 6.4. ΣP
k /poly=ΣG

k+1 and ΠP
k /poly=ΠG

k+1 for every k > 1. So GH=
PH/poly, that is, GH is exactly the nonuniform version of PH.

Proof. Theorem 5.5 already showed inclusion in one direction. For the other
direction, assume L ∈ ΣG

k+1. From Definition 6.2, for every r > 0, we have:

F(Lr ; t) = projx

(
projx,y1

(projx,y1,y2
(· · · ( fr ) · · · ))

)
,

where fr is a short GF of length polyL(r) in some fixed class GF k+2,s . Here we are
taking k + 1 alternating projections and anti-projections on fr (x, y1, . . . , yk+1) =∑

t x u y1
1 . . . u

yk+1
k+1 within some finite box Br . Note that by Proposition 3.12, we can

check in polynomial time if (x, y1, . . . , yk) lies in the inner most projection/anti-
projection. So given fr as an advice string, we can decide if x ∈ Lr by calling
a ΣP

k oracle for the remaining k projections/anti-projections. This implies L ∈
ΣP

k /poly. The case L ∈ ΠG
k+1 is similar.

7. Short GFs have long projections

7.1. Proof of Theorem 1.5.

THEOREM 7.1. If #P 6⊆ FP/poly, then G ( P/poly.
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Proof. We saw in Section 6 that G ⊆ P/poly. Now we show P/poly is strictly
larger than G. Let #L be an #P-complete problem (for example, #3SAT), which
is outside of FP/poly by the assumption #P 6⊆ FP/poly. Associated to #L is a
polynomial time Turing machine M . Given x̃ ∈ {0, 1}r , #L asks for the number
of certificates c̃ ∈ {0, 1}r that satisfy M (̃x, c̃ ) = 1. Define a language:

M = {(̃x, c̃ ) : length(̃x ) = length(̃c ) and M (̃x, c̃ ) = 1}. (7.1)

(In general, the instance x̃ and certificate c̃ can have different lengths. However,
the Turing Machine M can always be modified to accept only c̃ and x̃ of equal
lengths.)
Since M runs in polynomial time, we also have M ∈ P/poly. We show that
M /∈ G.

Assume the contrary, that is, M ∈ G. Then there is a fixed s so that for every
r > 0, we have Mr = supp( fr ), where fr ∈ GF 1,s and `( fr ) 6 poly(r). Let x,
c ∈ [0, 2r ) be the integers corresponding to x̃, c̃ ∈ {0, 1}r . Then the concatenated
string (̃x, c̃ ) corresponds to x + 2r c. We assumed that there is an f2r ∈ GF 1,s

such that
`( f2r ) 6 poly(r) and

∑
(̃x ,̃c )∈M2r

t x+2r c
= f2r (t).

Given x̃ ∈ {0, 1}r , we must compute the number of c̃ ∈ {0, 1}r which satisfy
(̃x, c̃ ) ∈M2r . Define

gx(t) =
∑

06c<2r

t x+2r c
= t x 1− t22r

1− t2r . (7.2)

We have `(gx) 6 poly(r). We also have f2r ∈ GF 1,s and gx ∈ GF 1,1. Therefore,
by Theorem 3.8, the short GF hx = f2r ?gx can be computed in time poly(`( f2r )+

`(gx)) 6 poly(r). The number of certificates c̃ for x̃ is simply hx(1). This
substitution can be computed in time poly(r) by Theorem 3.7.

To summarize, the short GF f2r gives us a polynomial size circuit to solve #L
for all inputs x̃ ∈ {0, 1}r in time poly(r). We conclude that #L ∈ FP/poly, a
contradiction.

Now we can formulate Theorem 1.5 in precise terms:

COROLLARY 7.2. If #P 6⊆ FP/poly, then GH does not collapse to its 0th level
G. In other words, there is a sequence { fr }r>0 in some fixed class GF 2,s with
`( fr ) 6 poly(r) so that for every d, projx( fr ) cannot be written as a short GF
hr ∈ GF 1,d with `(hr ) 6 poly(r).
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Proof. Recall that G ⊆ P/poly ⊆ GH (Section 6). Now this follows from
Theorem 7.1.

7.2. A partial converse. One can ask if the above argument in the proof above
can be reversed, that is, if #P ⊆ FP/poly, does it imply that GH collapses to G?
We present below a weaker result.

Recall from Section 6 that UΠG
1 the subclass of ΣG

2 that uses only specx
and projx,y . In other words, L ∈ UΠG

1 if for every r > 0, we have F(Lr ; t) =
specx(projx,y( fr )) for some fr in some fixed class GF 3,s with `( fr ) 6 polyL(r).
We also know that UΠG

1 = UP/poly.

PROPOSITION 7.3. If #P ⊆ FP/poly, then GH collapses to UΠG
1 .

