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REVISIONISM REVISITED

HARTRY FIELD
Department of Philosophy, New York University

Abstract. This paper offers a substantial improvement in the revision-theoretic approach to
conditionals in theories of transparent truth. The main modifications are (i) a new limit rule;
(ii) a modification of the extension to the continuum-valued case; and (iii) the suggestion of
a variation on how universal quantification is handled, leading to more satisfactory laws of
restricted quantification.

§1. Background and preview. It seems central to the notion of truth that there
is a kind of equivalence between the attribution of truth to a proposition and the
proposition itself. Not merely that ‘True(4p)’ and ‘p’ are co-assertable, but that one
can be substituted for the other (except inside quotation marks, attitude contexts and
the like) without affecting assertability. Call this the transparency of truth. But there
seem to be propositions that directly or indirectly attribute untruth to themselves.'
Given transparency, their truth is equivalent to their untruth, which is inconsistent
in classical logic. Given that there are such propositions, we must decide between
restricting transparency and restricting classical logic. To make an informed choice,
we must explore both classical theories that restrict transparency, and non-classical
theories that keep it.” The present paper, like a great deal of recent literature, is part of
an exploration of the latter option.

Instead of speaking of propositions, we can speak of sentences as used on a given
occasion.’ 1 think this changes little in the theory of truth. (A small advantage is that the
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! This is sometimes challenged, but for a rebuttal to the challenges see [10]. That paper also

elaborates some of the points in notes 3 and 5 below.
Poincare once argued that Euclidean geometry is so much simpler than alternative geometries
that it would never make sense to take seriously a physical theory based on an alternative
geometry. There are many today who have the attitude toward classical logic that Poincare
had toward Euclidean geometry: keep it no matter what the cost elsewhere. Maybe there
are also some who are “Poincarean” in the opposite direction: keep the naive laws of truth
and/or property-instantiation come what may. But I think the proper attitude, here as with
geometry, is to choose the simplest overall theory (logic and truth rules together). To do that,
we must know what the simplest overall theory is, which requires that we develop each one
as best we can.
A sentence as used on a given occasion can be indeterminate, but instead of regarding that as
involving its expressing multiple propositions, we can regard it as expressing an indeterminate
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2 HARTRY FIELD

slightly contentious assumption of propositions that attribute untruth to themselves is
replaced by the harder to deny assumption of sentences that on a given occasion attribute
untruth to themselves as used on that occasion. Another advantage is that it enables us
to put aside questions of propositional identity, and of how to extend transparency to
accommodate it.)* If we focus on sentences rather than propositions, it’s natural to
consider toy languages in which there are no ambiguous or indexical sentences, so that
we can take sentence-types of the language as bearers of truth. I will follow most of
the literature on paradoxes of truth by pretending that sentence-types are the bearers
of truth, but what I say could easily be rewritten in terms of propositional truth.’

Far and away the most influential paper in the literature on non-classical approaches
to truth is [13] (despite Kripke’s own protests that his paper has nothing to do with
non-classical logic). In particular, his fixed point constructions using Strong Kleene
semantics have served as the basis for transparent truth in a variety of non-classical
logics. (I will assume that the reader knows these constructions. They start from a
ground language, without ‘True’, in which a theory of syntax (supplying the bearers of
truth) can be developed. and classical ground models for this language that are standard
for syntax. We extend these models to 3-valued models by adding a transparent truth
predicate; different fixed points extend them in different ways.® Sentences true in a
ground model My get value 1 in its 3-valued extensions; sentences false in My get O;
and value % is used for certain sentences involving ‘True’, such as Liar sentences that
can’t coherently be assigned 0 or 1.) Here I'll restrict attention to the Strong Kleene
quantificational logic K3 (extended to include transparent truth by the construction).
Call an inference “TKj3-valid” if for all fixed point models, if the premises get value 1
in the model, so does the conclusion. (One gets a slightly stronger logic if one restricts
to minimal fixed point models.)

The 3-valued Kleene models treat, —, A, V. ¥V and 3 in very natural ways: the value of
=4 is 1 minus the value of 4; |4 A B| is min{|A|., |B|} and |VxA4(x)| is min{|4(0)| : 0
in the domain}; and Vv and 3 are similar but with max instead of min. But there is
no connective that serves as a reasonable conditional. (I'm assuming that a reasonable
conditional should license the assertion of all instances of 4 — 4, AN B — A, and
the like, but if — were defined from — and V as in classical logic, some instances of
these will get the undesignated value %) So it is natural to want to extend Kripke’s

proposition, and taking the attribution of truth to an indeterminate proposition p to be
indeterminate in just the way that p is.
But in the sentential case, the notion of equivalence involved in the definition of transparency
requires a bit more explanation: it is something like equivalence modulo the existence of the
utterance. (In the propositional case, it’s also modulo their existence, but that might be
thought unimportant since propositions “exist necessarily”.)
Talk of propositions is sometimes regarded as merely a convenient paraphrase for
quantification into sentential position. The paradoxes of truth arise equally in this
framework. (If quantification both in and out of intentional contexts is allowed. one can
use sentences like Ip(The person in Room 202 is now saying that p, but not p), said by
the person on Room 202. Even if that sort of sentential quantification is disallowed, one
can mimic Godel-Tarski diagonalization; at least, one can if quantification into predicate
position as well as sentential position is allowed, and the latter is needed anyway to deal
with related issues about properties.) I think that what follows could also be rewritten more
laboriously in terms of sentential quantification.
Since the extended models merely add a new predicate, they too are standard, which means
that a rule form of induction is guaranteed to hold even for predicates that contain ‘True’.
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theory to a language involving a reasonable conditional — in addition to the Kleene
connectives and quantifiers plus ‘True’. But this requires one or another substantial
alteration of Kripke’s methods.’

One such extension was proposed in [3]. Brady first noted that from an arbitrary
assignment / of values in {0, % 1} to conditional sentences 4 — B in the language
with ‘True’, we can give what I’ll call a “Kripkean microconstruction” to generate
an assignment v, of values to all sentences in that language. (More accurately, 7 and
v, need to assign values to conditional formulas relative to assignments of objects
in the domain to their free variables. For brevity’s sake, I'll be sloppy about this in
my formulations; if you like, you can take my ‘sentence’ to mean ‘quasi-sentence’,
defined as a pair of a formula and a function assigning objects to its free variables.)® In
this construction, conditionals are treated as atomic, with their values given by %, and
otherwise the construction is just like Kripke’s minimal fixed point construction. v, will
assign the same values to conditionals as /2 does, and as long as / is transparent in its
assignments to conditionals, v, will be transparent in its assignments to all sentences.

So now the question is, how do we choose A? For this, Brady proposed a fixed point
“macro-construction”: we start out with an /g that assigns 1 to all conditionals; then
at each subsequent o, we let &, assign to 4 — B the value 1 iff (V8 < a)(vhﬂ (4) <

vhﬂ(B)), 0iff (3B < a)(vhﬁ (4)=1A Uny (B) = 0). and § otherwise.” Because for every
conditional, the value assigned to it by /4, never increases as « increases, we eventually
reach a fixed point /y. The “final value” of a sentence in the Brady construction is its
value in the Kripkean fixed point micro-construction over /y.

A Brady conditional has some nice properties, but also a very odd one: conditionals
invalidated at early stages (early micro-constructions like that from /g, where the
assignment to conditionals is obviously bad) can never recover. For instance, if T
is Vx(x = x) and L is its negation, g assigns 1 to T — L, so h; assigns value 0 to
(T — L) — L; and because at every subsequent stage %, looks back at all earlier
stages, every /i, assigns 0 to this sentence.

Maybe there are purposes for which we might want a conditional where this isn’t so
bad. But one role for conditionals is to restrict universal quantification: to define “All
A are B” as “Vx(Ax — Bx)”. For this purpose, the Brady conditional seems plainly
inadequate: it invalidates the inference from “There are no 4” to “All 4 are B”. More
generally, it fails because the — fails to reduce to the ordinary DO in classical contexts,
and in classical contexts, restricted universal quantification goes by D. It’s the use
of conditionals for defining restricted universal quantification that I'll be considering in

7 [16] improves on Kripke’s construction using basically Kripkean methods (a multi-stage
monotonic construction), but its conditional is not “reasonable” in the sense of this
paragraph: some instances of 4 — 4 come out undesignated. Maybe for some purposes
that doesn’t make it unreasonable, but as I'll soon make explicit, my interest in this paper
is with conditionals that can be used to restrict universal quantification, and I don’t think it
acceptable not to be able to assert in full generality such laws as “All 4 are 47, “Everything
that’s 4 and Bis A”, and so forth.

In fact, I'll take ‘True’ to apply to quasi-sentences as well as ordinary sentences, so that
the theory to be discussed really treats of satisfaction rather than just truth as normally
understood (though truth as normally understood is a special case).

If I (following Brady) hadn’t restricted to minimal fixed points, then each 4 wouldn’t generate
a single v;, but a large set V}, of them; then presumably /(A4 — B) would be 1 iff for all
B<aandallvin Vj,. v(4) <v(B).
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this paper.'” (If you think that the restricted universal quantifier should be taken as
primitive rather than defined in terms of unrestricted quantification and a conditional,
you can easily rewrite what follows in terms of extending Kripke by adding a restricted
universal quantifier to the language.)

An obvious diagnosis of why the Brady construction has this odd feature is that in
defining A, it looks back at all previous vy, 55 what if instead we just look at the recent

ones? One way of developing this thought is to use a revision construction.'! In the
simplest version of this, when « is a successor ordinal, we look only at values generated
by the previous stage:

h/)q_l(A — B)=1 iﬂ‘vhﬁ(A) < vhﬁ(B).

There’s more than one possibility for the 0 clause, but I think the best is the revision-
theoretic variation of [3] (which models Lukasiewicz 3-valued logic as well as a revision
theory can):

h/prl(A — B) = 0iff Uh/),(A) =1 /\’Uh/),(B) =0;

50 3 iff 0y, (4) — vy, (B) = 5.
(In what follows, I'll use the notation |4|z in place of v, 5 (A4).)

But what about 0 and limit ordinals? The starting assignment 4y matters only slightly
in a 3-valued revision construction: we want it to be transparent, but other than that
the values there largely wash out in the end. But the treatment of /; when 4 is a limit
ordinal matters a great deal. And in all my prior writings on this, I made an ill-advised
choice.

