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INVARIANCE OF TORSION AND THE BORSUK 
CONJECTURE 

T. A. CHAPMAN 

1. Introduction. The following results of Whitehead and Wall are 
well-known applications of the algebraic K-theoretic functors K0 and K\ 
to basic homotopy questions in topology. 

THEOREM 1 [20]. / / / : X —» Y is a homotopy equivalence between compact 
CW complexes, then there is a torsion r(f) in the algebraically-defined 
Whitehead group Wh -K\{Y) which vanishes if and only if f is a simple 
homotopy equivalence. 

THEOREM 2 [18]. If X is an arbitrary space which is finitely dominated 
(i.e., homotopically dominated by a compact polyhedron), then there is an 
obstruction a(X) in the algebraically-defined reduced projective class group 
K0wi(X) which vanishes if and only if X is homotopy equivalent to some 
compact polyhedron. 

If we direct sum over components, then the above statements make 
good sense even if the spaces involved are not connected. Also the theory 
in [18] was explicitly worked out for spaces having the homotopy type 
of a CW complex. However it is well-known that finitely dominated 
spaces always have the homotopy type of a CW complex (for example, 
see [14]). 

Applications of these theorems to the study of combinatorial and 
topological manifolds (also infinite-dimensional manifolds) is well-
documented in the literature of the past 15 years. However these theorems 
are not sharp enough to settle the following two basic conjectures. 

Invariance of Torsion [15]. Any topological homeomorphism of compact 
CW complexes is a simple homotopy equivalence. 

Borsuk Conjecture [3]. Any compact metric ANR is homotopy 
equivalent to some compact polyhedron. 

The first conjecture was settled affirmatively in [4] via a proof which 
ran through Q-manifold theory. Subsequently there have been other 
proofs in [5], [9] and [13]. The second conjecture was settled affirmatively 
in [19] via a proof which again ran through Q-manifold theory. Sub­
sequently there have been other proofs in [10] and [13] for the case of 
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finite-dimensional ANRs, but the only proof of the general case still runs 
through Q-manifold theory. In any case, the proof of either conjecture 
still remains a difficult program. 

In the wake of such elaborate proofs of these conjectures it seems like 
a good idea to seek sharper versions of Theorems 1 and 2 so that the 
conjectures become straightforward corollaries. This is precisely what 
we have done in Theorems 1/ and 2' below. These improvements are 
certainly not the best possible, but they are equal to the task without 
carrying along too much excess baggage. 

For our improvement of Theorem 1 we will need the following definition 
which generalizes the notion of a homotopy equivalence. For convenience 

/ P all spaces here and in the sequel will be metric. A diagram X —» Y —» B 
is said to be a p~l(e)-equivalence provided that there is a map g\ Y —> X 
and homotopies <pt: gf c^idx, 6t:fg^idY so that pf(pt:X—>B and 
pdt: Y —> B are e-homotopies (i.e., the track of each point has diameter 
< e). For simplicity we will ca l l / a p~l(e)-equivalence (with inverse g), 
and refer to f<pt: X—» F and 6t: Y —> F a s p~l(e) -homotopies. If we have 
B = F and p = idF, then up~l{t)" is replaced by "e." 

THEOREM V. Let B be a compact space which is locally simply connected. 

f P . 
There exists an e > 0 so that if X —> Y —> B is a p~l(e)-equivalence, where 
X and Y are compact CW complexes, then the torsion r (/) of Theorem 1 lies 
in the kernel of the induced homomorphism 

/ V Whiri(F)->WhiriCB). 

U B = {point}, then Theorem 1/ says nothing new. To see how Theorem 
1' implies the Invariance of Torsion note that if / : X —» F is a topological 
homeomorphism and B = F, t h e n / is clearly an e-equivalence, for every 
e > 0. Taking p = idF in Theorem V we conclude that r ( / ) Ç Ker(p#) 
= 0, and so / must be a simple homotopy equivalence. 

For our improvement of Theorem 2 we will need the following definition 

P 
which generalizes the notion of a finite domination. A diagram X —» B is 
said to be p"1 (e)-finitely dominated provided that there is a compact 

d 
polyhedron K and maps K <=̂  X so that there is a £ -1(e)-homotopy 

u 
dt: du ~ idx. For simplicity we say that X is /r-1^)-finitely dominated, 
and if this is so for some e, we say that X is finitely dominated. 