Proof. Since GH = PH/poly and UΠG
1 = UP/poly, it is equivalent to

show PH/poly = UP/poly. In fact, we have a stronger collapse, namely
PH/poly = P/poly. This follows easily from Toda’s theorem (see for example,
[AB, Section 9.3]). Indeed, by Toda’s theorem , we have PH ⊆ P#SAT. Replacing
the #SAT oracle by polynomial size circuits, we have PH ⊆ PP/poly

= P/poly.
Taking the nonuniform version of PH, we still have PH/poly ⊆ P/poly.

REMARK 7.4. The proposition implies that proving GH does not collapse to
between its 1st and 2nd levels is at least as hard as showing #P 6⊆ FP/poly.
However, there might still be hope of showing that GH does not collapse to its
0th level G, for example, by proving Conjecture 1.1.

REMARK 7.5. We do not claim that Proposition 7.3 is a new collapse result
assuming #P ⊆ FP/poly. Here we are only putting things in the context of short
GFs. Observe that #P ⊆ FP/poly implies NP ⊆ P/poly. In turn, NP ⊆ P/poly
implies PH = SP

2 (see [Cai]), which is the strongest collapse currently known,
assuming NP ⊆ P/poly. Note that the classical Karp–Lipton theorem (see for
example, [AB, MM, Pap]), says that NP ⊆ P/poly implies PH = ΣP

2 , which is
weaker because SP

2 ⊆ ΣP
2 ∩ΠP

2 .

8. Intersections, unions and Minkowski sums of short GFs

8.1. Proof of Theorem 1.3. Below is the precise statement of Theorem 1.3.

THEOREM 8.1. Assume #P 6⊆ FP/poly. Then there is an s > 0 and a family
of finite subsets {Sr }r>0 with each Sr = {pr,1, . . . , pr,kr } ⊂ GF 1,s so that the
following hold:
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(a) the total length of all pr,i in Sr is poly(r);

(b) for every fixed d, the intersection/union of all pr,i in Sr cannot be written as
a short GF hr ∈ GF 2,d with `(hr ) 6 poly(r).

Proof. By Theorem 7.1, there exists a language L ∈ P/poly which is outside of
G. By Theorem 4.5, for every r > 0, we can represent:

F(Lr ; t) = specx(Br\projx,y( fr )) and projx,y( fr ) = pr,1 ∪ · · · ∪ pr,kr ,

where fr ∈ GF 5,5, pr,i ∈ GF 2,s and `(Br ), `( fr ),
∑
`(pr,i) 6 poly(r). Here s

is some universal constant.
Let Sr = {pr,1, . . . , pr,kr}. This family {Sr } satisfies condition (a). We show that

the union of pr,i cannot be written as a short GF of length poly(r). Indeed, assume
there is d for which we can write projx,y( fr ) = pr,1 ∪ · · · ∪ pr,kr as hr ∈ GF 2,d

with `(hr ) 6 poly(r). By Theorem 3.8, the complement Br\hr can be written as
a short GF gr ∈ GF 2,2d of length poly(r). Taking the specialization specx(gr ),
we still have a short GF in GF 2,2d of length poly(r), which represents Lr . Since
this holds for all r > 0, we have L ∈ G, a contradiction. So the family {Sr } also
satisfies (b).

Note that each pr,i still has two variables x, y. By Lemma 4.10 part (a),
we can compress each pr,i into a single-variable short GF p̃r,i ∈ GF 1,s of
polynomial length. Then the new subsets S̃r = { p̃r,1, . . . , p̃r,kr } ⊂ GF 1,s still
satisfy condition (a). We show they still satisfy condition (b). Indeed, note that
compressing/decompression preserves intersection and union. So if p̃r,i has a
polynomial length union then Lemma 4.10 part (b) allows us the decompress it
into a polynomial length union of pr,i . This completes the proof for the case of
union. The case of intersection follows by taking complements of pr,i .

8.2. Proof of Theorem 1.4.

DEFINITION 8.2. Given two GFs a = F(S1; t) and b = F(S2; t) with S1, S2 ⊆ Nn ,
the Minkowski sum a ⊕ b is F(S1 ⊕ S2; t), where S1 ⊕ S2 is the usual Minkowski
sum of two point sets.

EXAMPLE 8.3. Given b = (b1, . . . , bn) ∈ Nn , the semigroup N〈b1, . . . , bn〉

consists of all nonnegative integer combinations of the b j ’s. Its generating
function is given by:

fb(t) =
1

1− tb1
⊕ · · · ⊕

1
1− tbn

.

Given such b ∈ Nn and a ∈ N, the KNAPSACK problem asks if a ∈ supp( fb).
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Below is the precise statement of Theorem 1.4.

THEOREM 8.4. Assume #P 6⊆ FP/poly. Then there is an s > 0 and two sequences
{ar }r>0, {br }r>0 ⊂ GF 1,s such that:

(a) `(ar )+ `(br ) 6 poly(r);

(b) for every fixed d, the Minkowski sum ar ⊕ br cannot be written as a short
GF hr in GF 1,d of length `(hr ) 6 poly(r).