In my previous writings, I used a rule that like Kripke’s gives a kind of default status
to value %: in the 3-valued case, it gave value % to a conditional at a limit ordinal unless
either the limit inferior of prior values was 1 or the limit superior was 0. That is, for

limit A,
1 iff(3f<a)Vy e[f.a))(h(4— B)=1)
(SYM3)h,(4 — B) =30 iff(Af<a)lvyc [B.a))(h, (4 — B) =0)
% otherwise.

This has some attractive mathematical properties, with which I was much taken: in
particular, what I called “the Fundamental Theorem”. But I now think that a different
limit rule that does not yield a “Fundamental Theorem™ actually leads to a much better
theory. The preferred rule (in the 3-valued case, for limit A) is

1 iff(3f<a)Vy €[f.a))(h(4d— B)=1)
(LimInf3)h;,(4 — B) = {0 iff (V8 < a)(Fy € [f.a))(h, (4 — B)=0)
% otherwise.

In other words: for r > 0. h,(4 — B) > r iff 3 < a)(Vy € [f.@))(h,(4 — B) >r).

10" Restricted existential quantification is of course Ix(A4x A Bx), so the two restricted
quantifiers aren’t interdefinable except in classical settings.

! [11]is a well-known discussion of revision theories. But their focus is on revision theories for
truth directly, as an alternative to Kripke (and also, revision theories for circular definitions).
The application of revision theory to conditionals, using a Kripkean background, has quite
a different flavor.
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The successor and limit cases can be combined: for any o > 0 and r > 0, /i, (4 —
B) > riff (3 < a)(Vy € [B.a))(|4], — |B|, <1-r). The equivalence to the official
definition is trivial in the successor case, and proved by an easy induction in the limit
case. (The combined formulation works even for oo = 0 if the starting hypothesis /g
assigns 0 to all conditionals. ‘Hypothesis’ here and later will mean ‘assignment of
values to conditionals’.)

In §2, I'll explore the sentential logic that results from adopting (LimlInf3). and say
a bit more about the choice of it over (SYM3). In §3. I'll discuss the advantages of
moving to a continuum-valued context (the advantages are huge, and the discussion of
§2 is little affected), and how the revision theory with a generalization of (LimlInf3)
should be developed in such a context. (I discussed continuum-valued revision theory
with a generalization of (SYM3) in [8]. but in addition to the new limit rule, I will
make another substantial change.) In §4, I'll explore the quantifier logic. In §5, T'll
discuss restricted quantification and raise an issue about the interpretation of the English
word ‘all’. §6 concludes, with comparisons to earlier work combining conditionals with
transparent truth. The Appendices contain some proofs.

§2. The sentential logic. A revision construction doesn’t lead to a fixed point.
However, it’s easy to see on cardinality grounds that there are recurrent valuations of
conditionals, i.e., valuations / that occur arbitrarily late: VA(34 > f)(h, = h). Indeed
there comes a point o (the “critical ordinal”) such that for every o > . hy is
recurrent.'” A valuation v of sentences generally is called recurrent if it’s vj, for some
recurrent /. (Or more generally if one doesn’t restrict to the minimal Kripke fixed
point: if it is a member of V}, (see n. 9) for some recurrent 4.) Which valuations are
recurrent obviously depends on the ground model. An inference is taken as valid iff for
all ground models, it preserves value 1 in all recurrent valuations based on the ground
model.

Putting it another way, let the value space V), for a ground model M be the set of
functions that assign a value in {0, % 1} to every recurrent hypothesis based on M.
Then a revision construction based on ground model M assigns to every sentence 4 a
value || 4[| in V. The sole designated value of V, is the constant function 1, assigning
1 to every recurrent hypothesis based on M. Validity is the preservation of this value 1,
on all ground models. Equivalence of two sentences is their having the same function
as value, on all ground models; in other words, validity of the biconditional between
them.

Another feature of revision constructions (at least, those with fixed rules at limits,
like (SYM) or (LimInf)) is the existence of strong reflection ordinals: ordinals A so
complicated that for every ff < A, every recurrent hypothesis occurs in the interval
[B.A). It’s clear that on both (SYM) and (LimInf), the value of a conditional is 1 at
a strong reflection ordinal A iff it is 1 for all recurrent A,.'* That is. ||4 — B|| = 1 iff
|4 — BJ|a = 1. That’s a nice feature.

12 These facts, and the existence of reflection ordinals as stated in the paragraph after next, are
standard results in revision theory (see, for instance, [11]).

13 A weak reflection ordinal is any ordinal that satisfies this biconditional. The easiest way to
prove the existence of weak reflection ordinals is to prove the existence of strong ones.
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With (SYM), the value of a conditional is 0 at A iff it is 0 for all recurrent A,: so
the value of the negation of a conditional is 1 at A iff it is 1 for all recurrent 4,. So
the nice feature for conditionals extends to negations of conditionals. In fact, it can
be shown that it extends to every sentence of the language: for every sentence, not
just for conditionals, ||4|| = 1 iff |4|p = 1. That’s what in earlier various papers, I
called the Fundamental Theorem. But it depends on (SYM): indeed, with (LimInf),
the value of a conditional is 0 at A iff it is O for some recurrent /4, ; so the value of the
negation of a conditional is 1 whenever it is 1 for some recurrent A,. So for (LimlInf),
the Fundamental Theorem fails very badly.

And that does have a philosophical cost. Typical classical theories based on
supervaluationist and revision-theoretic semantics have a feature sometimes thought
odd: a disjunction can be valid even though both disjuncts lead to inconsistency.
Indeed. in such classical theories, the disjunction of a Liar sentence and its negation is
an example. In revision theories based on (SYM), the Fundamental Theorem rules out
there being any such examples. When we move to (LimInf), on the other hand, there
are such examples, though in the theory ultimately to be recommended, it happens only
with rather arcane disjunctions, like R V =R, where R is the Restall sentence discussed
in §3.

Despite this apparent disadvantage of LimInf, it leads to a much nicer logic, one that
more closely approximates classical logic and hence is easier to use in formal reasoning
involving the restricted quantifier conditional. Here’s a simple example, but it’s just the
tip of the iceberg. Consider the schema

Adjunction: (4 — B)A (4 — C) — (4 — BAC).

This is not valid on (SYM), but is on (LimInf). (The rule form (4 — B) A (4 — C) -
A — B A C is valid on both.) Indeed on (SYM), even the special case

(T—=B)A(T = -B)— (T = BA-B)

fails. For suppose |B|, is 1 for odd e. 0 when « is an even successor, and § when
o is a limit.'* Then (SYM) gives T — B and T — —B value } at limits, but gives
T — B A—B 0 at limits of form 1+ w, so the displayed conditional has value % at
any ordinal of form 4 + @ + 1 and hence at any multiple of «?. (With (LimInf) that
counterexample fails since T — B and T — =B have value 0 at all limit ordinals.)
The soundness of Adjunction for (LimInf) is easily verified: I'll give a proof in a more
general setting in Appendix A.

A difference between (SYM) and (LimlInf) that has big ramifications is that with
(SYM) we have the biconditional

(T = =B) + (T = B),

whereas with (LimInf) we have only the left-to-right direction. (Though even
with (LimInf) we have the rule form of the right to left: -(T — B) = T — —B.)
Equivalently, writing 41 B for (4 — —=B), (LimInf) yields (T — B) — (TN B)
but not the converse (since at limit ordinals, | T — B|; is the /imin f of prior values of
B, whereas | T M1 B|; is the limsup of those values). (SYM) leads to both directions,

14" A sentence B which has this feature on (SYMj) is the sentence Q, that says True({Q>)) —
—True({Q,)). (A continuum-valued theory would give Q, a constant value, viz., 2/3, but
there are other sentences that would have this valuation pattern there.)
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which might at first seem like an advantage to (SYM); but in fact having the distinction
between T — B and T M B is crucial to getting approximations to many important
classical laws.

For instance, one such law is

Classical Permutation: [4 — (B — C)] = [B — (4 — C)].

There’s no way one can get this on any revision construction that doesn’t lead to a fixed
point, basically due to the fact that A4 differs in its depth of conditional embedding on
the two sides of the main conditional, and so does B. The obvious idea of how to fix
this is to “depth-level it”, replacing the occurrence of 4 on theleftby T — A or T M 4,
and analogously for the occurrence of B on the right. It turns out that on (LimInf),
you need M on the left and — on the right:

Depth-Leveled Permutation: (TN A4) — (B — C)] = [(T = B) = (4 — C)].

That this is sound with (LimInf) will be shown in Appendix A. With (SYM) on
the other hand, there is no distinction between T M B and T — B, and as a result,
no depth-leveled version of Permutation is available. (For a counterexample in the
3-valued construction, let 4 be the O, of n. 14, C be =4, and Bbe T.)

I won’t say a lot more about (SYM). With (LimInf), the following derivation system
for the sentential logic with ‘True’ is sound in the given semantics (and also in the
continuum-based semantics to be given later).

S1 (Identity). A — A.

S2 (A-Elim). AANB — A, and A A B — B.

S3 (Distribution). [A A (BV C)] = [(AAB)V (4 A C)].

S4 (Double Negation). ~—4 — A.

S5 (Contraposition). (4 — —=B) — (B — —A4).

S6 (Adjunction). (4 — B)A (4 — C) = (A4 — BAC).

S7a (Depth-Leveled Suffixing). [T — (4 — B)] = [(B = C) = (4 — C)].

S7b (Depth-Leveled Prefixing). [T — (4 — B)] = [(C = 4) — (C — B)].

S7e.[T = (AN B)] = [(B— C) = (AN C)].

S8 (Depth-Leveled Weakening). [T — (-4 Vv B)] — [4 — B].

S9 (Depth-Leveled Permutation). [(TMA4) - (B = C)] = [(T = B) = (4 = C)].

S10. (T — —=A4) — (T — A).

S11 (Depth-Leveled special Lukasiewicz law). [(4 — B) — (T — B)] = [T — (T M
A)V (TN B))

T-Schema. True({A)) <+ A [When we add quantifiers we’ll want to strengthen this
and add composition laws.]

R1 (Modus Ponens). 4,4 — B - B.

R2 (A-Introd). 4. B+ A A B.

R3a (Positive Weakening Rule). B - T — B.