THEOREM 2''. Let B be a compact space which is locally simply connected. 

P 
There exists an e > 0 so that if X —* B is p~1(e)-finitely dominated, then 

https://doi.org/10.4153/CJM-1980-103-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-103-5


INVARIANCE OF TORSION 1335 

the obstruction <r(X) of Theorem 2 lies in the kernel of the induced homo-
morphism p*\ K0TTI(X) —» Kowi(B). 

If B — {point}, then Theorem 2' says nothing new. To see how 
Theorem 2' implies the Borsuk Conjecture let X be a compact metric 
ANR. It is well-known (and easy to prove) that X is locally simply 
connected and e-finitely dominated, for all e > 0. Thus in Theorem 2' 
we may take B = X and p = idx to conclude that <r(X) = 0. 

Finally we observe that the parameter space B which appears in 
Theorem 1' above does not have to be a locally simply connected com-
pactum. In fact it can be any compactum for which there exists a locally 
simply connected compactum B' and a map q\ B —> B' such that the 
induced homomorphism q*: Whwi(B) —> Wh7n(5') is one-to-one. A 
similar statement is true for Theorem 2', with the condition on q : B —» Bf 

being that q*\ KQTTI(B) —» KOTI(B') is one-to-one. For example, we only 
have to assume that B is homotopy equivalent to a compactum which 
is locally simply connected. 

2. Proof of theorem 1'. Our proof of Theorem 1' depends on the 
following result of Steve Ferry. 

LEMMA 2.1 [11]. Let Y be a compact CW complex. There exists an e > 0 
so that if X is a compact CW complex andf: X —> Y is an ^-equivalence, then 
f is a simple homotopy equivalence. 

Remarks on Proof. The proof of this result is given in [11] and it uses 
so-called Q-manifold theory, which is too difficult to describe in a short 
space. 

A generalization of this result, which uses no Q-manifold theory, is 
given in [6]. A weaker version follows from the apparatus of [13], where e 
depends on both X and Y. Lying at the heart of any of these proofs is 
the usual torus geometry and the difficult calculation Wh7ri(rw) = 0 
of [2]. 

The following result enables us to replace the parameter space B in 
Theorem 1' by a polyhedron. 

LEMMA 2.2. If Theorem Y is true for B any compact polyhedron, then it 
is also true for B any locally simply connected compactum. 

f P 
Proof. Consider a p~l(t)-equivalence X —> Y—>B, where B is locally 

simply connected. Let °il — { Ui)n
i=i be an open cover of B so that 

the Ui have small diameter and let B' — N(Ut) be the nerve of °tt as 
described, for example, in [8, p. 172]. Then there is a map q\ B —* B' so 
that if v i is the vertex of B' associated with Ut and St(^0 is the open star 
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of vu then 

If B2 is the 2-skeleton of B', then it is easy to construct a map r: B2' —> B 
so that r(vi) 6 £/* and r(A) has small diameter, for all simplices A in B4. 

4# 
Then there are induced homomorphisms wi(B) <=* iri(B'). 

ASSERTION. r#g# = id. 

Proof. If <J\ Sl —* B is a loop, then go-: 5 1 —> 2?' can be homotoped to 
T: S1 —* B2

f by homotoping it into the faces of the higher dimensional 
simplices. Then rr\ S1 —» B is close to cr, and they are therefore homotopic. 

By the functorality of Wh, q*\ Wh in(B) —> Wh iri(B') is one to one. 
If e is small enough, then we have r ( / ) G Ker((gp)#) = Ker(£>*), and 
we are done. 

Remark. The above result is also true for Theorem 2'. 

f P 
For the proof of Theorem 1' let X —> Y —> B be a p~l(t)-equivalence. 

By Lemma 2.2 we may assume that B is a compact polyhedron. We will 
show that if e is small enough (and dependent only on B), then p*(r(f)) 
= 0. This will first be done for the somewhat easier case in which X is 
also a polyhedron, then we use this to obtain the general case. 