Proof. By Theorem 8.1, there exists an s > 0, and for each r a subset

Sr = {pr,1, . . . , pr,kr } ⊂ GF 1,s with
∑

`(pr,i) 6 poly(r)

with the following property. For every fixed d , the union hr = pr,i ∪ · · · ∪ pr,kr

cannot be written as a short GF of length poly(r) in GF 1,d . Define

ar (t, u) =
kr∑

i=1

pr,i(t)ui
∈ GF 2,s (8.1)

and

br (t, u) =
kr−1∑
i=0

t0ui
=

1− ukr

1− u
∈ GF 1,1 ⊂ GF 2,s . (8.2)

Since
∑
`(pr,i) 6 poly(r), we also have `(ar )+ `(br ) 6 poly(r).

Consider the terms t x ukr in the Minkowski sum ar ⊕ br . From (8.1) and (8.2),
we have:

{x : (x, kr ) ∈ supp(ar ⊕ br )} =

kr⋃
i=1

supp(pr,i) = supp(hr ).

In other words, we have [ukr ](ar ⊕ br )(t, u) = hr (t). Define

gr (t, u) =
∑
x∈N

t x ukr =
ukr

1− t
.

Taking the intersection of gr with ar ⊕ br , we get:

[(ar ⊕ br ) ? gr ](t, u) = ukr hr (t). (8.3)

Now assume there is d so that ar ⊕ br can be written as cr ∈ GF 2,d with
`(cr ) 6 poly(r). By Theorem 3.8, we can compute hr by taking the Hadamard

https://doi.org/10.1017/fms.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.29


D. Nguyen and I. Pak 24

product cr ? gr and substitute u ← 1 in (8.3). This would imply that hr is a short
GF of length poly(r) in the fixed class GF 1,d+1, which contradicts our first
statement on hr .

So the two sequences {ar }r>0 and {br }r>0 ⊂ GF 2,s do not have Minkowski
sums of polynomial lengths. Note that each ar and br still has two variables. By
Lemma 4.10 part (a), we can compress ar , br into single-variable short GFs ãr ,

b̃r ∈ GF 1,s . Note that compressing/decompression preserves Minkowski sum. So
ãr ⊕ b̃r does not have polynomial length, because otherwise we can decompress
it to get ar ⊕ br of polynomial length.

9. Squares, primes, and short GFs

9.1. Short GFs and squares. Recall the definition of the class G from
Section 6. We present a candidate for a language L ∈ P/poly which is outside
of G. Let SQUARES be the language consisting of all square numbers written in
binary. Then

SQUARESr = {k
2
: k2 < 2r

}. (9.1)

(Strictly speaking, some numbers in SQUARESr have less than r digits.
However, we can always pad them with enough zeros form a set of strings
of the same length.)

CONJECTURE 9.1. SQUARES is not in G.

In other words, the conjecture says that for every fixed s, the segment
SQUARESr cannot be represented as supp(gr ) for a short GF gr ∈ GF 1,s

of length `(gr ) 6 poly(r). Note that this conjecture is free of complexity
assumptions. If true, Conjecture 9.1 shows unconditionally that G ( P/poly,
which implies G ( GH. We already know from Example 4.6 and Section 6 that
SQUARES ∈ UΠG

1 ⊆ GH. So SQUARES should be a candidate that separates
G from UΠG

1 according to this conjecture.
We begin with the following attractive result.

THEOREM 9.2. If Conjecture 9.1 is false, then INTEGER FACTORING ∈
BPP.

Proof. We build on an argument in [B2, Section 6]. Assume there is an s > 0 so
that for every N = 2r , we can write F(SQUARESr ; t) = gr (t), where gr (t) is a
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short GF in GF 1,s with `(g) 6 poly(r). Consider:

hr (t) = gr (t)4 =
(∑

n2<N

tn2

)4

=

∑
k>0

ar (k)t k,

where

ar (k) = #
{
(n1, n2, n3, n4) : n2

i < N ,
∑

n2
i = k

}
.

In particular, if k < N , then ar (k) is the number of ways to write k as a sum
of four squares. Since gr ∈ GF 1,s , we have hr = g4

r ∈ GF 1,4s and also `(h) 6
poly(`(g)) 6 poly(r).

Applying Proposition 3.10, each coefficient ar (k) can be computed in time
poly(r). By Jacobi’s formula (see for example, [HW]), we also have:

ar (k) = 8
∑

4-d,d|k

d for k < N .

Here d is a divisor of k which is not a multiple of 4. From this, we can compute
in time poly(r) the sum of divisors σ(k) for every k < N = 2r . By a standard
argument (see for example, [BMS]), given σ(k), a factorization of k can be
computed in probabilistic polynomial time (BPP).

