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Abstract

We establish the existence and approximation of solutions to the operator inclusion y e Ty for deter-
ministic and random cases for a nonexpansive and *-nonexpansive multivalued mapping 7" defined on a
closed bounded (not necessarily convex) subset C of a Banach space. We also prove random fixed points
and approximation results for *-nonexpansive random operators defined on an unbounded subset C of a
uniformly convex Banach space.
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1. Introduction and preliminaries

Probabilistic functional analysis is an important mathematical discipline because of
its applications to probabilistic models in applied problems. Random operators lie at
the heart of this discipline and their theory is needed for the study of various classes
of random equations. The study of random fixed points and random approximations
have gained tremendous importance after the publication of papers by Beg [2], Beg
and Shahzad [4-6], Lin [14,15], Papageorgiou [17], Sehgal and Singh [19,20], Tan
and Yuan [23-25] and Xu [26].

In this paper the notions of *-nonexpansive and weakly nonexpansive multivalued
maps with values which are not subsets of the domain are introduced. In Section 2, the
existence and approximation of solutions to the nonlinear operator inclusion y e Ty is
discussed. Section 3 deals with the approximation of solutions to the nonlinear random
operator inclusion y (ty) e T(co, y(co)) for each co e £2, where (Q, A) is a measurable
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52 Ismat Beg, A. R. Khan and N. Hussain [2]

space. In Section 4, we establish a random fixed point theorem for *-nonexpansive
multivalued operators (which are not continuous) defined on closed convex subsets of
a Banach space. A random approximation theorem for *-nonexpansive multivalued
random operator defined on unbounded subsets of a Hilbert space is also proved.

Throughout this paper (£2, A) denotes a measurable space with A a sigma algebra
of subsets of Q. Let C be a subset of a normed space X. We denote by 2X, C(X),
CK(X), K(X) and CB(X) the families of all nonempty, nonempty closed, nonempty
convex compact, nonempty compact and nonempty closed bounded subsets of X
respectively. A mapping T : €i —> 2X is called measurable if for any open subset
B of X, T - ' (S ) = {co e £2 : T{co) n B £ <j>) 6 A. A mapping T : C -> 2X

is upper (lower) semicontinuous if for any closed (open) subset B of X, T~l(B)
is closed (open); if T is both upper and lower semicontinuous, then T is called a
continuous map. A mapping £ : Q —• X is said to be a measurable selector (see, for
example, [8]) of a measurable mapping T : £2 —> 2X if £ is measurable and for any
co e Q, %(CD) e T(co). A mapping T : £1 x C —> 2X is a random operator if for any
A: 6 C, T(-, x) is measurable. A mapping § : Q. —> X is said to be a generalized fixed
point of a random operator T (generalized solution to y(oo) e T(co, y(co)) if for each
co e Q, %(co) 6 T(co, ^(a))); in case £ is a measurable function, it is called a random
fixed point of T (random solution to y(o>) € r(a>, y(co)). For* e X, let

Pc(x) = {y € C : II* - y|| = d(x, C)}, where d(x, Q = inf ||JC - y||.
yeC

If P c is a single-valued map, it is called a proximity map. Later, we will use P instead

of Pc-
A multivalued map T : C —> 2* is said to be

(i) weakly nonexpansive if given * € C and MX e Tx there is a M̂  e Ty for each
y e C such that */(MX, uy) < d(x, y);

(ii) *-nonexpansive if for all *, y € C and M* 6 Tx with d^jt, K*) = d(x, Tx),
there exists uy 6 7> with d(y, uy) = d(y, Ty) such that d(ux, uy) < d(x, y) (see
[9,27]);

(iii) weakly inward if Tx C cl(/c(.x)) for all x e C, where Ic(x) = {z € X : z =
x + X(y — x) for some y 6 C and X > 0}, is inward set of x relative to C and cl stands
for the closure (see, for example, [28]);

(iv) hemicompact if each sequence [xn] in C has a convergent subsequence when-
ever d(xn, Txn) -> 0 as n —> oo;

(v) demicompact if each sequence {.*,,} in C has a convergent subsequence when-
ever [xn — Txn] is a convergent sequence in X;