R3b (Negative Weakening Rule). (T — B) - —B.
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R4a (No decreases). (T = B) - BB — (T — B).
R4b (No increases). B — (T B) (TN B) — B.

Mostly these require little comment beyond what I've given already. R4a and R4b
reflect the fact that if a sentence doesn’t reach a fixed point in a revision construction,
it must increase at some final ordinals (ordinals greater than the critical ordinal) and
decrease at others: if, e.g., it never decreased from « on, but did increase, then the
valuation at o couldn’t be recurrent. It easily follows from R4a and b (with S10 and
the Prefixing and Suffixing rules below) that their reverse directions are valid and that
(T — B) +» B+ (TN B) < B and conversely. S11 is depth-leveled versions of the L
to R of the Lukasiewicz (and classical) equivalence [(4 — B) — B] <+ [4 V B]. (The
system proves depth-level versions of the R to L as well: [T — (T — 4)] — [(4 —
B) = (T = B)]and [T = (T = B)] = [(4— B) —» (T = B)]."

What makes the logic more complicated than the fukasiewicz is the need to depth-
level, due to the lack of a general equivalence between T — B and B. (If you were to add
that general equivalence as an additional axiom schema, the Lukasiewicz continuum-
valued laws as given in [14, pp. 228-229], would be immediate consequences: all those
laws are obtained from those here by deleting some occurrences of ‘T —” and “TT7.)
Any revision construction (not leading to a fixed point) will have failures of this
equivalence, e.g., when 4 is the Restall sentence discussed below.

What we might hope, though, is that for “most” sentences, even “most” paradoxical
ones, the “regularity assumption” (T — B) <+ B is valid. (As noted, that’s equivalent
to the validity of (T M B) <+ B, so that could equally serve as a regularity assumption;
so could either direction of either of these biconditionals.)'® With a revision theory
based on 3-valued logic, a great many paradoxical sentence are irregular. But if we
move to an analog that replaces {0, % 1} with the unit interval [0, 1], regularity can be
assumed for all but the very arcane sentences (ones that employ quantification in a very
specific way). In particular, in the continuum-valued semantics, regularity and hence
Fukasiewicz continuum-valued laws can be assumed for “quantifier-independent”
sentences, in a sense I'll define in the next section. And since the axioms of [14]
are complete for Lukasiewicz semantics (for inferences involving only finitely many
premises), this means that if we supplement the system above with a schema stating the
regularity of quantifier-independent sentences, the system so supplemented is complete
for (finite premise) inferences involving only such sentences.!’

For now, I just note that the unsupplemented system is powerful enough to derive
lots of desirable consequences. Here are a few obvious ones:

Suffixing Rule: 4 — B+ (B — C) — (4 — C).

15" The second is immediate by the Suffixing Rule below; the first is a special case of Depth-

Leveled Suffixing.
The Lukasiewicz (and classical) equivalence in the text entails [(4 — B) — B] — [(B —

A) — A]. Here we get an approximation: [(4 — B) — (T — B)] = [(B — 4) — (T N 4)].
This is almost immediate from S11 and S7c.

16 Note that the formulas themselves are not equivalent; only their validity is.

17 The complexity of the revision-theoretic model theory precludes any sound axiomatic system
satisfying a more general form of completeness for finite-premise sentential inferences: see
[20] (for an earlier version of the revision-theoretic semantics, but the point still applies).
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Proof. A— B+ T — (4 — B) by the Positive Weakening rule, so with Depth-
Leveled Suffixing and Modus Ponens, we get the result. O

Similarly for the analogous Prefixing Rule; and of course from either one, we get the
Transitivity Rule: 4 — BB - CF 4 — C.

Using Contraposition, we get negative versions of Suffixing and Prefixing, e.g., 4 —
B+ (4 — C)— (B — C). Using this, we can get

Intersubstitution Law: For any n > 0: (T —" (4 — B)) — [X(A4) — X (B)]. where 4
occurs only positively and of depth n in X (...); and similarly with the consequent
replaced by X(B) — X (A). if A occurs only negatively and of depth n. (T —"
(A — B) means the result of prefixing 4 — B with ‘T —’ n times. This can be
explicitly defined for variable 7, by recursion.) If the antecedent is strengthened to
(T =" (4 <+ B)) we only need to assume that substitutions are of depth #.

Various laws relating A and —, such as (i) [(4 — B) A(C — D)] =+ [AAC — B A D]
and (i) (4 — B) = [(AAC) = (BAC)].

These would not be valid under (SYM); their proofs rest on Adjunction.

Proof of (i): Using AN C — Aand A A C — C, the antecedent is easily shown to
strongly entail (A A C — B) A(AANC — D);weget AN\ C — B A D by Adjunction.
O

Proof of (ii): Take D to be Cin (i). O
Reverse Adjunction: (4 - C)A(B—=C) = (AVB — C).

(This follows from Adjunction using contraposition.) Given this, obvious disjunctive
analogs of the laws relating A and — are derivable in an analogous fashion.
Note that depth-level prefixing with C = T is

FIT—=A—=B)]—=[(T—=4)— (T = B).

which makes the prefix T — “necessity-like”, with a necessity that in this system doesn’t
obey the T axiom corresponding to a reflexive accessibility operation. Of course this
“necessity” has nothing to do with necessity as normally understood, and for sentences
that can be assumed regular, it is totally vacuous.

If we define $4 as (T — A) A A. $ does of course obey the T axiom, and it too is
necessity-like under (LimInf):

$-Introduction: A - $4. and
K-law for $: - $(4 — B) — ($4 — $B).

($-Introduction is immediate from R3a and R2, and the K-law for $ follows from the
K-law for “T —”, together with law (i) relating A and —. As the dependence on the
law relating A and — suggests, it isn’t sound under (SYM).) $(A A B) <+ $AA$B is
clearly derivable. Of course when A4 can be assumed regular, the “necessity” operators
T — and $ are vacuous.
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Strengthened Positive Weakening Rule: -4V B+ 4 — B.

Proof. Use R3a and either Depth-Leveled Suffixing or Depth-Leveled Weakening.
O

Strengthened Negative Weakening Rule: ~(4 — B) - A A —B.

Proof. By Depth-Leveled Weakening, Contraposition, and transitivity rule, -
—(4— B) = [T = (=4V B)]: so ~(4 — B) F =[T — (=4 V B)] and so by R3b,
—(A4 — B) F =(—=A4 V B), which yields the result. O

The Strengthened Positive Weakening rule also yields explosion (it entails —4 F
A — B, which yields 4, =4 + B by modus ponens).

The absence of a full weakening axiom (-4 V B) — (4 — B) might seem as if it
would make trouble for restricted quantification. However, when we add quantifiers
we’ll be able to define an operator $”, where $“ 4 behaves something like an infinite
conjunctionof 4, T — A, T — (T — A), and so on. (See third paragraph of §4.) And
we’ll be able to derive the law

(#) $2(=4V B) — $2(4 — B).

This is the secret behind the treatment of restricted quantification that I'll suggest.

I’'ve noted that on sufficient regularity assumptions, all the laws of L.ukasiewicz [0.1]-
valued sentential logic hold. This enables us to immediately see that we must be able
to prove such things as

Reg(A), Reg(B) (A — B)V (B — A),

with Reg(A) defined as (T — A) <+ A. (One could verify this directly by taking
a standard Lukasiewicz derivation of it'® and using the regularity assumptions as
needed.)

Of course at the moment I’'m working in a 3-valued revisionist framework, where
relatively few such regularity assumptions are valid; so it may be unclear why I've
appealed to the Lukasiewicz [0,1]-valued logic. The answer is that nothing in the
derivation system exploits the limitation to three values, as we’ll soon see;'” and there
are strong reasons to avoid such a limitation.

§3. Values in [0,1]. In the 3-valued revision theory, there are a great many rather
simple sentences B that don’t get constant values: equivalently, neither (T — B) — B
nor B — (T — B) get value 1. This leads to complexities in reasoning with them.
One example is the sentence Q, that says of itself that if it’s true it isn’t true. On
the LimInf rule in 3-valued revision theory, it eventually goes in w-cycles of form
<0,1,0,1,0,1,... >. But it’s natural to try to avoid the cycling. We could do this by
going to a 7-valued revision theory with values % where 0 < k < 6: then we could (with

18 For example, [17. pp. 419-421].
Lukasiewicz 3-valued logic is Lukasiewicz continuum-valued plus one extra (and rather
unnatural) axiom that limits the values to three; and I haven’t included any analog of that
axiom in my derivational system.
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a suitable starting hypothesis) give O, the value % at each stage.”’ But there are other
simple sentences that would still cycle, e.g., a sentence that asserts that if it’s true then
so is the Liar sentence: to avoid cycling, we’d need a value space with the value %.

An obvious idea for avoiding cycling to the extent possible is to do a revision theory
over the unit interval [0,1]. This requires that we generalize the Kripkean micro-
constructions, to allow them to take arbitrary values in [0,1], but doing so is easy. If
we use minimal Kripke fixed points then at the initial Kripke stage we still assign each
True(t) value 1 (relative to an assignment to its free variables) when (relative to that
assignment) ¢ denotes (the Godel number of) a sentence 4; at a successor stage o + 1,
we assign True(t) the value that 4 gets (via the obvious generalization of the Kleene
rules to [0,1]) at stage ¢; and at a limit ordinal A, we assign to True(t) the limit of
the values at prior stages. The limit exists, because it’s easily shown that any change of
values in the construction is always away from % (in the same direction).”!

We adapt this to the revision theory by allowing the assignments h to conditionals
to take on arbitrary values in [0,1]; then the Kripke construction over / yields a [0.1]-
valued assignment vy, to all sentences in the language.

We now need to generalize the revision-theoretic macro-construction. Let’s defer
the issue of the starting hypothesis for the moment. The obvious generalization of the
successor stages is:

(SUC) hﬁ+1(A — B) = L[;(A,B)

where Lg(A. B) is 1 if |A|s < |B|s. 1 — (|4|p — | B|s) otherwise. (This is the obvious
adaptation of Lukasiewicz continuum-valued semantics to revision theory.) And the
obvious generalization of the LimInf rule for limit stages is that /;(4 — B) is the limit
inferior of the /,(4 — B) as y approaches A. In other words,

(LimInf [0. 1) For limit 4. i; (4 — B) > r iff (¥e > 0)(3f < A)(¥y € [B.2))(h (4 —
B)>r—¢)?