THEOREM 9.3. If Conjecture 9.1 is false, then #P ⊆ FP/poly.

Proof of Theorem 9.3. In [MA], it is proved that the following problem is NP-
complete: given α, β, γ ∈ N, decide whether there exists x ∈ N such that

0 6 x 6 γ and x2
≡ α(mod β). (9.2)

The argument in [MA] actually gave bijection between the set of Boolean strings
satisfying a 3SAT formula and the set of x satisfying (9.2). Here α, β and γ
can be computed in polynomial time from the 3SAT formula. Since counting the
number of 3SAT solutions is #P-complete, so is counting the number of solutions
for (9.2).

Now assume Conjecture 9.1 fails, then SQUARES ∈ G. This means there is
an s > 0 so that for every r > 0 we can write F(SQUARESr ; t) = gr (t) for some
gr ∈ GF 1,s with `(gr ) 6 poly(r). Given α, β, γ ∈ N, we define:

h(t) =
γ 2∑

i=0

t i
=

1− tγ
2
+1

1− t
and k(t) =

∑
x≡α(mod β)

t x
=

tα

1− tβ
.
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Let r = 2dlog γ e. The number of solutions for (9.2) can be counted by taking gr ?

h ?k and evaluate at t = 1, which are polynomial time operations by theorems 3.7
and 3.8. So the above #P-complete problem can be solved by polynomial size
circuits, which are provided by the gr for different r . This implies #P ⊆ FP/poly.

By Theorem 4.5, we can represent SQUARESr as specx(Br\projy( fr )) for
some short GF fr of length poly(r). Conjecture 9.1 says that it is not possible
to do so without using projections. In the domain of PA formulas, by Lemma 4.2,
we can represent SQUARESr with a ∃∀-formula of length poly(r). A similar
question can be asked, that is, are quantifiers necessary? The following result
shows that two quantifiers ∃∀ are necessary in Lemma 4.2, already in the case of
SQUARES.

PROPOSITION 9.4. SQUARESr cannot be represented by an ∃-formula of length
poly(r) in a fixed number of variables.

Proof. By APk we mean a k-term arithmetic progression. It is well known that
SQUARES does not contain any nontrivial AP4. This was suggested by Fermat
in 1640 and proved by Euler in 1780 (see for example, [Wei, page 115]). Also, the
cardinality of SQUARESr is super-polynomial in r . With these two observations,
this proposition follows directly from the next theorem when k = 4.

THEOREM 9.5. For every fixed n and k, there exists a polynomial P so that the
following holds. If an ∃-formula

{x : ∃y ∈ ZnΦ(x, y)} (9.3)

determines a set of cardinality at least P(`(Φ)), then it must contain a nontrivial
APk .

Proof. By Proposition 3.17, we know that there is a constant c = c(n) > 0 so that
any quantifier free expression Φ in n variables describes a disjoint union of m
polyhedra P1, . . . , Pm ⊆ Rn+1 with m < `(Φ)c. So formula (9.3) can be rewritten
as:

S =
{

x ∈ Z : ∃y ∈ Zn
m∨

i=1

(x, y) ∈ Pi

}
. (9.4)

Let q(t) = kn+1t c. Assume that |S| > q(`(Φ)) > kn+1m. Select any (kn+1m + 1)
different integers from S. By the pigeonhole principle, one of the polyhedra, say
P1, contains in its projection at least kn+1

+ 1 of these integers. Denote those
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integers in the projection of P1 by x1, . . . , xs , where s = kn+1
+ 1. For every such

xi , there exists yi ∈ Zn so that (xi , yi) ∈ P1. So we have:

(x1, y1), . . . , (xs, ys) ∈ P1 ∩ Zn+1.

By the pigeonhole principle, two different pairs (xi , yi) and (x j , y j) have
coordinates equal mod k pairwise. Since P1 is convex, we also have

(λxi + (1− λ)x j , λyi + (1− λ)y j) ∈ P1 ∩ Zn+1 where λ ∈
{

1
k
, . . . ,

k − 1
k

}
.

The above points project to λxi + (1− λ)x j . By (9.4), we get a nontrivial APk+1:(
xi ,

k − 1
k

xi +
1
k

x j , . . . ,
1
k

x j +
k − 1

k
xi , x j

)
,

a contradiction.

REMARK 9.6. Proposition 9.4 combined with Lemma 4.2 implies that there is a
sequence of formulas {x : ∃y ∀z Φr (x, y, z)} of length poly(r) for which there
are no equivalent formulas {x : ∃y Ψr (x, y)} of length poly(r). This implies that
the formulas {(x, y) : ∀z Φr (x, y, z)} have no equivalent quantifier free formulas
in x and y of length poly(r). Therefore, quantifier elimination in PA necessarily
increases the length of formulas by a super-polynomial factor, even in a bounded
number of variables (x, y ∈ N, z ∈ N3).