(vi) condensing (or densifying) if for each nonempty bounded subset B of C with
or(fi) > 0, 7 ( 5 ) is bounded and a(T(B)) < a(B), where

a(B) = inf{r > 0 : B can be covered by a finite number of sets of diameter < r).
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If there exists k, 0 < k < 1, such that for each nonempty bounded subset B of C
we have ar( 7(5)) < kT(B), then T is called k-set-contractive map. Let Tp : C -> 2*
be a map for each $ e / (some indexing set). The collection (7) : /3 € /} is
called collectively condensing {collectively k-contractive) if Q((LJ. TflB) < a(B)
(oc(\Jp TpB) < ka(B)) for all bounded subsets B of C (see, for example, [16]).

As in Xu [27], by PrOO we mean the set {ux e Tx : d(x, ux) = d(x, Tx)}
(possibly empty) for each x in C.

A mapping T : C —*• CB(X) is a contraction if for any x, y e C, H(Tx, Ty) <
JW(*, y) where // is the Hausdorff metric on CB(X) and 0 < k < 1. If & = 1, then
T1 is called a nonexpansive map.

Following Canetti, Marino and Pietramala [7], we define, for any x, y e X, e > 0
and A c X,

G(x,y;C) = [zeC:\\z-y\\<\\z-x\\);

G(x,y;e;Q = [zeC:\\z-y\\ < | | Z - J C | | + * } ;

;Q = {zeC:3aeA: \\z - a\\ < \\z - x\\) = \J G(x, a; C) ;
a€A

C:aaeA:\\z-a\\< \\z -x\\ + e} = ( J G(JC, a; e; C).
aeA

For given r : C —>• 2X, we say that

(i) C is (KR)-bounded with respect to T (see, for example, [13,18]) if for some
bounded set A c C, the set G(A, 7\4; C) = (\eA G(a, Ta; C) is either empty or
bounded;

(ii) a sequence [xn] e C is asymptotically T-regular if limn d(xn, Txn) = 0;
(iii) T satisfies condition (A) (see, for example, [22]) if for any sequence {xn} in

C, D e C(C) such that d(xn, D) -> 0 and <i(j:n, 7X) -^ 0 as n -> oo, then there
exists y e D with 3/ e Ty. (Note that every continuous hemicompact map satisfies
condition (A).);

(iv) T is d-continuous if, for any y e X, the function x —*• d(y, Tx) is continuous.

A random operator T : ft x C -> 2* is said

(i) to be continuous (nonexpansive, hemicompact, ^-nonexpansive etc.) if for
each co e Q, T(a), •) is continuous (nonexpansive, hemicompact, *-nonexpansive
etc.);

(ii) to be weakly inward if for each w e f t , T(co, x) c C1(/C(JC)) for each x e C;
(iii) to satisfy the Leray-Schauder condition (in case C has nonempty interior and

it contains 0) if there is a point z in the interior of C (depending on co) such that for
each uy e T(co, y), uy—z •£• m(y — z) for all y in 3 C (the boundary of Q and m > 1;

(iv) to satisfy condition (A) if for any co e ft, T{co, •) satisfies condition (A).
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THEOREM A ([28, Theorem 2.1]). Let D be a closed subset of a Banach space X.
Suppose that T : D —> K(X) is a weakly inward contraction mapping with Lipschitz
constant L < 1. Then T has a fixed point XQ (that is, XQ e

A *-nonexpansive multivalued mapping is different from a continuous map as is
clear from the following example.

EXAMPLE 1.1. Let X = K2 be equipped with Euclidean norm and

C={(a,0):^=<a<lju{(0,0)}.

Define T : C - • 2X by

TY m 1 ( ( U ) ifajLO;
T(a, 0) = {

[L = the line segment [(0, 1), (1, 0)] if a = 0.
Then PT(a, 0) = {(0, 1)} for all (a, 0) e C with a £ 0 and PT(0, 0) = {(1/2, 1/2)}.