I tentatively propose that we use (Suc) and (LimInfjy ;;), which taken together say in
effect that for any a > 0, ho(4 — B) is liminf,{L,(A4. B)} (where that means the
liminf of the sequence of L, values prior to «). On this proposal, the derivational
system in §2 is still sound, as shown in Appendix A.

But for this proposal to serve its desired purpose of eliminating unnecessary cycling,
we need care in selecting the starting valuation /. For instance, if Ay assigns every
conditional a value in {0.1.1}. then no sentence will ever get a value outside of
{0, % 1}. If it assigns every conditional the value ‘5’ for positive integers p and ¢ with
p < ¢. then no sentence will ever get a value that isn’t a multiple of é if ¢ is even, or ﬁ

20" The 4-valued logic with values {0, % % 1} wouldn’t work, because we need the value % to
accommodate Liar sentences.

21" For a more careful formulation, see [8].

22 The simpler

(D) h;(4 — B) >riff 3 < 2)(Vy € [B.2))(hy(4 — B) >r)

is incoherent in the standard real numbers: for instance, if /,(4 — B) are forever increasing
prior to A, then if r is their limit, (?) would say that the value at A is > each real less than r,
but not > r.
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if ¢ is odd. This makes it unevident what to choose as the starting valuation, especially
given that we need the starting valuation to be transparent.

For this reason, [8] proposed a modification of (Suc), that eliminated cycling for
a huge variety of sentences even with simple /4 like those that assign 0 (or %) to
all conditionals. (That paper used a generalization (SYMjo ) of (SYMj3), rather
than (LimlInfj ;). but the modification would work as well with (LimInf;).) The
modification was called “slow corrections”. Instead of taking /g.,(4 — B) to be
Lg(A. B), as (Suc) does, the “slow correction” revision rule takes it to be the average
of this and its previous value:

(SC) hg1(A — B) = §[hs(4 — B) + Lg(4. B)].

Under (SC) (and with either (SYM) or (LimlInf)), a great many sentences like O,
reach fixed point values other than 0, % and 1 (and do so even by stage ).

As we’ll see, there are some rather arcane sentences that can’t reach fixed points in
any revision construction. (A typical example is the Restall sentence R, constructed
by diagonalization to be equivalent to the claim In(True((R —" 1)), where R —" L
is the result of prefixing | with ‘R —’ n times. I think all other examples will involve
a similar quantification over depth of embedding in the scope of —’s, combined with
truth, though I'm not clear just how to make this precise.) In dealing with such
arcane sentences, (SC) is much less convenient to work with than (Suc), and leads to
somewhat messier laws. So it would be better if we could stick to (Suc) by using a more
complicated hy.

One way to do that would be to use a “pre-construction” based on (SC), for the sole
purpose of arriving at a starting valuation for the “real construction” based on (Suc).
The starting valuation for the preconstruction could be a simple one, e.g., assigning 0
to all conditionals; we could use the assignment of values to conditionals at a reflection
ordinal of the pre-construction as the starting value of the real construction with the
simpler rule for successors.

It would be nice if this procedure led, at the very least, to all “quantifier-independent”
sentences having constant value. (The importance of doing so is discussed at the end of
this Section.) More precisely, call a sentence quantifier-dependent if it is in the smallest
set X that contains all sentences with quantifiers and also contains all sentences with
True(t) where ¢ denotes a member of X. Call it quantifier-independent otherwise.”
If all quantifier-independent sentences have constant value in the slow-correction pre-
construction, then of course they will retain that value in a real construction that
uses that pre-construction for its starting valuation; but I don’t know whether the
antecedent is true.

In case it isn’t true, there’s an alternative way to specify a starting valuation for
the revision construction based on (Suc), that does lead to constant values for all
quantifier-independent sentences (provided that we make a slight alteration in the
Kripkean micro-constructions). It uses the Brouwer fixed point theorem. That theorem
has previously been used to show?* that in a language without quantifiers (but which

23 Defining “Z-independent” for other notions Z is usually more complicated because of the
need to exclude occurrences of ‘True(x)’, where the range of ‘x’ includes sentences that are
Z-dependent. But a quantifier-free sentence can’t contain ‘True(x)’ for any variable x.

24 This is spelled out in [6, pp. 97-99]. but I’'m sure the point was well known long before. [18]
used the theorem in a similar way in connection with the axiom of comprehension in set
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may have a way to construct self-referential sentences without them).”> any ground
model (that’s standard for syntax) can be extended to a model for the language of
‘True’ satisfying FLukasiewicz sentential logic.”® We can adapt that result here, by
temporarily treating as atomic all formulas whose main connective is a quantifier,
and giving them uninteresting values—say assigning them all value 0 (relative to any
assignment of objects to their free variables), or assigning all universals 0 and all
existentials 1. Let g be any function assigning values in [0, 1] to every sentence. Let
M, be the Lukasiewicz sentential model in which (i) values of atomic sentences with
predicates other than ‘True’ are given in the ground model; (ii) sentences whose main
connectives are quantifiers are given their chosen uninteresting values; (iii) sentences
of form ‘True(t)’ where t doesn’t denote the Gédel number of a sentence are assigned
value 0; and (iv) for any sentence x, the value g(x) is assigned to any sentence of form
‘True(t)’ where ¢ denotes the Godel number of x. Let F be the function that, applied
to any g. yields the Lukasiewicz valuation function on M,: that is, yields the function
that assigns to each sentence its value in M, under those sentential rules (hence assigns
the uninteresting values to quantified sentences). It’s evident from those sentential
rules that this function is continuous on the product space [0. 1]5VT | By the Brouwer
theorem, F has fixed points: there are assignments g such that F (g) = g. Pick any such
g (there will be many).?” and let /4, assign to each conditional what this g does.

We’d like that all subsequent %, will agree with %y on all quantifier-independent
conditionals (or equivalently, that the valuations they generate will agree with that
generated by /iy on all quantifier-independent sentences). In that case, all such sentences
clearly get constant value in the macro-construction. But to get such agreement, we
need to move beyond minimal Kripke fixed points.”® For instance, if the Brouwer
fixed point function g assigned a value other than % to a Truth-Teller sentence U
(taken as quantifier-independent: see n. 25), we’d need a non-minimal fixed point that
gives it the same value: otherwise /4y and &; would disagree on T — U, and there’s
no reason to think that the macro-construction would eventually settle down on all
quantifier-independent sentences. But the fix is obvious: in the initial stage of the
micro-constructions, we still assign True(t) value % if ¢ denotes a quantifier-dependent

theory. and [5] extends his results, in ways that could doubtless be used to extend the result
as stated in the text to partial results in the language with quantifiers, and thus generalize the
claim about quantifier-independent sentences made later in this paragraph.
For instance using direct naming, or the diagonalization operator of [19].
There can be no such result for Lukasiewicz quantifier logic: [15] pointed out (using the
aforementioned Restall sentence) that adding the truth schema to Lukasiewicz quantifier
logic gives an w-inconsistent theory; and [12] showed that this becomes a flat out
inconsistency if we beef up the truth schema to include the compositional principle
for conditionals, that is. VxVy[True(cond(x,y)) <+ (True(x) — True(y))]. In a revision
construction with (Suc) and (LimInf) then (whatever the starting valuation) the Restall
sentence eventually gets value 0 at all limit ordinals and 1 at all successor ordinals. (This
pattern is impossible for conditionals, but not for existential quantifications of conditionals.)
Most obviously, a fixed point g can assign any value to a Truth-teller, and any value > % to
a sentence that says of itself that if it’s true then so is the Truth-teller. For an example with
a very different flavor, suppose A4 is equivalent to B — —A4, Bto A — B. Some fixed points
have |[4| = 1, |B| = 0: others have |4| = % |B| = 1; these are the only possibilities. (The
slow correction pre-constructions that starts from giving all conditionals the same value lead
to the latter.)
I'm grateful to Quinton Wood for bringing this issue to my attention.

25
26

27

28
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sentence; but if 7 denotes a quantifier-independent sentence x, True(t) is assigned g (x)
for the chosen Brouwerian function g. If we do this, all stages of the macro-construction
will agree with g on quantifier-independent sentences, and so they will get constant
values.

Invoking the Brouwer theorem in this way gives little information as to what values
a fixed point might assign. To the extent that the pre-construction approach works, it
can be used to actually determine fixed point values for sentences; so the question of
how widely it determines constant values is worth investigating.

But one way or another, we have a revision theory based on (Suc) and (LimInf) that
leads to a wide range of constant values. So the [0,1]-based revision theory validates
the soundness of not only the derivation system of §2, but also

Regularity Schema (T — 4) <+ A, for quantifier-independent A.

(This could doubtless be extended beyond the quantifier-independent, though I don’t
know how far beyond.) And to repeat, adding this to the derivation system is enough
to derive Lukasiewicz continuum-valued logic as restricted to such sentences.

§4. Quantifiers. 1 will now expand the derivation system (that of §2 plus the
Regularity Schema) by adding quantifier laws. I’ll take 3 as primitive. As we’ll see,
there’s an issue about how best to represent the English ‘all’, so I'll define more than
one candidate. I'll use V° for the familiar =3, and define V! x4 as $—3x—Ax. (Recall
that $4 is AA(T — A4).) So |[V'xA|, > r iff (Ve >0)(3 < a)(Vy € [B.a])(Ve €
|M|)(|A(c)|, > r —¢). (Note the use of a fully closed interval [, «].) Obviously this
valuation rule is very much dependent on using the (LimInf) rule: under (SYM), $ is
a very unnatural operator, and so is V!. But in the derivation system to be developed
for (LimInf), V! will actually play a more salient role than V°.

Even without the quantifier rules, we can see that - V' x4 — ¥'xAx (by definition
and A-elimination) and V'xA4x F V' x4x (by $-Introduction. based on R3a).

A third candidate for ‘all’ is a quantifier I'll call V. To define it, I first use V°
plus the truth predicate to define $” A4 as something like an infinite conjunction of
A, T — A, T— (T — A), etc. More exactly, $°4 =, (¥'n € N)[True({T->"A4))]:
equivalently, (Vo € N)[True(($"A))]. where $°4 is just A. (As remarked earlier, —"
can be explicitly defined by recursion as a function of variable n, so this definition of
$» makes sense.) Semantically, we have

8 A]o = riff (Ve > 0)3B)f+ o < aA(Vy €[B.al)(d], =1 -¢)].

(Note again the use of a fully closed interval [, a]. due to the inclusion of =0 in the
definition.)