REMARK 9.7. From SQUARES, one can easily create another language L ∈ P
which Lr be represented neither by ∀ nor by ∃ formulas of length poly(r). For r
odd, we let L contain all squares between 2r and 2r+1. For r even, we let L contain
all nonsquares between 2r and 2r+1. It is clear that L ∈ P. The above argument
shows that Lr cannot be represented by ∃-formulas of length poly(r) when r is
odd. Under a negation, the same argument also works for ∀-formulas when r is
even. We denote this language by SQUARES′. This will be used in Section 10.

9.2. Short GFs and arithmetic progressions. Generalizing the above obser-
vation on sets with no arithmetic progressions, we suggest another conjecture on
short GFs. Again, by APk we mean a k-term arithmetic progression.

DEFINITION 9.8. Fix c > 0 and k > 3. A short GF g is said to have the (c, k)-
property if either |supp(g)| < `(g)c or supp(g) contains an APk .

CONJECTURE 9.9. For every s and k, there exists c > 0 so that every short GF
g(t) ∈ GF 1,s has the (c, k)-property.
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PROPOSITION 9.10. Conjecture 9.9 implies Conjecture 9.1.

Proof. Assume Conjecture 9.9 holds but Conjecture 9.1 fails, that is,
SQUARES ∈ G. So there is an s > 0 such that SQUARESr can be represented
as supp(gr ) with gr ∈ GF 1,s and `(gr ) 6 poly(r). Conjecture 9.9 applied to s
and k = 4 gives us a c > 0 so that all g ∈ GF 1,s have the (c, 4)-property. We
have supp(gr ) = |SQUARESr | � r c. So if r is large enough, gr contains an AP4.
This contradicts the fact that SQUARES is AP4 free.

9.3. Short GFs and primes. In a similar manner, we ask if primes can be
represented by short GFs of polynomial length. Let PRIMES be the language
consisting of all primes written in binary. Then

PRIMESr = {p prime : p < 2r
}. (9.5)

CONJECTURE 9.11. PRIMES is not in G.

In other words, the conjecture says that for every fixed s, the segment
PRIMESr cannot be represented as supp(gr ) for a short GF gr ∈ GF 1,s of
length `(gr ) 6 poly(r). This conjecture, if true, would also show G ( P/poly
unconditionally.

PROPOSITION 9.12. Let π(n) be the number of primes between 1 and n. If
Conjecture 9.11 is false then π(n) can be computed by circuits of size poly(log n).

Proof. Assume Conjecture 9.11 is false, that is, there is an s > 0 so that for every
r > 0 we have F(PRIMESr ; t) = gr (t), where gr ∈ GF 1,s and `(gr ) 6 poly(r).
Given n < 2r , we have:

F(PRIMESr ∩ [0, n]; t) = gr (t) ?
1− tn+1

1− t
= hn(t).

By Theorem 3.8, we can compute hn in time poly(r). Substituting t ← 1, we get
π(n).

REMARK 9.13. In [LO], using strong analytic tools, Lagarias and Odlyzko gave
an algorithm to compute π(n) in time O(n1/2+ε), which is exponential in log n. If
Conjecture 9.11 is false, then for each r , a far better poly(r) algorithm exists for
computing π(n) for all n < 2r .
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10. Relative complexity of short GFs

In this section, we compare short GFs with PA formulas with one quantifier.
We refer back to Section 3.2 for the definition of PA formulas.

10.1. PA complexity classes. The most basic PA formulas contain no
quantifiers, that is, only a Boolean combination of inequalities.

DEFINITION 10.1. The class ΣPA
0 = ΠPA

0 consists of languages definable by
quantifier free PA formulas of polynomial lengths. In other words, a language
L is in ΣPA

0 if for every r > 0, there is a quantifier free PA expression Φr (x) of
length `(Φ) 6 polyL(r) so that:

x ∈ Lr ⇐⇒ Φr (x).

By Proposition 3.17, L ∈ ΣPA
0 if and only if every initial segment Lr is a union

of polynomially many intervals in N. By Theorem 3.18, we have ΣPA
0 ⊂ G.

EXAMPLE 10.2. The language EVEN of even integers is not in ΣPA
0 . However,

EVEN ∈ G, because:∑
x∈EVENr

t x
= t0
+ t2
+ · · · + t2r

−2
=

1− t2r

1− t2
.

So we conclude that ΣPA
0 ( G.

DEFINITION 10.3. The class ΣPA
1 consists of languages definable by ∃-formulas

of polynomial lengths. In other words, L ∈ ΣPA
1 if there is an n so that for every

r > 0, we can represent

x ∈ Lr ⇐⇒ ∃y ∈ NnΦr (x, y),

whereΦr (x, y) is a quantifier free PA expression of length `(Φr ) = polyL(r). The
class ΠPA

1 is defined similarly, but with ∀-formulas. In other words, L ∈ ΠPA
1 if

and only if ¬L ∈ ΣPA
1 .