Clearly T is *-nonexpansive but not a continuous multifunction [20, page 537].
Moreover, for given x = (0, 0) and ux = (1,0) e Tx, there does not exist y / x in
C and My e 7> such that \ux — uy\ < \x—y\. Recall that for y ^ JC in C, w,, = (0, 1)
and \ux — uy\ = |(1, 0) — (0, 1)| = \ /2 > <i(.t, y). So 7 is not weakly nonexpansive.

REMARKS 1.2. (i) A *-nonexpansive map may not be weakly nonexpansive [9,
page 389].

(ii) It follows from the definition of Hausdorff metric that a weakly nonexpansive
map is nonexpansive. The converse holds for compact valued maps. For if T : C ->
2X is a compact valued nonexpansive map, then for any x e C and uz € Tx, we
can find some uy e Ty for all y in C by compactness of Ty such that d(ux, uy) <
sup{^(«, Ty) : u e Tx} < H(Tx, Ty) < d(x,y). It implies that T is weakly
nonexpansive (also see [27, Proposition 1]).

(iii) *-nonexpansiveness and nonexpansiveness are two different concepts for mul-
tivalued mappings.

Let F = WA}A€KI,O be a family of functions form [0, 1] into K(C) with the
property that for each A e K(C),fA(l) = A. Such a family is said to be contractive
if there exists a function <p : (0, 1) -> (0, 1) such that for all A, B e K(C) and for
all t e (0, 1) we have H(fA(t),fB(t)) < <p(t)H(A, B). Such a family is said to be
jointly continuous if fA (t) -> /AO(A>) in K(C) whenever t —> t0 in [0, 1] and A —> Ao

in K(C).
Suppose that G = {/^jAe/i-fo ' s a family of functions from [0, 1] into K(C) with

the property that for each sequence {A.n} in (0, 1], with Xn —> 1 as n —> oo we have

(*) fA(Xn) = knA.
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We observe that G C F and it has the property of contractiveness and joint continuity.
Notice that the condition (*) is satisfied by a starshaped set with 0 star centre (for
more details see [1,12]).

2. Approximation of multivalued operators

THEOREM 2.1. Let C be a nonempty closed and bounded subset of a Banach space
X and T : C -*• K(X) weakly inward nonexpansive mapping. Suppose that C has
a family G satisfying condition (*). Then there exists a sequence [xn) in C such that
xn —y y e Candy e Ty, provided one ofthe following conditions holds:

(a) Each asymptotically T-regular sequence in C is Cauchy.
(b) T is hemicompact.
(c) The collection {Fn : Fn = XnT,Xn e (0, 1) and Xn —*• 1} is collectively con-

densing.
(d) The collection [Fn : Fn - XnT,Xn e (0, I) andXn ->• 1} is collectively k-

contractive where 0 < k < 1.

PROOF. Let rn = 1 - l /(« + 1) for each n > 1. Define Tn : C -+ K{X) by
Tn(x) = frx(rn) = rnT(x) for all x e C. Each Tn is a weakly inward contraction
map. So by Theorem A, there is a sequence [xn] in C such that xn e Tn(xn)forn > 1.
Therefore, there is yn e T(xn) such that xn = rnyn. It now follows by the boundedness
of C that

(1) xn-yn = (

By (1), \\xn - yn\\ = (l/rn - l)\\xn\\ - • 0 as n - • oo. The set {||A:n|| : n > 1} is

bounded so

0 < d(xn, Txn) = inf (HJC - yn\\ : y e Txn)

< \\Xn~yJ < f - -

Thus [xn] is an asymptotically 7'-regular sequence in C.
(a) Since [xn] is a Cauchy sequence in C so it should converge to y e C. As
T : C ^ K(X) is continuous so for all ; t ,y € C, |d(jc, 7 ; c ) - d ( y , 7 » | < J ( x , y ) +
H(Tx, Ty), which implies that the function x -> rf(x, 7x) is continuous. Hence
0 = limn d(xn, Txn) = d(y, Ty). It further gives that y € Ty.
(b) Since (xn, Txn) —>• O a s n —>• oo, by the definition of hemicompactness of 7,
{j:n} has a convergent subsequence. Without loss of generality assume its the whole
sequence and*,, -*• y in C. This together with (a) implies that y e Ty.
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(c) Define the map F : C ->• 2X by Fx = \Jn Tnx, x e C. For any subset B of C,