It’s obvious from this semantics that the inference from A4 to $” 4 is valid, as is the
sentence $“ 4 — $" A4 for any specific n; though we’ll need quantifier rules before we
can discuss their derivability in a finitary system. Similarly for $24 — $2(T — A):its
validity reflects the fact that 1 + @ = w. The fact that w + 1 # ® suggests, correctly,
that $($” 4) is a genuine strengthening of $” 4: it might be called $~*+'4.%

2 Indeed, we could extend this to define a $* for every ordinal notation in the language. They’d
be strictly increasing in strength; no limit of them is definable in the language.
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I’ll take ¥ x4 to be $”—3Ix—Ax. Like V! (and unlike ¥°). it will play a salient role
in the quantifier rules. In the semantics,

VOxd|o > 1 iff (Ve >0)3F[f+o <aA(Vy €[f.a])(Ve e [M|)(JA(c)|, > 1 -
e)].

Of course v, V! and V° are all equivalent when applied to “ordinary” formulas A,
those that can be assumed to be regular.

If you think it odd to have unrestricted quantifiers V inequivalent to —=3—, it may help
to observe that we already have such an inequivalence for restricted quantification: the
restricted universal is defined via — and the restricted existential via A. (Also, many
other non-classical logics, like intuitionist, have V stronger than —3—, as is the case
with V! and v®.)

We use three axioms and a meta-rule, and strengthen the truth rule:

Q1 (3-Intro) B(y) — 3xB(x) when no free occurrence of x in B(x) is in the scope of
an Jy.

Q2 (Central Quantifier Rule) V! x(Bx — C) — (3xBx — C) when x not free in C.
Q3 (InfDist) C A 3IxBx — 3x(C A Bx).

Metarule (UnivGen): If A;..... 4, - Bx and x isn’t free in any of A;...., 4, then
Ay, ..., Ay F V°xBx.

We generalize the truth schema, and add composition principles. In these cases, it
won’t matter which version of the universal quantifier to use (as we’ll see), so I write
them without a superscript.

Generalized Truth Schema (Vtp, o ) [TERM (t1) A ... NTERM (t,) D
[True({A(ty.....t,))) <> A(den(ty). ..., den(t,))]]

Generalized Composition Schema for —: (Vx)(Vy)[OSENT (x) A QSENT(y) D
[True(x—=y) < (True(x) — True(y))]].

with analogous composition rules for other connectives. (‘QSENT’ means ‘quasi-
sentence’: see the text to which n. 8 is attached.) Given the compositional rules, it’s
obviously enough to postulate the generalized truth schema for atomic A.

Here and in §2, I’'ve written most of the axioms and rules schematically, but now that
we have quantifiers and transparent truth, we should really use generalized versions. For
instance, we should replace S1 with the generalization VX[QSENT (x) D True(x-3x)].
(Again, it makes little difference which version of the quantifier we use.) From this,
we can easily derive specific instances 4 — 4 using Q1 and the truth rules (and a bit
more if we use V! or V). We can do this for each of the axiom schemas, except that
we need a schema in the vicinity of Q1 as well as the generalizations so as to be able
to derive the other schemas from their corresponding generalizations. We also should
generalize the rules, e.g., replacing Modus Ponens by True(x), True(x—sy) - True(y).
and supplementing UnivGen as written by “If True(y1). ... True(y,) - True(z) then
for every variable x not free in any member of the y;, True((Vx)$?z)”. If this is done,
the proofs of the schematic theorems and schematic derived rules are easily transformed
to proofs of the corresponding generalizations. For ease of reading, I will continue to
write in schematic terms, except in one place in Appendix B, where the generalized
form is needed.
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Q2 could be replaced by the following pair:

Q2a. V!x(Bx — Cx) — (3xBx — IxCx).
Q2b. 3xB — B when x isn’t free in B.

(Q1 entails the converse of Q2b.)

In Lukasiewicz logic, Q3 is derivable from other quantifier laws, but that seems
unlikely here.*"

Obviously - $24 — A, by definition of $ plus the truth rules. More generally,

$“-Elim For any n, - $°4 — $" A.

(For a special case of the previous is - $”$”4 — $" 4, and it’s not hard to prove the
equivalence of $2$" 4 to $© 4; see Appendix B.)
And using UnivGen, we get a rule form of the converse:

$-Introduction 4 - $” 4.

Proof. AF A, so by UnivGen 4 - V”xA4 for any x not free in 4. i.e., 4 - $°V'x4:
and using Q2b (plus contraposition, etc.) we get A - $°A4. O

In Q2. on the other hand, the use of V! is essential: the analog with V is weaker
than we want, and the analog with ¥ isn’t sound. For suppose B(n) is R —" L. where
R is the Restall sentence. (More exactly: B(n) is “either » isn’t a natural number, or
is a natural number and the result of prefixing L with ‘R —’ n times is true”.) Then for
each n, and each limit ordinal A and natural numbers £, B(n)| sk isliffn >k > 1,
0 otherwise. Then |3nB(n)|;.x is 1 for all k > 1 (since |B(k)|;;x is 1 when k # 0),
and so |9nB(n) — L|;4x is 0 for all kK > 1, and so |InB(n) — L|; . is 0. But for
each n, |B(n) — L|; 1441 is 1if |B(n) — L|;,x = 0, that is, if kK > n; so for each n,
|B(n) = L] is 1.so [¥n(B(n) = 1)|s4eis 1.

That Q2 as stated is sound in the semantics is proved in Appendix A. (It wouldn’t be
sound in a semantics based on (SYM), since it implies the K-law for $.) The soundness
of the others is obvious.

Of course we don’t need V' for the rule forms of Q2 and Q2a: V'x(Bx — C)
dxBx — C follows from Q2, because of $-introduction, and similarly for Q2a.

A crucial feature of ¥ (not shared by V! or V) is

(RQ_) V9x(—Ax V Bx) = ¥“x(4x — Bx).

That this is not only valid, but provable in our system, is shown in Appendix B. I'll
discuss its ramifications in §5.

It’s also useful to introduce n-ary quantifiers, that are candidates for understanding
“for all xi.....x,. A(x1.....x,)”. I take (¥°x.....x,) to be defined as a string of
n unary Y0s: (VOxi.....x,)A(x1. ... x,) is just (VOx1)(VOx2)...(W0x,)A(x1. X3, ... X,).

30 In Lukasiewicz, the contraposed form Vx(C v Bx) - CV vV xBx is derived by deriving
Vx[(C — Bx) = Bx] — [(C — ¥’xBx) — ¥’xBx]. and using equivalence of each side to
disjunction. But the equivalence of each side to disjunction fails here, in the absence of
regularity assumptions.
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(Similarly for (3x;.....x,).) But I take (V'x.....x,) to be defined as $(V'x;. ..., x,,):
that is, (V!'x1)(V'x2)...(¥°x,)A(x1. X2, ....,x,). which for n>1 is weaker than
a string of V!s. Strings of more than one V!s will turn out to be rather
less useful. Similarly, (V“xy,....x,) is to be defined as $°(¥x;.....x,): that is,
(V2x1) (V0x2)...(V0x, ) A (X1, X2, ..o X))

Here are some salient facts about what’s derivable in the system, even without using
the Regularity Schema. (More detail, with proofs, in Appendix B.) And about laws
you might expect but that aren’t sound.

Vacuous quantification: If xisn’t free in C, then xC and vOxC areeach equivalent to C.
But V! xC is equivalent to $C, and V*xC is equivalent to $*C. When n > 1 and
xp isn’t free in A, (V'xq. .... x,)A is equivalent to (V' x»., ..., x,)A4 (and analogously
for x; when i > 1), since the one occurrence of $ remains when the x; is deleted;
analogously for V.

Change of bound variables: Works just as expected.

$V vs. V'$: We get the analog of the converse Barcan formula for V°, that is,
F$v0xAx — YOx$A4x; but only the rule form YOx$A4x F $¥9xAx of the Barcan
formula.’!

$V! vs. V18, and $V© vs. V®$: Analogously, the converse Barcan holds with ¥! and
Vv, but the Barcan only in rule form.

Commutation of quantifiers: We have 3x3y4xy — JydxAxy. and similarly when all
the 3’s are replaced by V0. With ¥! and V* we have only the rule forms. which is
part of the reason why the n-ary quantifiers (V!x;. ..., x,) and (V®x,....x,) are
more useful than strings of the corresponding unary quantifiers. With the n-ary
quantifiers, permuting the variables in the quantifier is unproblematic.

Universal analogs of Q2 (and Q2a): We have V!x(C — Bx) — (C — ¥’xBx) (and
Vix(4x — Bx) — (WxAx — V'xBx)). (We can’t replace ¥ in the consequent
with V!: see Appendix B.) Similarly ¥*x(C — Bx) — (C — ¥"xBx), for any n
(where V" is $”7?); and $v*x(C — Bx) — (C — VY®xBx).

3-Importation: If C doesn’t contain x free, - 3x(C — Bx) — (C — IxBx).

Failure of 3-Exportation Rule: The rule C — 3xBx F 3x(C — Bx) (for C not
containing free x) is unsound in the semantics.

That 3-Exportation fails is a good thing! For (as noted in [1]) its validity in Lukasiewicz
logic is the source of the inconsistency mentioned in n. 26. (Taking C to be the Restall
sentence R and B(n) to be R —" L, 3 -Exportation (together with transparency)

31 You can get counterexamples to the conditional form of the Barcan for v (that is, of
VOx$4x — $¥°xAx) even with just values 1 and 0. E.g.. with domain the natural numbers,
suppose that B(n) is =(R —" L), with R the Restall sentence, so that for each n, | B(n)|; 1«
is 1 iff either k = 0 or k > n, and 0 otherwise. Then |B(n)|;.,, is 1 also, so each B(n) goes in

cycles of length w. [V0nB(n)|, is 0 except when k=0, so |$¥°nB(n)|;, is 0 for all k. But
|T — B(n)|;, (=|T — B(n)|4e) is 1 since that’s the limit of the| T — B(n)|; ., and |T —

B(n)|;41is Isince |B(n)|; is 1:50 [$B(n)]|, 1 is 1 for all n. so [V°n$B(n)|;41 = 1.Soat A + 1.
vn$B(n) has higher value than $v°nB(n).Variants of this also give counterexamples to
Barcan for V! and for V. For V!, let B(n) be T — =(R —" L1): for V. the counterexamples
are a bit more complicated, involving sentences that have cycles of length w?.
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immediately leads to the proof of R; and with that and the compositional rule for —,
=R is easily proved as well.)*

These give enough of the flavor of the system to enable us to move to restricted
quantification.