CONJECTURE 10.4. G ⊆ ΣPA
1 ∩ΠPA

1 .

To rephrase, this conjecture says that for every fixed s, there is an n = n(s) so
that every g ∈ GF 1,s of finite support has an ∃-formula representation:

G = {x : ∃y ∈ NnΦ(x, y)}, F(G; t) = g(t) and `(Φ) 6 poly(`(g)).
(10.1)
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Figure 1. Short GFs versus PA formulas. Here SQUARES′ is the language
defined in Remark 9.7.

Note that it would be enough to show G ⊆ ΣPA
1 , because G is closed under taking

complement of short GFs.

PROPOSITION 10.5. Conjecture 10.4 implies Conjecture 9.9, which implies
Conjecture 9.1.

Proof. Assume Conjecture 10.4 holds. Then for every fixed s, we have n = n(s)
for which every g ∈ GF 1,s has an ∃-formula representation (10.1). The last
condition means there is a constant d = d(s) such that `(Φ) < `(g)d . By
Theorem 9.5, there exists γ = γ (n, k) > 0 so that G contains an APk whenever
|G| > `(Φ)γ . So if |supp(g)| > `(g)γ d then |G| = |supp(g)| > `(g)γ d > `(Φ)γ ,
which implies that G contains an APk . So c = γ d satisfies Conjecture 9.9, which
should depend only on s and k. By Proposition 9.10, Conjecture 9.9 implies
Conjecture 9.1.

Figure 1 illustrates the relative relations between short GFs and PA formulas,
assuming Conjecture 10.4:

One can of course define analogues of ΣPA
1 and ΠPA

1 with more alternating
quantifiers. But it turns out that ΣPA

k+1 = ΣG
k+1 = ΣP

k /poly for every k > 1. This
was implicit in Lemma 5.1 and Theorems 5.5, 6.4. For the sake of completeness,
we call the hierarchy of all classes ΣPA

k and ΠPA
k as GPA. Obviously GPA =

GH = PH/poly.

10.2. Complexity classes diagram. The following diagram summarizes
various complexity classes that appeared in this paper and their relationships.
An arrow X → Y indicates X ⊆ Y . Known strict subset relations are decorated
with 6=. Dashed arrows and segments denote conjectural relationships.
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GPA GH PH/poly

ΣPA
3 ΣG

3 ΣP
2 /poly

ΣPA
2 ΣG

2 ΣP
1 /poly

UΠG
1 UP/poly

P/poly 3 SQUARES

ΣG
1

ΣPA
1

G

ΣPA
0

= =

= =

= =

=

63

63?

6=

?

6=

6=

ΣPA
k+1 = ΣG

k+1 = ΣP
k /poly, k > 1: Sections 6, 10. SQUARES

?
/∈ G: Conjecture 9.1.

UΠG
1 = UP/poly: Remark 4.8. SQUARES /∈ ΣPA

1 : Proposition 9.4.
ΣG

1 ⊆ P/poly: Proposition 3.12. ΣPA
0 ( ΣPA

1 ( ΣPA
2 : Remark 9.6.

ΣPA
0 ( G

?
⊆ ΣPA

1 : Section 10.

11. Proof of Lemma 4.10

Let x = (x1, . . . , xk) be the array of multivariables of dimension n1, . . . , nk . We
first prove the result when k = 1, that is, when x = x1, g(t) =

∑
tx1

1 and f (u) =∑
uz1

1 . For convenience, we denote t1, x1, u1, z1 by t, x, u and z, respectively. Also
denote by n the dimension of the multivariable x. So g(t) =

∑
tx and

τN (x) = x1 + N x2 + · · · + N n−1xn.

Part (a). Assume we are given g ∈ GF n,s . By Theorem 3.7, we can find the
norm N of g in time poly(`(g)). By rounding N to the next power of 2, we still
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have log N 6 poly(`(g)) and supp(g) ⊆ [0, N )n . Let N = 2r . We define f (u) as
the specialization of g(t) under the following substitutions:

t1 ← u, t2 ← uN , . . . , tn ← uN n−1
,

so that
tx
= ux1+N x2+···+N n−1xn = uτN (x).

Clearly, we have:
supp( f ) = τN (supp(g)).

By Theorem 3.7, polynomial substitutions can be performed in polynomial time
and gives f as a short GF in GF 1,s with `( f ) 6 poly(`(g)). This proves part (a).