o(Ffl) = a = a ( ( J ( ( J 7B* ) J = a f (J rn

It follows by [23, Lemma 2.1] that F is hemicompact. Further, d(xn, Fxn) = 0
for each n = 1 ,2 , . . . , and hence {*,,} has a convergent subsequence. Without loss of
generality assume its the whole sequence and xn —• y € C. Thus by (a), y e Ty.
(d) The mapping F : C —>• 2X defined by Fx — [Jn Tnx is fc-contractive and hence
condensing. The result follows from (c). •

THEOREM 2.2. Let C, X, G and T be as in Theorem 2.1. Suppose the following
condition holds: C n D ^ <j> for all D e K(X) with D = lim Txn for some
asymptotically T-regular sequence {xn} in C and T satisfies for all x, y € C,

(2) H(Tx, Ty) < «,(</(*, Tx))d(x, Tx)+a2(d(y, Ty))d(y, Ty),

where a,•: @. -+ [0, 1) (i = 1, 2).
Then there exists a sequence {xn} in C such that Txn -> D e K(X) and each y in

CDD satisfies y 6 Ty.

PROOF. AS in the proof of Theorem 2.1, we obtain an asymptotically 7-regular
sequence {xn} in C. By hypothesis in (2), we obtain

H(Txn, Txm) < ax(d{xn, Txn))d{xn, Txn) + a2(d(xm, Txm))d(xm, Txm).

Therefore, {Txn} is a Cauchy sequence in K(X). The space (K(X), H) is complete,
thus there exists a D e K(X) such that lim Txn = D. By assumption C D D ^ <p.
Let y e C n D. Then

d(y, Ty) < H(D, Ty) = lim H(TxH, Ty)

< l imKa,^^,, , Txn)d(xn, Txn) + a2(d(y, Ty))d(y, Ty)]

< a2(d(y, Ty))d(y, Ty).

It follows that [1 - a2(d(y, Ty))]d(y, Ty) < 0. Thus d(y, Ty) = 0. It implies that
y G Ty. U

A general result for a class of noncontinuous multivalued operators is established
below.

THEOREM 2.3. Let C be a nonempty bounded closed subset of a Banach space X.
Let T : C —> K(X) be a weakly inward and *-nonexpansive map. IfC has a family G
satisfying condition (*), then there exists a sequence {xn} e C such thatxn -> y e C
and y € Ty provided one of the following conditions holds:
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(i) Each asymptotically T-regular sequence is Cauchy.
(ii) T is hemicompact.

(iii) The collection [Fn : Fn = XnPT,kn e (0, 1) with kn -»• 1} is collectively
condensing.

PROOF. For each x e C, Tx is compact, the map PT '• C —*• 2X is well defined and
is nonexpansive by the *-nonexpansiveness of T (see, for example, [27, Theorem 2]).
As Tx is compact for each x e C, PT(X) must be compact for any x. Clearly,
PT(X) £ Tx c C1(/C(JC)) for all x e C. Hence PT : C -> 2X is weakly inward.
Consequently, there exists a sequence [xn] in C such that d(xn, Prxn) —*• 0 as n —*• oo.
(i) A sequence is asymptotically 7-regular if and only if it is asymptotically /V-regular
follows from the following inequalities

(3) d(x, PT(x)) < d(x, ux) = d(x, Tx) < d(x, PT(x)) for all x e C.

By Theorem 2.1 (a), there is a sequence {*,,} in C converging to y such that y 6 /VO0
and hence y € Ty.
(ii) From (3), we obtain d(xn, Txn) = d(xn, PTxn) for any sequence {*,,} e C. Thus T
is hemicompact if and only if PT is hemicompact. Soy e Ty holds by Theorem 2.1 (b).
(iii) Define the map F : C -> 2* by F* = U n ' 'r.^, x € C. As in Theorem 2.1 (c),
we get a sequence [xn] in C such that xn -> y e C and y e Ty. D

THEOREM 2.4. Ler C, X, G and 71 fee a^ in Theorem 2.3. Suppose inequality (2)
of Theorem 2.2 /to/tfr. 7/ien there exists a sequence {xn} € C such that Txn —> D e
K(X) and each y in C PI D satisfies y e Ty.