§5. Restricted quantification. I mentioned early on that my concern in this paper
was with a conditional — adequate to defining universal restricted quantification:
“All A are B” was to be understood as ‘Vx(4Ax — Bx)’. But we’ve seen at least
three candidates for V’, so three candidates for “All 4 are B”: we could take it
as VOx(Ax — Bx)., as V!x(Ax — Bx). or as V”x(Ax — Bx). Similarly for multi-
place restricted: we could take “All x;...,x, that stand in relation 4 stand in rela-
tion B” as (Vxy....x,)[A(x1....x,) = B(x1....x,)]. or as (V!xi.... x,)[A4(x1.... x,) —
B(xi....x,)]. or as (V*xy....x,)[A(x1.... x,) = B(x1....x,)]. I'll use the notations
VOx 4 Bx. V! x 4, Bx and V¥ x 4 Bx for the unary restricted quantifiers (and analogously
for the n-ary).

I think there’s a big advantage to the V* readings for both the restricted and
unrestricted quantifiers: together these validate the obviously desirable law “If
everything is either not-A or B then all 4 are B”:

(RQ) Vx(—Ax V Bx) — Vx4, Bx.

(Using an ordinal bigger than o for both unrestricted and restricted (see n. 29) would
have the same advantage, but there seems little point to that.)

I don’t of course mean this as a claim about ordinary English: ordinary speakers
don’t have coherent ways of dealing with truth-theoretic paradoxes, and certainly not
of the arcane paradoxes involving Restall-like sentences; and only for such sentences
is there any real distinction between V°, V! and v. What I mean., rather, is that by and
large, ordinary reasoning is best preserved even for arcanely paradoxical sentences if
we understand both the unrestricted and the restricted ‘all” as V.

If we were to understand V in (RQ) as either V¥ or V! in both occurrences, (RQ)
wouldn’t be valid. We could get it by an ad hoc adjustment to the definition of restricted
quantification, e.g., taking Vx4, Bx not as Vx(A4x — Bx) but as Vx[(4x — Bx) V
(=Ax Vv Bx)]; but while that would deliver (RQ) it would fail to deliver related laws,
such as

(RQ*) Vx(=Ax V Bx) — Vx4, (Ax A Bx).

(For instance. suppose that for any object c. |Ac|, is § for all a and |Bc|, is 1 for
odd « and 0 for even a. On the proposed ad hoc reading, (RQ#) then amounts
to (mAc V Bc) — [(Ae — Ac A Bc) vV —Ac V (Ac A Be)]. But if a + 1 is odd, then
|=Ac V Bc|gy1 is 1 while [Ac — Ac A Belgq1 and |—Ac|q4 are % and |Ac A Bc|gq1 18
0: so this instance of (RQx) will get value J at o + 2.) To get laws (RQ) and (RQx)
without going to infinite iterations of $. we need one more $ on the left than on the
right: e.g.. V' on the left and ¥° on the right. If we want a single unrestricted ‘v,

32 But given regularity assumptions for C and Bx. we get even the conditional form (C —
IxBx) — Ix(C — Bx).
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and define restricted quantification in terms of it, we need to use vV (or V* for some
bigger o).

Might we do better by taking the restricted quantifier as primitive, and defining
the unrestricted in terms of it (VxBx as Vx,—,Bx)? We'd need valuation rules for the
restricted quantifier, but the obvious idea would mimic the revision construction here,
evaluating Vx4, Bx at an ordinal directly in terms of the values of 4¢ and Bc at prior
ordinals. But in that case, explaining VxBx as Vx,—, Bx would be unacceptable: if the
Bc’s all have high values at ordinals prior to «, VxBx would automatically get a high
value at «, even if some or all of its instances B¢ have low values at «.. This can be so
even when « is past the critical ordinal; so universal instantiation would fail.

Of course we could get the equivalence of “everything is B” to “every self-identical
thing is B” by reading the former as V!xBx and the latter as Vx4, Bx (or more
generally, the former as V™' xBx and the latter as Vx4, Bx. for finite 7). But that
seems rather unnatural, which is why I prefer going to V.

§6. Final remarks. I expect that the derivation system presented in §2 and §4 could
usefully be expanded (even beyond the added regularity principle suggested at the end
of §3: and I expect that that principle too could usefully be extended to a wider class of
sentences). A system that is fully complete on this semantics is not in the cards.*> But
it would certainly be desirable to strengthen the one here; this paper is only a first step.

But I think it is an important step in a number of ways. Probably most centrally, it
shows that we can have a theory of transparent truth that has a conditional obeying
natural laws and where in particular we can have the law

(RQ) Vx(—Ax V Bx) — Vx4, Bx,

reading Vx4, Bx as “All A are B”, and taking it to abbreviate Vx(4Ax — Bx).
Admittedly, we get (RQ) only by treating the universal quantifier in an unusual way,
not as —3—; but non-classical theories already pretty much required us to treat the
universal restricted quantifier as different from —3x,,—Bx (where Jx,,Cx is the
restricted existential quantifier 3x(Ax A Cx)), so treating the universal unrestricted
quantifier as different from —3- doesn’t seem totally outlandish.

Previously, it was reasonable to worry that a theory of transparent truth with (RQ)
might be unobtainable (except in trivial ways, like adding ‘-4 V B’ as a disjunct,
that don’t deliver related laws like Vx(—A4x V Bx) — Vx(4x — Ax A Bx).) Brady’s
pioneering papers on conditionals in transparent truth theories, and his book [4],
don’t validate even the Weakening Rule

(WR) VxBx - Vx(Ax — Bx)
(and though he didn’t consider varying the semantics of the quantifier, it is pretty clear

that there is no remotely acceptable treatment of quantifiers that would give this rule

3 (i) It’s well known that the set of sentences valid in Lukasiewicz continuum-valued quantifier
semantics is not recursively enumerable, and this system reduces to that on sufficient
regularity assumptions. (ii) Even in the sentential case, the complexity is too great, as
observed inn. 17.
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given his treatment of conditionals). In [2] Bacon modifies Brady’s construction, and
says that with his modification, we get not only that rule but a conditional form of it:

(WC) F VYxBx — ¥x(Ax — Bx).

But in the main body of his paper (all but the last section), Bacon gets (WC) only in
a very limited language, with no proper negation operator—so for instance, it has no
means to express ordinary Liar sentences.’* The final section of his paper does contain
interesting though quite undeveloped suggestions about how to extend his account
to a language with a real negation, with a semantics that uses what is essentially
the “Routley star” from relevance logic. But though this delivers (WC), it does not
deliver (RQ) (which doesn’t follow from (WC) in its logic since its conditional is
non-contraposable). It doesn’t deliver even the rule

(WCR) Vx—Ax F Vx(Ax — Bx);

it takes it as consistent that there are no A4’s and yet not all A’s are B’s (e.g., in his
preferred version, when Bx is x # x, and Ax is x = x A Oy, with O, asin n. 14).

In earlier work, e.g., [7],  made a different sort of attempt to get a law “If everything
is either not 4 or B then all 4 are B”: I read it not as RQ but rather as

(RQ*) Vx(—=Ax V Bx) > Vx(Ax — Bx),

where > was a different sort of conditional from —: — is a restricted quantifier
conditional, > is an ordinary English conditional (perhaps something roughly like the
epistemic conditionals in the tradition of Stalnaker 1968). But, while I don’t reject
the idea that some pre-theoretic laws about conditionals depend on reading some
‘if...then’s as ordinary English conditionals, the logic that I managed to get by these
means was rather weak.

In this paper, I think I’ve achieved much more satisfactory results, and done so
without need of a separate conditional t>. Part of this is due to my suggestion of a
different reading for ‘all’. But that wouldn’t have led to useful results in a theory based
on the revision-theoretic semantics in my earlier papers, because those papers made a
poor choice for how the revision procedure behaved at limit ordinals. The earlier part
of the present paper shows, I think, that even independent of quantification, the new
limit rule (LimInf) is far preferable to the old one; and the treatment of quantifiers in
later sections of this paper wouldn’t have made any sense on the old limit rule.

I remarked at the beginning of the paper that we have a choice in how to deal
with the paradoxes: we can keep the logic classical and complicate the truth theory,
or keep the truth theory simple and complicate the logic. We can’t know which is
the better package of logic plus truth theory until we have developed both packages
as best we can. The present paper is part of an ongoing effort to do this, focusing
especially on the non-classical side. While just a first step, I think that by getting a
closer approximation to classical laws, especially laws of restricted quantification, it

34 Bacon notes that it does have a hierarchy of pseudo-negation operators -4 =4r 4 =" L
for n > 1. But they turn out to be very unlike real negation: e.g., for any 4, —,—, A4 leads to
contradiction, and for any 4 and B, we can prove (—,—nA4) <> (mp—nB).
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significantly improves the competitive advantages of the combination of transparent
truth and non-classical logic over classical logic with restrictions on transparency.
A further step in improving the competitive advantage would involve the addition
of predicates “well-behaved” (guaranteeing classical behavior) and “minimally well-
behaved” (guaranteeing regularity), as in [9].>> But the improvement achieved by
adding such predicates is somewhat orthogonal to the issues discussed in this paper.

Appendix A: Soundness. The soundness of many of the axioms and rules, with
respect to the [0,1]-based revision theory with LimInf, is obvious. I'll give proofs for the
less obvious ones: S6, S7a (S7b is analogous), S7c, S8 (though it too is pretty obvious),
S9, S11, R4a (R4b is analogous) and Q2. The system is also sound with respect to
the revision theory based on three values (and on 2n+1 values more generally), and
the proofs are simpler there. Of course the assumption of regularity for quantifier-
independent sentences requires the continuum-based version.

