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1. Introduction and notation

Let k be a fixed integer = 2. A positive integer m is called k-free if m is not
divisible by the k’th power of any integer > 1. Let ¢,(m) be the characteristic func-
tion of the set of k-free integers; that is, g,(m) = 1 or 0 according as m is k-free
or not. It can be easily shown that g,(m) = ) s;.,p(d), where p(n) is the Mbius
function. Let x = 1 denote a real variable and # be a positive integer. Let Q,(x, n)
and Qy(x, n) be the number and the sum of the reciprocals of the k-free integers
< x which are prime to n respectively.

Let o7 (n) be the sum of the #’th powers of the squarefree divisors of n and.
¥i(n) be the arithmetical function defined by

1
Yi(n) = nJ] (1+ 4+t k—l) ) (1.1)
pln p
the product being extended over all prime divisors p of n. It is clear that
Ji(n)
n)= ————-, 1.2
lpk( ) nk_zq)(n) ( )

where ¢(n) is the Euler totient function and Ji(n) is the Jordan totient function
(cf. [4], p. 147) which have the following arithmetical forms:

o(n) = n ] (1— _) ) = n ] (1— _) (1.3)
pln pln
It has been stated by R. L. Robinson ([6], lemma 2) that

Qu(x, n) = Z q(m) = C(k)!llk( )+0(0( n)x'/%), (1.4)

(m =1

the O-estimate being uniform in n and x; where 6(n) = a4 (n), the number of square-
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free divisors of n and {(k) is the Riemann Zeta function. In case k = 2, the re-
sult (1.4) has already been established by E. Cohen (cf. [2], lemma 5.2).

The object of this paper is to improve the error term in (1.4) to O(a* (n)x'’*),
where s is any number with 0 £ s < 1/k and to establish an asymptotic formula
for Q(x, n) with a corresponding uniform O-estimate (See Theorems 1 and 2
below).

2. Preliminaries

In this section we mention some of the known results which are needed in
our discussion and prove some lemmas. Throughout the following s denotes a
non-negative real number. The following elementary estimates are well-known:

y 1 = 0(x' %) ifo<s<l1. (2.1)
n<x R

1 1 .
3 —s=0( S_I) if s> 1. (22)
n>x N X

Let ¢(x, n) denote the number of integers < x which are prime to n. Then we
have

LemMa 1. (cf. [3], (4)). For each s, witho < s < 1,

o(x, n) = x—q;(—n) +0(x%c* (n)), (2.3)
uniformly.

LemMa 2. (cf. [8], lemma 2.1).

= %n) (log x+y+a(n))+0 ((%n)) , (24)

uniformly, where a(n) is given (¢f. [1]) by the following:

a(n) = — ll.(d)logd= log p
g (P(")l%l d o p—1 (2.5)

and y is Euler’s constant.

LeEmMa 3.

n* 5 H(d)logd _ D log p (2.6)

Ggin) = — .
k( ) Jk(n) dn dk pin pk—l

Proor. This can be proved by the same method adopted in [1] for proving
(2.5).
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LemMA 4. (cf. [8], lemma 2.3). For s > 1,

o s

pom) __n°
m=1 m* {(s)J(s, n)

where J(s, n) is defined for all s > 1 by
J(s,n) =nr']] (1— ls) .
pin p
In particular, for s = k by (1.3),
J(k, n) = Ji(n).
LemMma 5. (cf. [8], lemma 2.5). For s > 1,

o um)logm __ nt (. ()
mzﬁ m* " Us)I(s, n) { (& m)+ C(s)} ’

(m,n)=1

where {'(s) is the derivative of ((s), and
1
(x(s, n) = Z ﬂ .
pln ps— 1
In particular, for s = k by (2.6),
alk, n) = a(n).
LeMMA 6. For any arbitrary q and x = 2,
B(n)x
M@= 3 um =0 (L),
m<x log? x
(m,n)=1
uniformly.

Proor. It is known (cf. [5], p. 594) that

X
log? x

My(x)= Y pm)=0 ( ) for any arbitrary q.
msx

Since x/log? x is monotonically increasing, we have for any given ¢ = 1,

X X
M, (7) =0 (log" x) ’
We have
M,(x) =d|; ,u;x w(d)u(jd) =d|'; wd) 2. w(jd)
-ZR@ T
U, =1
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so that

M) = 3 wM, () (2.15)

Now, if p is a prime and (p, n) = 1, then

. (2.16)
=Y M, (i) , where ¢ = |:£g_x:|
i=0 p log p
In particular, taking n = 1 in (2.16),
M,(x) =Y M, (i) -0 ( x ) , by (2.14)
i=0 r log? x ‘ '
(2.17)

=0 ( X ) , since ¢ is arbitrary.
log? x

Again, if p, and p, are primes, then by (2.16), taking p = p, and n = p,,

< x log x
M, (x) = ‘ZOM 2 ([7) , where ¢, = [log > :I
L= 1 1

=o<cl"), by (2.17)

log? x

=0 ( X ) , since ¢ is arbitrary.
log? x

Similarly, if p;, p,, * - - p, are distinct primes, then for any given ¢ = 1,

x x
Mpips- b (;) =0 (logq x) :

Hence for any square-free divisor d of n,

M3 =0 ().
d log? x

so that the lemma follows by (2.15).