Let g: Y —• X be a p~1(e) -inverse o f / a s described in the definition and 
assume that g is cellular (with respect to some subdivision of X). Now 
form the mapping cylinder M(g), which is the space .obtained from the 
disjoint union ( F X [0, 1]) 11 X by identifying (y, 1) with g(y), for all 
y G F. We may write M(g) = ( F X [0, 1)) VJ X and identify F with 
F X {0}, called the fo£ of M{g). The base of M{g) is X, and there is a 
collapse to the base, c: M(g) —>X, defined by retracting each ray 
({y} X [0, 1)) VJ \g(y)} to {g(y)\. It is well-known that M(g) can be given 
a CW structure so that X and Fare subcomplexes [7, p. 6]. Note that the 

c f 
composition M(g) —* X —• F is still a p~~1(e)-equivalence and, of course, 
T(fc) = r(f)- By this construction we are therefore led to the following 
simpler case: 

Y is a compact subcomplex of X and f: X —» Y is a p~1 (e)-equivalence so 
that the inclusion Y ^ X is a p~l(e)-inverse. 

There is a standard recipe for homotoping a weak deformation retrac­
tion to a strong deformation retraction as given, for example, on page 31 
of [17]. Applying this recipe to / we get a homotopy of / to a strong 
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deformation retraction/7: X —» F. Moreover there is a (pff)~l (e)-\\omo-
topy / ' c^ idx rel F, where e depends only on e and it is small if e is small. 
So all we have to do is prove that p*{r{j')) = 0. 

Now assume that p is cellular (with respect to some subdivision of B) 
and form the CW complex M(p). Define Xi = X \JY M(p), obtained by 
sewing X and M(p) together along F, and define/i: X\—*B to be the 
following composition: 

fi:XU M(p) ff[Jld>M(p) UB. 

It is clear that / ' \J id : X U M(p) —> M(p) is a c~l(t)-equivalence and 
c: M(p) —» B is a ô-equivalence, for every ô > 0. Then / i is an e'-equiv-
alence, and if e' is small enough we have r( / i ) = 0 by Lemma 2.1. It 
follows from § 6 of [7] that r( / i ) = £*(r (/ ' )) , and we are done for the 
case in which X is a polyhedron. To deduce the general case from the 
polyhedral case it clearly suffices to establish the following 

ASSERTION. If X is a compact CW complex, then for every ei > 0 there 
is a compact polyhedron X-[ and an ^-equivalence j \ : Xi—>X. 

Proof. Assuming the result to be true for X, all we have to do is prove 
that it is also true for X U? Dn, the space obtained by attaching an n-cell 
to X via an attaching map <p: 5W_1 —» X. So l e t ^ : X\ —> Xbean d-equiv-
alence of a compact polyhedron to X with inverse g\\ X —> Xi. We can 
write 

X U«>Dn = MM U D\ 

which is the space obtained by sewing the mapping cylinder M(<p) to Dn 

along Sn~l. Let c\ M(<p) —> X be the collapse to the base and assume that 
gic: M(<p) —> Xi can be approximated by embeddings. This assumption 
loses no generality because Xx can be replaced by X\ X Dk, for any &-cell. 

Let h: M(<p) -> XY be such an embedding for which h\Sn~l\ Sn~l -> Xx 

is PL (i.e., piecewise linear). Then the composition 

I i ^ I c ; M(<p)^h(M(<p)) 

is a weak deformation retraction to h(M(<p)), and as in [17, p. 31] we can 
homotop it to a retraction r: X\ —> h(M(<p)) which is homotopic to 
idxi re^ h(M(<p)) via a/i-1(€2)-homotopy, where €2 is small if ei is small. 
Let X2 = Xi{JhD

n and note that the following composition is an 
62-equivalence: 

X2 = Xi U £>n r U l d > h(M(<p)) U J " * U l d ) M ( y ) U Dn 

h h 

= XVDn. 
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3. Proof of theorem 2 \ Our strategy is to reduce the proof of 
Theorem 2' to an application of Theorem 1'. We are given a diagram 

P X —> B which is p~l(e)-finitely dominated. We will show that if e > 0 is 
small enough (and dependent only on B), then p^(a(X)) = 0. 

