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EMBEDDING SMOOTH DENDROIDS IN HYPERSPACES 

J. GRISPOLAKIS AND E. D. TYMCHATYN 

1. Preliminaries. A continuum will be a connected, compact, metric space. 
By a mapping we mean a continuous function. By a partially ordered space X 
we mean a continuum X together with a partial order which is closed when 
regarded as a subset of X X X. We let 2x(resp. C(X)) denote the hyperspace 
of closed subsets (resp. subcontinua) of X with the Vietoris topology which 
coincides with the topology induced by the Hausdorff metric. The hyperspaces 
2X and C(X) are arcwise connected metric continua (see [3, Theorem 2.7]). 
If A C X we let C(A) denote the subspace of subcontinua of X which lie in A. 

If X is a partially ordered space we define two functions L, M : X —» 2X 

by setting for each x ^ X 

L(x) = {y G A|;y ^ x} and M(x) = {y G X|x ^ y}. 

Then Z and M are upper semi-continuous. If 4̂ C X we let L(^4) = 
U \L(x)\x G A} and M (A) = U {M(x)|x G 4 } . We also let Max (X) = 
{x G X|M(*) = {x}} and Min (X) = {x G X|L(x) = {x}}. 

A c k w is a totally ordered set and an order arc is a compact and connected 
chain. If for each x £ X, L(x) is an order arc and Min (X) is a closed set, then 
L is continuous (see, [6, Proposition 3.2]). 

Let AT be a uniquely arcwise connected continuum and let p G X. We define 
a partial order ^p on X by x ^ p 3/ if x lies on the irreducible arc from p to y. 
If ^ p i s a closed partial order we say that X is smooth at p. For x, y £ X, we 
denote by [x, y] the unique arc from x to 3/. 

A metric p for the partially ordered space X is said to be radially convex if 
x S y ^ z implies that p(x, 2) = p(x, 3/) + p(^, z). 

THEOREM 1.1. (Carruth, [1]). Every partially ordered space admits a radially 
convex metric. 

We denote by CI (̂ 4) (resp. Bd (^4)) the closure (resp. the boundary) of a 
subset A of X. 

A continuum X is said to be unicoherent if whenever X is written as the union 
of two subcontinua P and Q, then P C\ Q is connected. It is said to be here­
ditarily unicoherent if each subcontinuum is unicoherent. A dendroid is an 
arcwise connected, hereditarily unicoherent continuum. Clearly, a dendroid is 
uniquely arcwise connected. A dendroid is said to be smooth if it is smooth at 
some point. A continuum is said to be indecomposable if it cannot be written 
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as the union of two proper subcontinua. A continuum is said to be hereditarily 

indecomposable if each of its subcontinua is indecomposable. 
Nadler has proved in [5, (1.70)] tha t a dendroid which is embeddable in 

C(X), where X is a hereditarily indecomposable cont inuum, is smooth. He 
asked in [5, (1.74)] whether every smooth dendroid can be embedded in C(X) 
for every hereditarily indecomposable continuum X. Nadler has answered his 
question in the affirmative for the case of smooth fans, t ha t is, smooth den-
droids with only one ramification point (see [5, (1.73)]), as well as for the case 
of dendrites (see [5, (1.74.1)]). Our purpose in this paper is to give an affirma­
tive answer to this question for the general case. 

Finally, we wish to give our sincere thanks to Professor S. B. Nadler, J r . for 
introducing us to this problem and for many very interesting discussions. 

2. S m o o t h dendro ids . For any subset of A of X and e > 0 we denote by 
S (A j e) the open e-ball about A. 

LEMMA 2.1. Let D be a dendroid smooth at p. Let p be a radially convex metric 
for X. If r, e > 0, then each component of Cl (S(p, r + e)\S(p, r)) has diameter 
less than or equal to 2e and meets the boundary of S(p, r) in exactly one point. 

Proof. Let K be a component of Cl (S(p, r + e)\S(p, r)). Let a £ K and let 
c G Bd (S(p, r)) r\ L(a)). Since K is arcwise connected and D is uniquely 
arcwise connected, it follows tha t c G L(b) for each b £ K. Since p is radially 
convex, c is the unique point in K Pi Bd (S(p, r ) ) . If b £ K, then r + e ^ 
p(p, b) = p(p, c) + p(c, b). Since p(p, c) = r, we have p(c, b) S e. The Lemma 
now follows from the triangle inequality. 