In many of the proofs below, I’ll tacitly rely on a fact noted in the main text, that
the value of a conditional A — B at a limit ordinal can be characterized either as the
liminf of the values of that conditional at prior ordinals, or as the liminf of the values
L,(A. B) at prior ordinals (where these are the values obtained from |4|, and |B|, by
the Lukasiewicz evaluation rule). The former “continuity formulation” is what was
built into the LimInf rule as I originally stated it; the latter “general rule” has the
advantage of holding for successor ordinals as well as for limits. An easy transfinite
induction shows their equivalence for limit ordinals. The general rule can be written
more explicitly as

(GR) Foranya>0and r<1, ho(Ad— B)>1—riff (Ve>0)(3B< A)(Vy €
[B.4)(|4], = |Bl, <r +e).
The equivalence of the two formulations leads immediately to the following lemma.
LeMMA Al. T — (A — B) has the same value as A — B at limit ordinals. (So |T —
(4= B)|iy1 =T — (4 — B)|;.)
Proof. By the “general rule”, | T — (4 — B)|; is liminf;{L,(T.A4 — B)}. which is
limin f;{|A — BJ,}. which by “continuity formulation” is [4 — B|,. O

LemMA A2. For any r: if for some B, |A — B|o > r for all successor ordinals greater
than B, then for all final ordinals (successor or limit), |A — Bl, > r (where a final ordinal
is an ordinal greater than or equal to the critical ordinal ).

Proof. The premise guarantees that for all final ordinals f. |4|sz < |B|s and hence
Lg(A.B) = 1; so by the “general rule” for evaluating conditionals, the conclusion
follows. N

Soundness of S6: (4 — B)A (4 = C) = (4 — BAC).
Proof. By Lemma A2, we need only establish this for successor ordinals > a + 1

(where o is the critical ordinal), and that amounts to showing that for all
final o, and all reals r <1, if |[A— Bl >1-r and |4 — C|, > 1—r then

35 A somewhat analogous “well-behaved” predicate improves the classical theory as well, but
the two predicates together mark a bigger improvement in the non-classical case.

https://doi.org/10.1017/51755020325100919 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020325100919

22 HARTRY FIELD

|4 — BAC|o>1-r. By (GR), the premises tell us that for any &> 0, there
are B and B, such that (Vy € [Bi.))(|4], —|B|, <r+e¢) and (Vy € [ a))
(4], = |C|, < r+e). Letting S be their maximum, we get that (Vy € [f.a))(|4], —
min{|B|,.|C|,} <r+e¢) (since min{|B|,.|C|,} is either |B|, or |C|,). So (Vy €
[Ba))(|A|, —|BAC|,) <r+e, and so by (GR) again, [4 - BAC|, > 1-r. O

Lemma A3. For any a > 0,
Cla=1]4— Bla<|4— Cla.)

A= Bla+|B—Cla<1+|4d— Cla. (So if |B—

[We obviously need the ‘1+: e.g., if 4 implies B and B implies C, both terms on left
are 1.]

Proof. Using the well-known inequality [liminf{s, + t,} > liminf{s,} +
liminf{t,}. we get that the left-hand side is < liminf.{L,(4, B) + L,(B.C)}. And
L,(A.B)+ L,(B.C) is easily seen to be < 1+ L, (4, C) (theyre equal when neither
summand is 1). So the LHS is < liminfo{L,(A., C)}. and that’s the RHS. O

ANCla+1]4 = Bla <14 |BNCl,.

Proof. Writing D for-C.Lemma A3 gives |4 — Bl + |B = D|o <1 +|4 — D|,.
But|AM Clyis 1 —|4 — D|,. and similarly for |[BM C|y, 50 |4 = Blo — |[BM Cl, <
1 —]A4 1 C|,. which is equivalent to the corollary. O

Soundness of S7a: [T — (4 — B)] = [(B—=C) = (4 — C)].

Proof. Obviously |4 — B|, <1, and so by Lemma A3, when a > 0, |4 — B|, <
min{l,1—|B = Cla + |4 = C|a}. So (for any & > 0) |T — (4 = B)|a+1 < |(B —
C)— (4= C)|as1- So by Lemma A2, we get that for any final o, |T — (4 —
B)la <|(B—C)—(4— C)|s. So for any final successor ordinal, |[T — (4 —
B)]—=[(B—=C)—(4— C)lla =1. So by Lemma A2 again, |[T — (4 — B)] —
[(B— C)— (4 — C)]|la = 1 for any final ordinal. O

LemMMA A4. For any o > 0,

Soundness of S7c: Analogous to proof for S7a, but using Lemma A4 instead of A3.
Soundness of S8: [T — (-4 V B)] — [4 — B].

Proof. Forany a, |T — (=A V B)|ay1ismax{l — |A4|,.|B|a}. whichis < min{l,1 -
|A|o + |Bla}, whichis |4 — B|a41. Using Lemma A2, we get the result. O

Soundness of S9: (TN A4) - (B—-C)] = [(T = B) = (4 — C)].

Proof. We need that for all final o, [(TNA) = (B— C)la <|(T - B) = (4—
C)|o. By Lemma A2, it suffices to show this when « is a successor f + 1. In that case,
what we need is that

(%) T = Blg— |4 = Clp < max{0.

We prove (*) by induction on f > 0.

When £ is itself a successor 6 + 1, the LHS of (x) is Bs — min{1,1 — 45 + Cs}. i.e.,
max{Bs — 1, B; — 1 + As — Cs} (which may be negative).

And the RHS is max{0, As — min{1,1 — Bs + Cs}}, i.e., max{0,4s —1,4s — 1 +
Bs — C()}
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If the LHS is Bs — 1, then it’s <0, so < RHS. And if it's < Bs -1+ A5 — C;
then its also < RHS, since that’s equivalent to the last term on right-hand side by
rearrangement.

When f is a limit A, we invoke induction hypothesis: for all y < A, (x) holds, or
rewriting it, [4 — C|, > |T — B|, —max{0,|T N 4|, - |B — C|,}.ie., |4 = C|, >
min{|T — B|,.|T — B|, —|TMA|, +|B — C|,}.

Taking the /imin f', of both sides, we get

|4 — C|, > liminf;{min{|T — B|,.|T — B|, —|TMA|,+|B— C|,}};

and since the /imin f of the minimum of two sequences is the minimum of their /imin f's,

|[A — C|; > min{|T — B

o Aiminf ) {|T — B, - |TNA|,+|B— C|,}.
But since liminf (- y,) = limsup(y,)., we have
liminf (x, — y, + z,) > liminf (x,) — limsup(y,) + liminf (z,):
so the above yields
|[A — C|, >min{|T = B|,,|T = B|,—|TNA|,+|B— C|,}
which means
|4 — Cl;,—|T — B|;, > min{0,|B — C|, — | T M A|;}.

Taking the negatives of both sides, we get () for 4. O
Soundness of S11: [(4 — B) — (T = B)] = [T — ((TA4) v (T B))].

Proof. By Lemma A2, it suffices to show that at successor ordinals, the LHS has
value < the RHS; that is, that for all £,

1A= Blg+|T = Bl <|[TN(4VB).

(The fact that |4 — B|g > |T — B|s avoids any need to minimize the LHS with 1.
On the RHS, I've used T M (A4 Vv B) instead of the equivalent (T 1 4) v (T M B), to
simplify the proof of the limit stage of the induction below.)

If B is itself a successor d + 1, the LHS is 1 — min{1,1 — 4|5 + |B|s} + | Bls: that is,
max{Bys, As}. That’s the value of the RHS.

When f is a limit 1 we use induction. We can rewrite the inequality as 1 —|T 1
(AV B)|g+|T — Bls < |4 — Bls. Suppose this holds prior to 1. Taking liminf's
(at 1), we have liminf {1 — [T (AV B)|g +|T — Bz} < |4 — B|,. But by the same
liminf law used in proving S9. this yields 1 — limsup{|T M (A4 V B)|g} + liminf {|T —
Blg} < |4 — B|;:thatis, 1 — [T (A4V B)|;,+|T — B|;, < |4 — B|,.asdesired. O

Soundness of R4a: (T -+ B) - B+ B — (T — B).

Proof. If |(T — B) — B|, is | for all final « then for all final . |B|z > |T — B;.
From this, it’s easily seen by induction that the sequence |B|; is non-decreasing once
the critical ordinal is reached. But then it must be constant: if it strictly increased then
the valuations at earlier stages wouldn’t be recurrent. So |B — (T — B)|, is 1 for all
final . O
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Soundness of Q2: V! x(Bx — C) — (IxBx — C) when x not free in C.

Proof. 1t suffices to prove

(1): For successor a + 1, [Vx(Bx — C)|q+1 < |3xBx — Cla11. and

(2): For limit 4, | T — V'x(Bx — C)|; < |[3xBx — C|;.

(1) is obvious: If |IxBx — C|as1 < r then [xBx|, — |Clq > 1 —r, so there’s a ¢
such that |Bc|, — |Clo > 1—r, and so for which |Bc — Clay1 < 7. So |[VOx(Bx —
C)|a+1 <r.

(2): If |T —=Vx(Bx = C);>r then (Ve>0)38<A)(Vy€[p. 1) (Vee
|M|)(|Bx — C|, > r —¢/2): this holds in particular at successor y, so

(Ve > 0)(V0 € [B;. 2))(Ve € [M|)(1 - |Bcls +[Cls = r —¢/2).
For any J, there’s a ¢ such that
|Bc|s > |3xBxl|s —&/2:

so (Ve > 0)(V5 € [B:.4))(1 — |[3xBx|s + |Cls > r —¢).So |3xBx — C|; > r. O

Appendix B: Quantifier derivations and invalidities. Proofs of most of the sentential
laws mentioned in §2 were sketched there, so I'll just sketch derivations of some of the
quantifier laws mentioned but not proved in §4, and a few others. I’ll also elaborate on
a few of the invalidities mentioned there.

K-law for $°:+ $°t1(4 — B) — ($°4 — $”B).

Proof. This is the one place where we need to use the generalized form of the laws,
mentioned early in §4, rather than the schemas. That enables us to turn the schematic
proof of the K-law for $. given in §2. into a proof of

(A) True($(x=>y)) — [True($(x)) — True($(y))]].

The next step is to generalize this to )

(B) True($"(x=y)) — [True($"(x)) — True($"(»))].

Since we have induction in the theory (see n. 6), and the n = 0 case reduces to the
composition law for —, it suffices for (B) that we prove

(C)[B(n) = (C(n) = D(n))] = [B(n+1) = (C(n+1) = D(n+1))].
where B(n) is True($"(x-3y)). C(n) is True($"(x)), and D(n) is True($"(y)). Using
contraposition, this amounts to [B(n) — (C(n) — D(n))] — [$B(n) — ($C(n) —
$D(n))]. But using $-introduction followed by three applications of (A), we get (C)
and hence (B).