We begin the proof of Theorem 2' by introducing some notation. Let K 
be a compact polyhedron which p~l{e)-dominates X and choose maps 

d 
K *± X as in the definition. Let e\ K —» K be a PL map which is close to 

u 
ud: K—+K. For n large let An be the space formed from the disjoint union 

(*) (K X [0, 1]) H (K X [1, 2]) H . . . il (K X [n - 1, »]), 

where we identify (x, w) in i£ X [n — 1, w] with (e(x), 0) in i£ X [0, 1], 
and identify (x, i) in K X [i — 1, i] with (e(x), i) in K X [i, i + 1], for 
1 ^ i ^ n — 1. Then i is a compact polyhedron which is a circular 
chain of copies of the mapping cylinder M(e). 

Let S1 be represented by the quotient space [0, w]/{0, w}, where 
notation is chosen so that the positive direction on [0, n] corresponds to 
the counterclockwise direction on Sl. We will identify [i — 1, i] with its 
image in Sl. There is a natural projection of the disjoint union (*) onto 
[0, n] which sends K X [i — 1, i] to [i — 1, i\. This factors through the 
appropriate identifications to give us a map <p\ An—> Sl. Note that each 
V~l([i — l,f l) is a copy of M(e) with <p~l(i — 1) being the top of 

Let pi = p X id: X X Sl -> B X S1. It follows from the proof of 
Proposition 3.1 of [12] that there is a homotopy equivalence 
r : An —> X X Ŝ1 for which the composition 

is close to <̂ . This closeness depends only on the size of n, and the 
existence of r depends only on the fact that du o^ id. Since we are given 
a p~l (e)-homotopy du ~ id, the proof of Proposition 3.1 of [12] also yields 
that r is a ^""^(eO-equivalence, where ei depends only on e and it is small 
if e is small. (The construction given in [12] specifically applies to a 
circular chain of the mapping cylinders M(ud). But such a chain is 
homotopy equivalent to An because ud is close to e.) Let rx: X X Sl —+ An 

be a ^r^^i)- inverse of r. 
In a similar manner let Bn be the space formed from the disjoint union 

(*) by identifying (x, 0) in K X [0, 1] with (e(x), n) in K X [n — 1, n], 
and identifying (x, i) in K X [i, i + 1] with (e(x), i) in K X [i — 1, i], 
for 1 g i ^ w - 1. Then 5 n is a compact polyhedron which is also a 
circular chain of copies of M(e). There is also a natural projection-
induced map 6: Bn—+ S1 so that each B~l(\i — 1, i]) is a copy of M(e) 
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with 6~l{i — 1) being the base of Q~l([i — l,i]). As with the case of An 

there is a p\~~l{e\)-equivalence s: Bn —>X X S1, with inverse sr. J\T X S1 —• 
i3„, such that the composition 

Bn ^ I X ^ S 1 

is close to 0. 
Let / = s\r\ An—* Bn and let p' = pi$: Bn-+ B X S1. It is easy to see 

t h a t / is a (^"U^eO-equivalence. For ei small we conclude by Theorem 
V that (p')*(r(f)) = 0, thus 

( /> i )* (* ( r ( / ) ) ) = 0. 

By [1, Chapter XII] we have functorial direct sum decompositions 

Wh n(X X S1) = Wh n(X) © J S W X ) © Nil Term, 
Wh xi (5 X S1) = Wh iri(5) © KQin(B) © Nil Term. 

Moreover the map 

(Pi)*: Wh 7n(X X S1) -> Wh T I ( 5 X S1) 

is just 

^:Wh7r i (X) ->Wh7n(5 ) 

on the Wh wi(X) summand, and 

p*: Ro*i(X) ^> RQ*i(B) 

on the KOTTI(X) summand. Let r be the component of s*(r(/)) in 
jÇo7ri(X). Then we conclude that £*(r) = 0 in Kowi(B). So all we have 
to do is prove that r = a(X). 