T h e following lemma improves somewhat a result of J. B. Fuga te 
[2, Theorem 1]. This lemma may be used to obtain a simple proof of Fugate ' s 
result [2, Theorem 2] tha t smooth dendroids admit small retractions onto 
finite trees. 

LEMMA 2.2. Let D be a dendroid smooth at p, and let p be a radially convex 
metric for D such that p(x, p) S 1 for each x Ç D. Then there exists a sequence 
of finite closed converings °}/\, °lt i, . . . of D such that the following conditions 
are satisfied: 

({)<%!> <%2> . . . , 

(ii) ^ = * U U . . . W ^ , 2 s 
( i i i ) ^ , i = {CI (5(^,1/2*))}, 

(v) UujfkC\ UtJ,k> = 0 for& *k'% 

(vi) UiJtl U . . . U Uitjtnilj = CI (S(p,j/2<)\S(p, (j - l ) / 2 0 ) , 
(vii) diameter of Uîtjtk < S/2\ 

(viii) ifx,y G Uitjtkand x Ç L (y), then L (y) H\ M(x) C Uitjtk, 
(ix) ifL(UiJ+1,k)n Uij^.OOtJhenUtj+i^CMiUij,*.). 
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Proof. Suppose t h a t for some i ^ 1 and for some j such t ha t 1 ^ j < 2 ' , 
&i, . . . , °tti-\ and °Ui i, . . . , °tti j have been defined to satisfy the condit ions 

(i) - (ix). 
By Lemma 2.1, each of the sets 

E/<-i.(,+2)/2,, C\ M(Uiijtk) n Cl (S(p, (j + l ) /2<)\Ste , .7 /2<)) 

may be decomposed into a collection7^fc(7. of finitely many disjoint closed sets 

each of diameter < 3 / 2 \ Let %iJ+i = U {^k,r\k £ f1» • • • » W*.J} a n d 

r G {1, . . . , WM,(i+2)/2)|. 

To show tha t the members of & iJ+i satisfy (viii) notice t ha t if K is a com­
ponent of Cl (S(p, (j + l)/2i))\S(p,j/2i)) and x, y £ K with x 6 L ( y ) , then 
L(y) ^ M(x ) C i£. T h e rest of the propert ies (i) — (ix) are clearly satisfied. 
By induction the proof of Lemma 2.2 is complete. 

T H E O R E M 2.3. If D is a dendroid smooth at p, then D can be embedded in a 
dendroid Y which is smooth at q, Max ( F ) is closed and Y admits a radially con­
vex metric p such that p(q, x) = 1 for each x £ Max ( F ) . 

Proof. L e t / : C —» D be a mapping of the Cantor set C onto D. Let d be a 
radially convex metric for D such t h a t d(p, x) ^ 1/2 for each x £ D. Define 
an equivalence relation ~ o n C X [0, 1] by sett ing (c, x) ^ (e, y) in C X [0, 1] 
if and only if x = y and c = e or there exists 2 (E L(f(c)) H L(f(e)) such t h a t 
d(£, z) = x = 3/. Suppose t ha t (c*, xi))iew and (e*, 3/*))i€w are sequences in 
C X [0, 1] which converge to (c, x) and (e, y), respectively, and such t h a t 
(ct, i j ) ^ (eif yi) for each i. For each i let z* G L(f(ct)) P\ L(f(et)) such t h a t 

lim d(p , z*) = lim x* = x = lim yt = 3/. 
î->co i->oo i-400 

Let z = l i m ^ œ zt. Then z (j L(f(c)) H L(f(e)) and d(z, £) = x. Thus , (c, x) 
^ (e> 30» and hence, ^ is upper semi-continuous. Let TV : C X [0, 1] —> 
(C X [0, l ] ) / ~ = I b e the na tura l projection of C X [0, 1] onto X. Define 
g : £> —> X by lett ing g(x) = 7r((c, d(£>, x ) ) ) for c £ f " 1 ^ ) . Then it is easy to 
check t h a t g is a well-defined mapping which carries D homeomorphically 
onto g(X) C X, and t h a t X is arcwise connected. T h e set X\g(X) is home-
omorphic to an open subset of C X [0, 1] which meets {c} X [0, 1] in a con­
nected set for each c £ C. T o see t h a t X is hereditari ly unicoherent notice 
t ha t if K is a subcont inuum of X, then K C\ g(D) is connected and also t h a t if 
K r\ g{D) j * <j> and *r((c, a ) ) G A g ( D ) , then iv({c) X [d(£, / ( c ) ) , a}) C X . 
I t follows, now, tha t since g{D) is hereditari ly unicoherent, X is also. Thus , X 
is a dendroid. I t is easy to check t h a t X is smooth a t the point q = w(C X {0}), 
and t ha t 

M a x ( Z ) = T T ( C X {1}). 