Part (b). Given two power series A(t) =
∑
αxtx
∈ GF n,p, B(t) =

∑
βx t x
∈

GF 1,q and a linear map τ : Zn
→ Z, we define their τ -Hadamard product as

C(t) = A(t) ?τ B(t) :=
∑

αxβτ(x)tx. (11.1)

Now assume f (u) =
∑

uz
∈ GF 1,s , N = 2r , and supp( f ) ⊆ [0, N )n . From

the above definition, it is clear that such a g(t) satisfying (4.14) can be obtained
as:

g(t) = a(t) ?τN f (t), (11.2)

where

a(t) =
∑

x∈[0,N )n
tx
=

1− t N
1

1− t1
· · ·

1− t N
n

1− tn

with a ∈ GF n,n and `(a) 6 poly(log N ).
Here the map τN is from Definition 4.9. So it is enough to show that the τ -

Hadamard product of two short GFs is a short GF of polynomial length. The
proof follows Barvinok’s argument in [B2] (see also [BW, Lemmas 3.4 and 3.6]).
First, notice that the τ -Hadamard product is bilinear in A(t) and B(t). Therefore,
we only need to show that C(t) is a short GF when A(t) and B(t) have only one
term each, that is, when:

A(t) =
ta∏p

i=1(1− tbi )
and B(t) =

t c∏q
j=1(1− td j )

. (11.3)

Consider an (unbounded) polyhedron P ⊂ Rp+q defined as:

P :=
{

ζ1, . . . , ζp, ξ1, . . . , ξq > 0
τ(a + ζ1b1 + · · · + ζpbp) = c + ξ1d1 + · · · + ξqdq

}
. (11.4)
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By Theorem 3.16, we can write a short GF for P ∩ Zp+q :

D(w, v) :=
∑

(ζ ,ξ)∈P

wζ vξ
=

∑
(ζ ,ξ)∈P

(w1)
ζ1 . . . (wp)

ζp(v1)
ξ1 . . . (vq)

ξq . (11.5)

Furthermore, we have D ∈ GF p+q,p+q . By (11.3), the expansions of A(t) and
B(t) are:

A(t) =
∑
ζ>0

ta+ζ1b1+···+ζpbp and B(t) =
∑
ξ>0

t c+ξ1d1+···+ξq dq . (11.6)

We substitute:

w1 ← tb1, . . . , wp ← tbp , v1 ← 1, . . . , vq ← 1.

By (11.4)–(11.6), we get:

ta D(tb1, . . . , tbp , 1, . . . , 1) =
∑

(ζ ,ξ)∈P

ta+ζ1b1+···+ζpbp = A(t) ?τ B(t) = C(t).

By Theorem 3.7, substitution can be done in polynomial time, and results in a
short GF C(t) of index at most p + q . Hence, we have C(t) ∈ GF n,p+q and
`(C) 6 poly(`(A) + `(B)). Note that by taking the τ -Hadamard product, the
index of C is increased to p+ q . This pushes the index of g in (11.2) to n+ s. So
we do not get back exactly the index s for g. But n + s is still a constant, and g is
still a short GF in a fixed class GF n,n+s .

This completes the proof for the case k = 1. The general case can be handled
similarly.

12. Final remarks and open problems

12.1. As we mentioned in the introduction, much of this work is motivated by
Barvinok’s program implicit in his writing. Specifically, we were inspired by the
following quote:

‘It seems hard to prove that a particular finite, but large, set S ⊂ Zd

does not admit a short rational generating function: if a particular
candidate expression for fS(x) is not short, one can argue that we
have not searched hard enough and that there is another, better
candidate’. [B2]

In fact, this paper originally began as a followup on [NP1], aiming to explain why
the technology of short GFs was unable to derive the Barvinok–Woods theorem
(Theorem 3.19) (see [NP1]). Our Theorems 1.3 and 1.5 are strong versions of this
claim.
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Let us also mention [NP3, Theorem 1.1 and Corollary 1.11] which have
similar setup of unions and projections of polyhedra, and give strong algorithmic
extensions of Woods’s theorem (Theorem 3.21).

Finally, our most recent results in [NP4] say that Presburger arithmetic with a
bounded number of variables and inequalities is complete for every level in PH,
which suggests an even deeper obstacle to taking unions and projections. We have
yet to fully explore the implications of this result which go beyond the scope of
this paper.

12.2. In notations of the introduction, a short GF fS(t) of a set S ⊂ N
can be viewed as a presentation of S by an alternating sum of generalized
(k-dimensional) arithmetic progressions. As such, there are many connections
between short GFs and Arithmetic Combinatorics, which are yet to be explored
(see [TV]). For example, when k = 1, taking the positive part of these arithmetic
progressions corresponds to variants of Erdős’s covering systems which received
much attention in recent years (see [Guy, Hou]).

Conjecture 1.1 has an especially classical feel with its claim that squares and
(generalized) arithmetic progression are incompatible. There are of course both
classical and recent works on squares in arithmetic progressions, but no known
results seem strong enough to apply in this case (see [BGP, Sze, Wei]).

12.3. There are two ways to think of the results in this paper. First and
foremost, they provide a very strong evidence in favor of nonpolynomiality of
projections and other operations with short GFs. In the opposite direction, the
apparent connection to arithmetic progressions and a plethora of both analytic
and combinatorial tools for working with them suggest a possibility of some lower
bounds.