For this last part of the proof we will assume some familiarity with 
[16, § 4]. Let An be the infinite-cyclic covering of An induced by 
<p: An —» 5 1 from the standard covering map R—+S1. Similarly let Bn be 
the infinite-cyclic covering of Bn induced by 6: Bn —» S1 from R —•> S1. 
Then / : 4̂W —» i?w lifts to a proper homotopy equivalence/: An —» 5 n . Also 
5 : 5 n - ^ l X ^ lifts to a proper homotopy equivalence s: Bn —> X X i?. 
Here is a picture: 

^T-W. + GO 

Bn + CO 
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By using a mapping cylinder construction we may assume that / is a 
proper strong deformation retraction of An onto Bn. This reduction goes 
just like a corresponding step in the proof of Theorem 1'. Then we have, 
by [16, p. 14], 

a(Ân, €+) = v(Ân, Bn, e+) + a(Bn, €+), 

where these are the positive end invariants corresponding to +oo. These 
are elements of Koir\(Bn), which is only a slight departure from the 
notation of [16]. Clearly 

a(ÂH, e+) = (f)*(<r(Ân)) and a(Bn, €+) = 0. 

Thus 

a(AnjBnje+) = (}%(<r(An)) = a{Bn), 

because a is an invariant of homotopy type. 
There is a natural retraction p\ Wh wi(Bn) —> Koin(Bn) which corre­

sponds to the natural retraction of Wh ir\{X X S1) to Koiri(X) which was 
mentioned above. In fact we have the commutative diagram 

Whiri(5B) - • Wh7n(X X S1) 

p 

K0Ti(Bn) > KOTI(X X R) « i^o^i(X). 

It follows from Proposition 4.7 of [16] that p(j(f)) = (r(Bn). Thus r (the 
component of 5#(r(/)) in ^ 0 T T I ( X ) ) is (S)*(o-(X)) = a(X), because o- is 
a homotopy-type invariant. This completes the proof. 

REFERENCES 

1. H. Bass, Algebraic K-theory (W. A. Benjamin, New York, 1969). 
2. H. Bass, A. Heller, and R. Swan, The Whitehead group of a polynomial extension, 

Publ. I.H.E.S. Paris 22 (1964), 67-79. 
3. K. Borsuk, Sur Velimination de phénomènes paradox aux en topologie générale, Proc. 

Internat. Congr. Math., Vol. I, Amsterdam (1954), 197-208. 
4. T. A. Chapman, Topological invariance of Whitehead torsion, Amer. J. Math. 96 

(1974), 488-497. 
5. Cell-like mappings, Lecture Notes in Math. 482 (1973), 230-240. 
5# Homotopy conditions which detect simple homotopy equivalences, to appear in 

Pacific J. Math. 
7. M. Cohen, A course in simple-homotopy theory (Springer-Verlag, New York, 1970). 
8. J. Dugundji, Topology (Allyn and Bacon, Boston, 1966). 
9. R. D. Edwards, The topological invariance of simple homotopy type for polyhedra, 

preprint. 
10. Siebenmanns variation of West's proof of the ANR theorem, manuscript. 
11. Steve Ferry, The homeomorphism group of a compact Hilbert cube manifold is an 

ANR, Annals of Math. 106 (1977), 101-119. 

https://doi.org/10.4153/CJM-1980-103-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-103-5


INVARIANCE OF TORSION 1341 

12. Homotopy, simple homotopy, and compacta, preprint. 
13. Frank Quinn, Ends of maps, and applications, preprint. 
14. J. Milnor, On spaces having the homotopy type of a CW complex, Trans. A.M.S. 

90 (1959), 272-280. 
15. Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. 
16. L. C. Siebenmann, A total Whitehead torsion obstruction, Comment. Math. Helv. 1±5 

(1970), 1-48. 
17. E. H. Spanier, Algebraic topology (McGraw-Hill, New York, 1966). 
18. C. T. C. Wall, Finiteness conditions for CW complexes, Annals of Math. 81 (1965), 

55-69. 
19. J. E. West, Mapping Hilbert cube manifolds to ANRs, Annals of Math. 106 (1977), 

1-18. 
20. J. H. C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1-57. 

University of Kentucky, 
Lexington, Kentucky 

https://doi.org/10.4153/CJM-1980-103-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-103-5