LeMMA 7. For any arbitrary q, x = 2 and s > 1,

pm) _ b(n) ‘
(,,.',"%i ) m® 0 (x‘_1 log? x) . (2.18)
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/_‘@)_lfg_m =0 (_0(")_) , (2.19)

m>x m x* "1 log? x

(m,n)=1
uniformly.
ProOF. Let ¢(n) = 1 or 0 according as n = 1 or n > 1, so that M,(x) in

(2.13) turns out to be Y ,<.u(m)e((m, n)). Putting f(m) = 1/m* and g(m) =
log m/m®, it has been shown by the author (cf. [7], lemmas 3.1 and 3.2) that

J(m+1)—f(m) = O(mslﬂ) and  g(m+1)~g(m) = O(I,Zi'f)-

We give the proof of (2.19) only, since (2.18) can be proved more easily following
the same line of arguement.
By partial summation and (2.13),

,,.Zx u(m)e((m, n))g(m) = —M,(x)g([x]+1)
—mgx M, (m)[g(m+1)—g(m)]

—0 (__?(") ) +0 ( - L )
x*" " log? x m>x m’ log?m
since q is arbitrary.

The second O-term is O(6(n)/log?x) ¥ .-, 1/m* which is O(6(n)/x*~ " log?x),
by (2.2).
Hence the lemma follows.

Lemma 8. For any arbitrary ¢, x = 2 and s > 1,

wm) _ o(n)
nsx m ¢(s)J(s, n) 0 (xs_1 log? x) (2.20)

(m,n)=1

s

iz ”(M)n:?g "= C(s).;l(s, n) {“(s’ m+ CE((SS_))} +0 (xs-?(lz)g" x) ’ (221

(m,n)=1

uniformly.
PROOF. (2.20) follows by (2.7) and (2.18). (2.21) follows by (2.10) and (2.19).

3. Main results

We are now in a position to prove the following:

TueEOREM 1. For 0 £ s < 1/k,
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(X n (m * (mx'), 1
Oi(x, n) (,,,Z g(m) = C(k)l//k() +0(aZ(n)x™") (3.1)

247

uniformly.

PrROOF. We have q,(m) = Y g5, p(d). Hence

Qxm= T T ud)= 3 ud)

msx £x

(m,n)= 1 @, my=(,m=1

=dZ /t(d) > =% u(d)qo(dk,n)-

< x/d* d<ky
(4, 6, d)y=1 d,n
By lemma 1,

o) = 3 w@) [Z2 40 (5ot )]

The first O-term is O(x**) by (2.2) and the second O-term is O(a* ,(n)x'/*) by
(2.1), restricting s to the range 0 < s < l/k.

Hence Theorem 1 follows by (2.7), (2.9) and (1.2).

COROLLARY 1. (k = 2). For 0 <5 < %, we have

X, n) = 2(m) = O(c* (n)/x 3.2
Q(x, n) (m'%ilu() C(2)w()+( s(n)/x), (32)

where (n) is Dedekind’s y-function defined by y(n) = Y 45=n 1> (d)o.
THEOREM 2. For 0 < 5 < l/k,

’ x. n) = qk(m) — n 1 kC (k)
R o T

ot y(n)
+0 (xl - llk) ’

uniformly, where a(n) is given by (2.5) and w(n) is given by (2.6).
PrOOF.

+o(n)— kak(n)) 63)

’ 1 y,d

Glsm= T L% u= 3 M
mex M db=m ds=x  do
(m,n)=1 (d, m)=(3,m)=1

p(d) 1

b
d< k./x d* 55l 6
(d, n) é,m=1
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so that by lemma 2,

Qm = 3 £ (d){ (")( og % +7-+a(n)) +0(0(")dk)}

d$%ys d* x
d,n=1
d
"’( )(logx+v+oz(n)) % x"gk)
(d n) 1

_ ko(n) D pu(d)log d +0( 0(n))

n a£yx dk . 1—-1/k
d,n=1

By lemma 8, (2.9), (2.12) and (1.2), since q is arbitrary,

01, m) = s Gog x-ry ) +0 (s )
~ o (4 5) +0 (miegs)
w0 ()
Hence
, _n k{'(k)
0ix, n) = RO (log x+y— T +a(n)— kock(n)) ()
+0 (xtf(nx)/k)
Again,

Qux,n) =Y, ‘M where ¢(1) = 1 and g(n) = 0if n > 1.

msx

By partial summation, we have

Qe = 221 5 gmm [ - 1

m<x-—1 m

_ Qudx, n) Ou(t, n)
J0den , [T,

If
nx

{(kWi(n) ’

4i(x, n) = Qulx, n)—

then by Theorem 1,
A (x, n) = O(c* (n)x''*).
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Hence

T et T o
%l m) = o T +£ {C(k)lllk(n)t+ p }d’

_ n Ax, n) nlog x © Alt, n) d
{(k)(n) x * {(k)n(n) ¥ f 1 t

_f Ak(t9 n) dat
.t

(log x+¢(n))+0 (0_8(1’2) (3.9)

C(k)wk( )

where ¢,(n) is independent of x.
Now, keeping n fixed and taking the limit as x — oo of the difference between
(3.4) and (3.5) we get that
k{'(k)
(k)

‘Substituting this value of ¢,(n) in (3.5), we get Theorem 2.

edn) = y— +a(n) — kay(n).

COROLLARY 2. (k = 2). For 0 £ 5 < %, we have

Q(m =3 ”Zr(nm) = G (log Xty— f(g)) +a(n)— 2ﬁ(n))
+0 ( \/i")) (3.6)
where a(n) is given by (2.5) and
p = = ;:; il e,

J(n) being the Jordan totient function of order 2.
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