We would like to caution the reader. Initially we were rather optimistic about
removing complexity assumptions in Theorem 1.5 by finding a direct proof of
Conjecture 9.1 or some other similar lower bound. However, Proposition 7.3 and
Remark 7.4 seem to suggest that this might be rather difficult. A sufficiently strong
argument that shows G ( GH could potentially show UP/poly = UΠG

1 ( GH,
which implies #P 6⊆ FP/poly, an important open problem (see Section 12.5
below).

On the other hand, the two lowest levels G and ΣG
1 in GH seem to behave quite

differently from higher ones. So an elementary approach to prove G ( GH is not
completely ruled out.

12.4. The idea of Section 10 is to characterize all short GFs. Roughly,
Conjecture 10.4 says that every short GF is the projection of a union of
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polynomially many polyhedra of bounded dimension. This can be viewed as a
converse of the Barvinok–Woods theorem (Theorem 3.19).

Conjecture 10.4 is possibly a wishful thinking. Unfortunately, its validity is
hard to judge since we have so few explicit constructions of short GFs other
than projections of integer points in polyhedra. If true, Proposition 10.5 implies
Conjecture 1.1 and removes the complexity assumptions from all theorems in
the introduction. Moreover, it implies exponential lower bounds on the length
of short GF for squares, projections and other theorems in the introduction.
(In the chain of reductions, the exponential factor appears in the proof of
Proposition 9.10.) These are the same bounds the exponential time hypothesis
(ETH) implies.

12.5. It is worth comparing Theorems 9.2 and 9.3 from the computational
complexity point of view. Technically speaking, these two results are not
comparable. However, one is weaker than the other in the relative sense, as
follows.

Recall that INTEGER FACTORING ∈ NP ∩ coNP. While proving it to be
in BPP would be a very strong result beyond the current state of art, it would not
directly lead to a collapse of PH. In fact, the experts seem to be split on whether
INTEGER FACTORING is in P, all the while espousing a deep-seated belief
that P = BPP, thus further muddling the subject (see [Aar, Gas]). In summary,
Theorem 9.2 gives a relatively weak evidence in favor of Conjecture 9.1.

On the other hand, #P-complete oracles are very powerful by Toda’s theorem,
and thus very unlikely to be in FP/poly. As mentioned in Remark 7.5, #P ⊆
FP/poly would lead to a collapse of PH the second level. In other words,
Theorem 9.3 gives a very strong evidence in favor of Conjecture 9.1.
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[Grä] E. Grädel, ‘The complexity of subclasses of logical theories’, Dissertation, Universität
Basel, 1987.

[Guy] R. K. Guy, Unsolved Problems in Number Theory, 3rd edn (Springer, New York, 2004).
[HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Oxford

University Press, Oxford, UK, 2008).
[Hou] B. Hough, ‘Solution of the minimum modulus problem for covering systems’, Ann. of

Math. (2) 181 (2015), 361–382.
[Kan] R. Kannan, ‘Lattice translates of a polytope and the Frobenius problem’, Combinatorica

12 (1992), 161–177.
[KS] A. Klivans and D. Spielman, ‘Randomness efficient identity testing of multivariate

polynomials’, in Proc. 33rd FOCS (ACM, New York, 2001), 216–223.
[LO] J. Lagarias and A. Odlyzko, ‘Computing π(x): an analytic method’, J. Algorithms 8 (1987),

173–191.
[MA] K. Manders and L. Adleman, ‘NP-complete decision problems for binary quadratics’,

J. Comput. System Sci. 16 (1978), 168–184.
[MM] C. Moore and S. Mertens, The Nature of Computation (Oxford University Press, Oxford,

UK, 2011).
[NP1] D. Nguyen and I. Pak, ‘Complexity of short Presburger arithmetic’, in Proc. 49th STOC

(ACM, New York, 2017), 812–820.
[NP2] D. Nguyen and I. Pak, ‘Enumeration of integer points in projections of unbounded

polyhedra’, in Proc. IPCO 2017, Lecture Notes in Computer Science, 10328 (Springer,
New York, 2017), 417–429.

[NP3] D. Nguyen and I. Pak, ‘The computational complexity of integer programming with
alternations’, in Proc. 32nd CCC, 2017 (LIPICS, Dagstuhl, Germany, 2017), Art. 6, 18 pp.

[NP4] D. Nguyen and I. Pak, ‘Short Presburger arithmetic is hard’, in Proc. 58th FOCS (IEEE,
Los Alamitos, CA, 2017), 37–48.

[Pap] C. H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994).
[Sch] U. Schöning, ‘Complexity of Presburger arithmetic with fixed quantifier dimension’,

Theory Comput. Syst. 30 (1997), 423–428.

https://doi.org/10.1017/fms.2017.29 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.29


Complexity of short generating functions 37
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