Since Max (X) C\ g(D) = <j>, it is easy to see t h a t Car ru th ' s proof of Theorem 
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1.1 (see [1]) may be modified to give a radially convex matric p on X such that 
p(qt x) > 1 for each x Ç Max (X) and p(q, x) < 1/2 for each x 6 g(£>). Let 
Y = {x £ X\p(q, x) ^ 1}. Then F is easily seen to be the required smooth 
dendroid. 

3. Some facts on hereditarily indecomposable continua. If J is a 
continuum, then a Whitney map for X is a mapping /x : C(X) —» [0, 1] such that 
M({X}) = 1, /z({x}) = 0 for each x G X, and if A C £ , 4 ^ 5 then ii{A) < 
n(B). It is known that Whitney maps exist for each continuum X (see [8]). 
They are monotone (see [5]). In the sequel we shall use the mapping 
v : C{X) -> [0, 1] defined by v{A) = 1 - p(A) for each A G C(X). 

The following simple results seem to be known but not all of them, as far as 
the authors are aware, appear in the literature. 

If X is a hereditarily indecomposable continuum, then C(X) is uniquely 
arcwise connected (see [3, Theorem 8.4]) and a partial order is defined on 
C(X) by reverse inclusion. Then, M in (C(X)) = {X}, Max (C(X)) = 
{{x}\x G X) and for each A 6 C(X)\{X} L{A) is an order arc. This partial 
order is closed, and hence, C{X) is an order-isomorphism on each maximal 
order arc. 

PROPOSITION 3.1. If X is a hereditarily indecomposable continuum, then the 
function M : C(X) -» C(C(X)) defined by M (A) = C(A) for each A G C(X) 
is continuous. 

Proof. We already know that M is upper semi-continuous. It suffices to 
prove, therefore, that if A i, A 2, . . . is a sequence of subcontinua of X converg­
ing to A o, then every subcontinuum B0 of A 0 is the limit of a sequence Bi, B2, . . . 
where, for each n, Bn is a subcontinuum of An. Let an G An for n = 0, 1, 2, . . . 
be such that \imn_>œan = a0. Consider the unique arcs [Ai, ai], [A2, a2], . . . in 
C(X). Then Lim^.^ [An, an] = [A0, a0], since C(X) is smooth at {X\. Therefore, 
if Z>o G [Ao, a0] there exists a sequence B\, B2, . . . such that Bn Ç [AQ, an] tor 
each « = 1,2, . . . and i im^^ Bn = B0. 

Remark. Nadler [5] calls the continua for which the function M of Proposi­
tion 3.1 is continuous C*-smooth. 

PROPOSITION 3.2. Let X be a hereditarily indecomposable continuum and let 
A £ C{X). If U is an open neighbourhood of A in C(X), then L(U) = 
\B G C(X)\B 3 Cfor some C G U] is a neighbourhood of [X, A]. 

Proof. It suffices to prove that if Q 6 L(U) and Qn)n^ is a sequence of points 
of C(X) such that l im^^ Qn = Q, then Qn)n^ is eventually in L(U). For this 
consider the sequence M(Qn))n(zœ. Since M is continuous, we have 

lim M(Qn) = M(Q). 
?t-»ao 

But Q G L(U) implies that M(Q) C\ U 9e 0, and hence, there exists some 
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integer n0 such that M(Qn) H U 7* <£ for each n ^ n0. Let An € M(Qn) Pi U 
for each w ^ w0. Then Qn G L(An) for each w ^ n0. Thus, the sequence Çn)nçw 

is eventually in L(U). 