PROOF. AS in the proof of Theorem 2.3, there exists a sequence {xn} in C such that
d(xn, PTxn) -> 0 as n -> oo. By (3), we get that d{xn, TXn) -> 0 as n -» oo. The rest
of the proof is same as that of Theorem 2.2. •

3. Random solution

In this section (Q, A, /x) denotes a complete a-finite measure space unless stated
otherwise. The following result will be needed.

THEOREM B ([28, Lemma 3.1]). Let C be a closed subset of a complete separable
metric space X and T : Q x C —>• C(X) a d-continuous random mapping. Then
T has a random fixed point (a random solution to y(co) e T(co, y(co)) exists) if and
only if T has a generalized fixed point (a generalized solution to y(co) e 7\o>, y(co))
exists).
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THEOREM 3.1. Let C be a nonempty closed bounded subset of a separable Banach
space X and T : £2 x C —> K(X) a weakly inward nonexpansive random mapping.
Suppose that C has a family G satisfying condition (*). Then there exists a sequence
{£„} of measurable mappings such that {£„(<«)} is asymptotically T(co, ^-regular,
t-n(co) —• £(a>) (say) and £(a>) € T(a>, £(eu)) for each co € fi provided one of the
following conditions holds:

(i) Each asymptotically T(co, ^-regular sequence in C is Cauchyfor each w e Q .
(ii) For each co e Q, T(co, •) is hemicompact.

(iii) The collection [Fn(co, •) : Fn(co, •) = XnT(co, -),K € (0,1), kn -*• 1} is
collectively condensing (collectively k-contractive, 0 < k < I) for each a> 6 Q.

PROOF. AS in the proof of Theorem 2.1, define Tn : Q x C -*• K(X)by Tn(co, x) =
kn T((o, x). Clearly each Tn is a weakly inward contraction random operator. So each
random operator inclusion yn(co) e Tn(co,yn(co)) has a random solution %n(co) by
Theorem B.

By definition, %n((o) = \nr)n(co) where r)n(co) 6 T(w, £„(«)) (see [3]). Moreover,
for each co 6 £2, {r)n((o)} is bounded and so we obtain

116,(0)) - I J . M H = I 1 - — 1 11^(0.)|| ^ 0 as n - • oo.

This implies that {£„(&>)} is an asymptotically JT(<W, )-regular sequence for each
wen.
(i) By assumption {t-n(co)} is a Cauchy sequence in C for each co € Q and hence
convergent. Thus £(&>) = limnfn(<y), being the limit of measurable functions is
measurable. The T(co, )-regularity of {fn(<w)} and continuity of the function x —>•
d(x, T(co, x)) imply that %(co) e T(a>, £(&>)) for each co e Q as desired.

Similarly we can establish parts (ii) and (iii) by using corresponding deterministic
parts of Theorem 2.1 and Theorem B. •

COROLLARY 3.2 ([4, Corollary 6]). Let C be a compact convex subset of a separa-
ble Banach space X and T : £2 x C —• K(X) a weakly inward nonexpansive mapping.
Then y(co) e T(a>, y(co)) has a random solution for each co e £1.

Similar results have been obtained by Tan and Yuan [23, Theorem 2.6 and The-
orem 2.7] where A is a Suslin family and X is a uniformly convex Banach space.
Following is a random version of Theorem 2.3 (see also [11]).

THEOREM 3.3. Let C be a nonempty closed bounded subset of a separable Banach
space X. Let T : £2 x C -> K(X) be a weakly inward d-continuous *-nonexpansive
random operator. If C has a family G satisfying condition (*), then there is a
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sequence {£„} of measurable mappings such that {£„(«)} is asymptotically T(co, •)-
regular, £n(a>) -*• %(co) (say) and % (on) is a random solution to y(co) G T(co, y(co))for
each co G Q in the following cases:

(i) Each asymptotically T(co, )-regular sequence is Cauchyfor each w e £1.
(ii) T(co, •) is hemicompact for each co G Q..