Using UnivGen on (B) (we only need the weaker form with V') and Q2a, we get

(D) YVnTrue($"(x=y)) — ¥Yon[True($"(x)) — True($"(y))].

By $-Introduction and (A). this gives ‘ ‘

(B) $V°nTrue($"(x=y)) — $VOn[True($"(x)) — True($"(y))].

And then an application of Q2 to the consequent (together with the Suffixing Rule)
yields

(F) $V°nTrue($" (x=y)) — [V'n(True($"(x))) = Yon(True($"(»)))].

In other words, $1(4 — B)) — (34 — $“B). O
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The K-laws obviously entail the following rules (given $-Introduction and $*-
Introduction, both proved in the text).

K-rules: 4 — B+-$4 —-$Band A — BF $?4 — $“B.

N.B.: We can’t strengthen the K-law for $* to $°(4 — B)) — ($°A4 — $“B). For take
A to be T and B to be the Restall sentence R. Since |R|, is 0 whenever « is a limit
ordinal, [$¢R|, is 0 for all o so [$°T — $“R|, is as well. But since |R|s, is 1 for any
f and positive integer n, | T — R|p., is | forany fand n > 2,50 $”(T — R) has value
1 at any f + o (that is, at any limit ordinal that isn’t a multiple of w?).

Crucial feature of $© and v*: (i) $¢B — $“(T — B) and (ii) $*V'xBx — $®V!xBx.

Proof. By definition, the consequent of (i) is (Vn)True(T —" (T — B)), which is
obviously equivalent to (Vn > 0) True(T —" B); which follows from (Vn) True(T —"
B), which is the antecedent. (ii) easily follows from (i). O

Vacuous quantification: If x isn’t free in C, - 3x—C < —C, by Q2b and Ql. from
which we derive F V'xC <+ C using contraposition. The K-rules for $ and $¢ then
yield - V' xC < $C and - ¥“xC « $“C.

Change of variables: - 3x4x — JyAy (when no y in Ay is in the scope of an Ix), and
analogously for °, and V! and v®.

Proof. - Ax — 3yAy. so by UnivGen and Q2, F 3xAx — 3yAdy. (Recall
that UnivGen has been stated in terms of V'.) The result for ¥° follows from this
using contraposition, and the results for V' and vV then follow by the K-rules for
$ and $*. O

Commutation of unary 3 and ¥° quantifiers: - 3x3y4xy — 3y3xAxy, and similarly
when all the 3’s are replaced by °.

Proof. - Axy — dxAxy by Ql. So - dyAdxy — JydxAxy by UnivGen on y plus
Q2a. So - IxIyAxy — FyIxAxy by UnivGen on x plus Q2. The result for V° follows
from this using contraposition. O

Commutation within an n-ary V! quantifier or v quantifier: - (V'x;.x5....x,)4 —
(len(l),xn(z), <Xz (n))A. Where 7 is any permutation of {1.....n}. [Equivalently,
V0 V0x0. W0xp A = Vx, () Vx4 ). oo ¥0xp))A.] Analogously for v,

Proof. An n-ary Yquantifier is obviously equivalent to a string of »n unary V°
quantifiers, so commutation in the string yields commutation within the n-ary V°.
The result for the n-ary V! quantifier is then immediate by $-introduction and the
K-law for $. O

Commutation rule for unary V' quantifiers or V® quantifiers: V'xV'yAxy b
V! p¥!xAxy. and analogously for V.

Proof. ¥'x¥'yAxy F Axy. Apply UnivGen first to x, then to y. O
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N.B.: We can’t strengthen these to conditional form, e.g.. to V'xV!yA(x.y) —
V'y¥!xA4(x. y). Forlet Axy be of form Bx Ay = y. Clearly ¥’y Axy is then equivalent
to V' y Bx, which is equivalent to Bx, so V! y4xy is equivalent to $Bx. so V' xV! y4(x, y)
isequivalent to V! x$Bx. And clearly V! x A xy is equivalent to V! xBx. so V! yV!xA(x, y)
is equivalent to $¥' xBx. So this instance of commutation for V! is equivalent to the
Barcan conditional for V!, ruled out in n. 31.

The one-way interchange laws ¥!v? — ¥0%! and v*v* — ¥0v will be derived below.

Universal analogs of Q2a:

(1) F Vl (Ax — Bx) — (V'xAx — V'xBx)

(1*) ¥!x(C = Bx) — (C — ¥'xBx)

(2) - $V'x(4x — Bx) — (V!xAx — V'xBx)
(2%) $V'x(C — Bx) — ($C — V'xBx)

(3) $v*x(Ax — Bx) — (V?xAx — V“xBx)
(3*) $¥°x(C — Bx) — ($°C — V*xBx).

Proofs. (1) is immediate from Q2a, by contraposition of its consequent and the
prefixing rule. From (1), the K-rule for $ yields - $V'x(4x — Bx) — $(V'xA4x —
V0xBx): the conditional form of K-law for $ yields $(V°xAx — V'xBx) — (V!x4Ax —
V!xBx), and by Transitivity Rule, we get (2). For (3), we use the K-rule for $¢ followed
by that for $ to get - $°*!v!x(4x — Bx) — $°+1(V'xAx — V'xBx): the “crucial
feature” allows replacing the antecedent by ¥”*!x(4x — Bx). and the conditional
form of K-law for $§” then allows replacing the consequent by V”xAx — V“xBx.
(1*)—(3%) follow from (1) to (3) by vacuous quantifier rules. O

N.B.: We can’t strengthen (2) to V'x(4x — Bx) — (V!x4x — V!xBx). This is
evident, since when Ax is T this is equivalent to V!x(T — Bx) — (T — V!xBx),
and that implies the Barcan formula for V! which we've seen invalid (n. 31).
[The antecedent of that Barcan formula, V!x$Bx. is V!x[Bx A (T — Bx)]. which
implies V' xBx A V'x(T — Bx). which by the bad strengthening of (2) would imply
V!xBx A (T — V!xBx). which is the consequent $V'xBx of that Barcan formula.]
Similarly for (3).

Partial converse of Q2: - (3xBx — C) — ¥'x(Bx — C), when x not free in C.

Proof. - Bx — 3xBx, so by Suffixing Rule, - (3xBx — C) — (Bx — C), so by
UnivGen and (1*), F (3xBx — C) — V'x(Bx — C). O

COROLLARY. 3xBx — C +V'x(C — Bx).
Quantifiers with disjunction and conjunction:

F 3x(Ax V Bx) <> 3xAx V IxBx

F (VxAx AY'xBx) — YOx(Ax A Bx)
= (leAx AV'xBx) — V'x(4x A Bx)
'_

(4)
(5)
(6)
(7) - ¥°x(C v Bx) — (C v ¥°xBx). when x isn’t free in C.
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Proofs. (4) The R to L is easy. using Reverse Adjunction. L to R: - Ax — (3xA4Ax V
dxBx). using Q1, V-Introduction and transitivity; similarly - Bx — (IxAx Vv IxBx).
So by Reverse Adjunction, - (4x V Bx) — (3xAx V 3xBx). So by UnivGen and Q2,
F 3x(4x V Bx) — (IxAx vV IxBx).

(5): By (4) plus contraposition.

(6): From (5). use $-Introduction plus K-law for $ to get $(V'xA4x A V'xBx) —
V!x(Ax A Bx). Using $C A $D — $(C A D). conclusion follows.

(7) By Q3, F =C A3x—Bx — Ix(~C A —Bx). From this, we easily get ~(C V
—3x-Bx) — Ix—~(C V Bx), i.e., =(C vV ¥'xBx) — Ix—(C Vv Bx). The result follows
by contraposition (plus definition of ¥* and double negation laws). O

Three analogs of converse Barcan formula:

(8a) F (T — V'xBx) — Vx(T — Bx)

(8b) - $V'xBx — V'x$Bx (thatis, - V' xBx — V'x$Bx)

(8c) - $°V'xBx — V'x$“ Bx (that is, F Y*xBx — Y'x$”Bx).

Proof of (8a): - V°xBx — Bx. so by prefixing rule, - (T — V'xBx) — (T — Bx).
By UnivGen + V'x[(T — V’xBx) — (T — Bx)]. and by (1%), - (T — ¥'xBx) —
VOx(T — Bx).

The proofs of (8b) and (8c) are analogous, using the K-rules for $ and $ instead
of the prefixing rule.

Rule versions of converses of these (that is, rule-analogs of the Barcan formula) are
trivial.

One-way interchange laws: - V' xVyBxy — VOxV!yBxy. and analogously with v
for V! in both occurrences.

Proof. Immediate from (8b) and (8c). taking Bx to be V' yBxy. O
Further analogs of converse Barcan:

(9) F $V'xBx — V!x$Bx
(10) F $v“xBx — V?x$Bx.

Proof of (9): use $-Introduction and K-law for $ on (8b).

Proof of (10): $¥’xBx is $(v'n € N)[True(($"V°xBx))]. which is equivalent to
$(Vn € N)[True(($"+*'V°xBx))], i.e.. $(V'n € N)[True(($"$¥°xBx))]. But by (8b)
that entails $(v°n € N)[True(($"v°x$Bx))]. which is V*x$ Bx.

Importation: - 3x(C — Bx) — (C — JxBx) when x isn’t free in C.

Proof. - Bx — 3xBx by Ql1,so (C — Bx) — (C — 3xBx) by Prefixing rule; then
by UnivGen and Q2, 3x(C — Bx) — (C — JxBx). O

(#):$“(—A4V B) = $°(4 — B).
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Proof. S8 gives - (T — =4V B) — (4 — B). By K-rule for $¢. - $*(T — -4V
B) — $°(4 — B), so by the “crucial feature”, we get the result. O

(RQ): V?x(=Ax V Bx) — V°x(Ax — Bx).

Proof. S8 gives F (T — —Ax V Bx) — (Ax — Bx). By UnivGen, +V'x[(T —
—Ax V Bx) = (Ax — Bx)]. and so by (1), - V°x(T — —4x V Bx) — ¥'x(4x —
Bx). By the K-rule for $” and the “crucial feature”, we get the result. O
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