LEMMA 3.3. Let X be a hereditarily indecomposable continuum, R, Q Ç C(X) 
such that Q G M ( P ) \ | P } , a n d ( V . . , f t G M(Q) C\v~lv(Qi) where v : C(Z) -» 
[0, 1] is the function defined above. Let Ui, . . . , Un be disjoint neighbourhoods 
°f Qu • • • > Qn> respectively, and let V be a neighbourhood of Q in C(X). If m is a 
positive integer, then there exist distinct points Pi, . . . , Pm £ Y C\ v~lv(Q) 
such that 

M(Pt) H Uj ?* 4>, for each i G {], . . . , m) ;j Ç { ! , . . . , » } , and 

HPjnLiPj) = L{R), for each i 9*j;i,je { ! , . . . , m}. 

Proof. Let 5 denote the composant of Q in P . Then by using the proof of 
Proposition 3.1 we have that CI [C(P\S)] = C(R) and there is a sequence 
Pi, P2 , . . . of subcontinua of R\S, which lie in distinct composants of R and 
such that v(Pt) = v(Q) for each i £ {1, 2, . . .}, and lim<_>00P/ = Q. By 
Proposition 3.1, M is a continuous function, and hence, \imt_>œM(Pt) = 
M(Q). By Proposition 3.2, 

r= ni(^) 
is a neighbourhood of L(Q). Then, the sequence Pi) z€w is eventually in i^C\ T, 
and hence, we can pick up distinct elements Ptl, . . . , Pim in T^H P. Clearly, 
M(Pik) CMJj ^ <i> for each H { l , . . . , m } ; j 6 (1 w}, and by the 
choice of the sequence Pi, P2 , . . . we have 

P(P*J r\L(Pu) = L(R) for each k ^ s; k, s Ç {1, . . . , w}. 

4. Embedding smooth dendroids in hyperspaces. We are now ready to 
prove our main result. 

THEOREM 4.1. Let X be a hereditarily indecomposable continuum, and let D be 
a smooth dendroid. Then D is embeddable in C(X). 

Proof. Let p £ D such that D is smooth at p and let p be a radially convex 
metric for D (see [1]). Let v : C(X) -> [0, 1] be as before. By Theorem 2.3, 
we may assume that Max (D) is a closed subset of D and that p(p, x) = 1 for 
each x £ Max (D). 

Let °tti, °tti, . . . be a sequence of finite closed covers of D which satisfies 
the hypotheses of Lemma 2.2. 

Let g1>M e v~l{\/2) and let Qltl = {çi,M}. Let 

01.2.1, • • • 0i.2,»li2 £ p-Hl) H Af(gi,iti) 

be distinct points such that 

L(glf2,i) H L(qit2J) = £(#1,1,1) for each i 5̂  j 
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(see Lemma 3.3). For each i = 1, . . . , nii2 let V\A be a neighbourhood of 
<Zi,2,< such that 

L(C1 ( F M ) ) H L(C1 ( F M ) ) C S(L(gi,ltl), i), and 
diameter L(Vitj) H z^fe) < è 

for each j = 1, . . . , Wi;2 and for each 0 < e ^ 1. Let Qi = Qi,i U Çi,2, where 

Ql,2 = {Çl.2,1 , • • • , < 7 l , 2 , 7 u , 2 } . 

Let Fi = L(Ç]f2) and le t / i : £> -^ 7<\ be the mapping such that v(fi(x)) = 
p(p, x) for each x ^ D and such tha,tfi(UiJtk) C L(gi<j<k) for each j G {1, 2), 
and each k G {1, . . . , n\tj). 

Suppose that for each i G {1, . . . , m}, Q{ = Qiti U . . . U Qi^i, Ft = 
L(Qi,2i), Viti, . . . , Fifnt-,2i and ft : D —* Ft have been defined so that the 
following conditions are satisfied: 

1) Qui = {gi.i.i} C ^ ( 1 / 2 0 H [X, gi,ltl], QttJ = {g,.ifi, . . . , g u , n , y | C 

2) if £/iiiifc C L(c/,_ l i2l--i,s) n M(Uiti-itT), then gMfJb G L(7,_i,2<-i f,) H 
M(gitj-itr) for each j = ] , . . . , 2 * and each & G {1, . . . , w*,*}, s G 
{1, . . . , rii-i^i-i}., r G { ! , . . . , » i , i - i } . 