(iii) The collection [Fn(co, •) : Fn(co, •) = XnPT(co, •), K e (0, 1) with kn ->• 1} is
collectively condensing (k-contractive, 0 < k < I) for each co G Q.

PROOF. Follows from Theorem 2.3 and Theorem B. •

The following result can be easily verified.

THEOREM 3.4. Let C, X, G and T be as in Theorem 3.3. Suppose the following
condition holds: C D D ^ (p for all D e K(X) with D = limn T(co,xn) for some
asymptotically T(co, •)-regular sequence [xn] e C and T(co, •) satisfies inequality (2)
for all x,y € C and each co G Q. Then there exists a measurable map % : Q —> C
such that£(co) e T(co, %(co))for each co G Q.

Theorem 3.1 (ii) remains valid in the context of an arbitrary measure space
(£2, A, /x); a reformulation of the same would be as follows:

THEOREM 3.5. Let (£2, A,/x) be an arbitrary measure space, C a nonempty
bounded and closed subset of a separable Banach space X and T : f i x C -*• K(X)
a weakly inward hemicompact nonexpansive random mapping. Suppose that C has
a family G satisfying condition (*). Then there is a sequence {£„} of measurable
mappings such that {%n(co)} is asymptotically T(co, ^-regular, %n(co) —> %(co) (say)
and%(co) is a random solution to y(co) G T(co,.y(co))for each co G £2.

PROOF. For each co G Q, y(co) G T(CO, y(co)) has a generalized solution by Theo-
rem 2.1 (b). The result now follows from [24, Theorem 2.3]. •

Every multivalued condensing map defined on a bounded closed subset of a com-
plete metric space is hemicompact (see, for example, [24, Lemma 2.1]). Thus we
have obtained in Theorem 3.5, multivalued analogues of Itoh [10, Theorem 2.1] and
Xu [26, Theorem 2 (i)].

COROLLARY 3.6. Let (Q, A, /x) be any measure space, C a nonempty bounded
closed subset of a separable Banach space X and T : Cl x C -+ K(X) a weakly
inward condensing nonexpansive random mapping. Suppose that C has a family G
satisfying condition (*). Then there is a sequence {£„} of measurable mappings such
that {%n(co)} is asymptotically T(co, )-regular, %n(co) —> %(co) (say) and t-(co) is a
random solution to y(co) G T(co, y(co))for each co G £2.

https://doi.org/10.1017/S1446788700008697 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008697


60 Ismat Beg, A. R. Khan and N. Hussain [10]

REMARKS 3.7. (i) Theorems 2.1-2.4, Theorem 3.1, Theorems 3.3-3.4 and
Corollary 3.6 hold if we assume that C is a starshaped subset of X.

(ii) Results similar to ours have been proved by O'Regan [16] for a closed convex
domain in the special Banach spaces C([0, a] , E) or Lp([0, a], E), 1 < p < +oo,
where £ is a given Banach space.

4. Random fixed points on unbounded sets

The interplay between fixed point and approximation results is interesting (see,
for example, Lin [15]). In. this section we prove a random fixed point theorem
for *-nonexpansive operators defined on an unbounded set which in turn implies an
approximation result for this class of operators. Further, we find random fixed points
from the set of best approximations under a number of boundary conditions.

Following recent result due to Shahzad and Latif [22, Theorem 3.1] will be needed.

THEOREM C. Let S be a nonempty separable closed subset of a complete metric
space X and T : Q x 5 —*• X a continuous random operator for which condition (A)
holds. If the set G(co) — {x e 5 : x — T(co, x)} is nonempty for each co e £2, then T
has a random fixed point.

Using Theorem C, we first establish an extension of [ 11, Theorem 2.1 ] to unbounded
sets in a uniformly convex Banach space.