3)L(qifJtk) H L(g,,,,,) = Lfa,,*,,) if UiJik U £/,,,,, C M(Utth,T) but 
tf<,,,* W £/,,,,, £ M ( t f M + M ) for i G { 1 , . . . , 2 < } , k, t G {!, . . . , wM} 
with & ^ /, A G {1, . . . , j — l j , r G {1, . . . , w/f7>} and any s G 
{ ! , . . . , » < i H i ) . 

4) gi,2\j 6 ^*,;> ̂ / , i is open in C(X), diameter of L(VitJ) n ^ _ 1 ( G ) < 
l/2*+1 for each 0 < e ̂  1, and such that if Uit2itj U f/*̂ ,* C M(Ut,r,,) 
and C/t.2»-̂  W L7i)2i,/t (£ M(Uitr+itt) for each j , fe G {1, . . . , nit2i}, 
r G {1, . • . ,2* - 1} wi th j ^ M ^ {!,. . . ,Wi,r}, *É {1, . • • ,w< i f +i}, 
then L(C1 (F,,,)) H I (Cl (F,,*)) C S(L(giiTi,), 1/2*1), 

5) U L(C1 (KM)) c " ' U L ( ^ i f i ) , and 

6) /< : D —> /%• is the mapping such that v(ft(x)) = p(p, x) for each x £ D 
and such that fi(Uitjtk) C L(gitjk) for each j G {1, . . . , 2'} and each 
& G {!, . . - , ra*,,}. 

LetÇm+i,i = {gv+-i,i,i} C v~l{\/2m+l) r\L(g1AA). Suppose that Qm+itj has 
been defined for some 1 5s j < 2m+1. Let 

(?m+1,^+1 = ( î m + l ^ + l . l » • • • » <Zm+l,M-l,nm+i,y + i} C ^ 1 "^m+T I 

such that if c7m+i>m,A; C L(Um^,T) H M([/w+1>;>5), then 

<7m+l,J+l,A; S £ ( ^ 7 i , 2 » \ r ) ^ ^ W m + l , i , s ) i 

https://doi.org/10.4153/CJM-1979-014-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-014-4


136 J. GRISPOLAKIS AND E. D. TYMCHATYN 

and such tha t 

M W i . i + i J ^ L(gm+ij+itt) = L(qm+i!htr) 

if 

Um+ij+ij W Um+l,j+l,t C M(Um+ith,r) 

but 

C/m4-i,j+i,fc ^ C/m+if^+if< ÇL M(Um+ih+iiS) 

for fe, / G {1, . . . , ^m+i,;+i} with fe ^ /, AG {1, . . . , j } , r Ç {1, . . . , Wm+i.*} 
and any 5 G {1, . . . , ? W M + I } . 

This is possible by Lemma 3.3. Hence, we may assume t h a t Qm+i,i is defined 
for each i G {1, . . . , 2™+1}. 

Let Fm+i = L(Qm+ii2m + i) and define fm+i : D —> T v ^ to be the mapping 
such tha t v(fm+i(x)) = p(p, x) for each x G D and such that /m+i([ /O T+i ,;/,*) C 
L(gm+hj,h) f o r each j 6 {1, . . . , 2m+1} and each k G {1, . . . , w m + i f i }. Let 

^m+1,1» • • • » v m+l^m+i^vt + l-

be neighbourhoods of 

Çm+l,2m + lti, . . . , Çm+l,2OT + 1 m m + 1 ,2"» + l , 

respectively, such t h a t diameter L ( 7 ^ w + 1 ) i ) P\ J> - 1 (G ) < 1/2W+2 for each 
i G {1, . . . , nm+it2m+i} and each 0 < e ^ 1, if 

£/m+i,2™ + i,;/ ^ t/m+i,2^ + i,fc G M(Um+itTtS) and 

£/m+1,2^ + 1, y ^ ^m+l,2^+i,/c 2- M(Um+l,T+l,t) 

for j , £ G {1, . . • , »m+it2m + i} with j ^ J , r G { l , . . . , 2 m + 1 - 1}, 
s G { ! , . . . , n m + i > r } , t G { ! , . . . , wm + ] ir+i}, then 

£(C1 (F r o + 1 , , ) ) H L(C1 (Fw+lf i fc)) C S(L(g w + 1 > r , s ) , 1/2*+'), 

and if 

then 

L(C1 (FTO+1,,)) C I ( U 

By induction, the mappings /< : Z) —> C(X) of D into C p Q are defined for 
each positive integer i. T h e m a p p i n g s / i , / 2 , . . . form a Cauchy sequence, since 
for each i and each x G D,j > i implies t h a t / ^ ( x ) G v~1(p(p, x)) Pi L(Viik) 
for some k G {1, . . . , w*,2»-} and the set on the right has diameter < l / 2 * + 1 . 
Hence, / = l im ï_> œ / i exists and is a mapping. 

If ^ G /(£>), then f~l(z) C {x e D\P(P, x) = v(z)}. Let x, y G D such t h a t 
p(p, x) = p(p, y). Let 3 < i be a positive integer so t h a t 1/2z '-3 < p(x, y). If 
7, k are integers such t h a t x G L(Ui,2*,j) and 3/ 6 L(Uit2i,k) and r is the 
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smallest integer such that x Ç UitTtS for some s, then 

L(ci (vt,,)) r\ L(ci (Vt,*)) n ^ ( / M ) ) = *, 

since 

L(Çi,2ij) H L(qit2i,k) C L(giitiS) 

for some £ ĝ r — 2. We have 

L(C1 ( F u ) ) H L(C1 (F<iJt)) C S(L(g<ifi,), l/2<+1) 

C 5 ( ( Z ) , H l ) / 2 0 , and 
( * + l ) / 2 < ^ ( r - l ) /2* < * ( / ( * ) ) . 

Hence, /(*) £ L(C1 (F,,,)) H *-M/(*))) and f(y) £ L(C1 (F,,*)) H 
^"1(v(/(x))) imply that /(x) ?* f(y)> This shows t h a t / is one-to-one. T h u s , / 
is an embedding of D into C(X). 

COROLLARY 4.2. Let D be an arcwise connected one-dimensional continuum. 
Then the following are equivalent: 

(i) D is smooth dendroid, 
(ii) D is embeddable in C(X) for some hereditarily indecomposable con­

tinuum X, 
(iii) D is embeddable in C(X) for every hereditarily indecomposable con­

tinuum X. 

Proof. J. Krasinkiewicz proved in [4, Corollary 4.2] that an arcwise con­
nected one-dimensional continuum which is embeddable in C(X) for some 
hereditarily indecomposable continuum X is a contractible dendroid. Nadler 
proved in [5, (1.70)] that it is smooth. The result, now, follows from Theorem 
4.1. 

Femarks. 1. Corollary 4.2 generalizes Theorem 1.73 in [5], where it is proved 
that a fan is smooth if and only if it is embeddable in C(X) for any hereditarily 
indecomposable continuum X. 

2. Theorem 4.1 together with the result that the hyperspaces of one-dimen­
sional hereditarily indecomposable plane continua (e.g. pseudo-arc) are 
embeddable in £ 3 in such a way that Whitney levels embed into horizontal 
planes (see [7]) gives a proof that every smooth dendroid embeds into E3 so 
that all order arcs project into the s-axis in a one-to-one fashion. 

REFERENCES 

1. J. H. Carruth, A note on partially ordered compacta, Pacific J. Math. 24 (1968), 229-231. 
2. J. B. Fugate, Small retractions of smooth dendroids onto trees, Fund. Math. 71 (1971), 255-262. 
3. J. L. Kelly, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. 
4. J. Krasinkiewicz, On the hyperspaces of hereditarily indecomposable continua, Fund. Math. 

84 (1974), 175-186. 

https://doi.org/10.4153/CJM-1979-014-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-014-4


138 J. GRISPOLAKIS AND E. D. TYMCHATYN 

5. S. B. Nadler, Jr. Hyperspaces of Sets, to appear, (Marcel Dekker, Inc., New York). 
6. E. D. Tymchatyn, Antichains and products in partially ordered spaces, Trans. Amer. Math. 

Soc. 146 (1969), 511-520. 
7. W. R. R. Transue, On the hyperspace of subcontinua of the pseudo-arc, Proc. Amer. Math. Soc. 

18 (1967), 1074-1075. 
8. H. Whitney, Regular families of curves, Annals of Math. 34 (1933), 244-270. 

University of Saskatchewan, 
Saskatoon, Saskatchewan 

https://doi.org/10.4153/CJM-1979-014-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-014-4