THEOREM 4.1. Let C be a nonempty separable closed convex subset of a uniformly
convex Banach space X and T : £2 x X -* 2* a closed convex valued *-nonexpansive
random operator for which condition (A) holds. Suppose C is (KR)-bounded w.r.t.
T(co, -)for each co € £1 and T either

(a) is weakly inward or
(b) satisfies Leray-Schauder condition.

If PT is a random operator, then T has a random fixed point.

PROOF. A closed convex set in a uniformly convex Banach space is Chebyshev so
each set T(co,x) is Chebyshev. Thus for all co e £2, x e C, [ux] = PT(co,x) e
T(co,x). Thus

d(PT(co,x), PT(co, y)) = d(uxuy) < d(x, y) for all x, y e C and co € Q.

This implies that PT : £2 x C —> X is a nonexpansive random operator. As PT(G>, x) e
T(co, x) c cl(/c(x)) for all x e C and co e Si, it follows that PT is weakly inward.
Clearly PT satisfies the Leray-Schauder condition. Further (KR)-boundedness of C
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with respect to T(co, •) implies that C is (KR)-bounded with respect to PT(co, •) for
each o> € £2. Thus in both cases the set G{co) — {x e C : x = PT(co, x)} is nonempty
for each co 6 £2 by [18, Theorem A]. By definition of PT, we have for each x e C and
for each co e £2,

(4) d(x, PT(w,x)) = d(x, ux) = d(x, T(w,x)) < d(x, PT(w,x)).

Therefore for any sequence {xn) in C, D e C(C) such that d(xn, D) -*• 0 and
d(xn, PT(w,xn)) - • 0, we obtain by (4) that d(xn, T(co,xn)) -> 0. As 7(G>, •)
satisfies condition (A) so there exists y e D such that y e T(co, v). By (4),
d(y, PT(M, y)) = d(y, T(co, y)) = 0 and s o y = PT(w y) for each co e Q. Thus
PT((JO, •) satisfies condition (A) for each co e £2. By Theorem C, PT has a random fixed
point. That is there exists a measurable map £ : £2 -> C such that £ (a>) = /Y(&>, £(<y))
for each co e Q. Since Pr(w, |(o;)) e 7(w, £(w)) for each co 6 £2, £ is the required
random fixed point of T. •

For single valued map the concepts of nonexpansive and *-nonexpansive coincide
so the following corollary constitutes an extension of [10, Theorem 2.6], [14, Theo-
rem 6 (ii)], [21, Corollary 3.4], [25, Corollary 3.5] and [26, Theorem 4] for unbounded
sets.

COROLLARY 4.2. Let C be a nonempty separable closed convex subset of a uni-
formly convex Banach space X and T : Q x C —> X a nonexpansive random operator
for which condition (A) holds. Suppose C is (KR)-bounded w.r.t. T(co, •) for each
co e Q. If either T: (a) is weakly inward or (b) satisfies the Leray-Schauder condition,
then T has a random fixed point.

As the condition (A) is always true for continuous condensing map T : £2 x C —> X
so if T is a nonexpansive condensing random operator in Corollary 4.2, then the
conclusion of [14, Theorem 5 (ii)] is obtained with unbounded domain and range.

Let C be a nonempty closed convex subset of a Hilbert space X. For every
T : C -> CK(X), we define F : C -+ CK(X) by Fx = [y e Tx : d(y, C) =
d(Tx, C)}. It is well known (see [20, page 535]) that Fx is nonempty as Tx is
compact. As an application of Theorem 4.1, we establish a random approximation
result for *-nonexpansive multivalued maps as follows.

THEOREM 4.3. Let C be a nonempty separable closed convex subset of a Hilbert
space X and T : Q x C —* CK(X) a *-nonexpansive random operator such that
for each co 6 £2, F(co, •) is *-nonexpansive and P6F(co, •) satisfies condition (A),
where P stands for the proximity map on C. If there exists xo e C such that for each
co e £2, G(x0, T(co,x0);d(T(co,x0), C)\ C) isbounded, then there exists a measurable
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map$ : Q ->• C such that d(£(co), T(co,%(co))) = d(T(co,$(co)), Qforeachcoe ft
provided one of the following conditions holds:

(i) />POF is a random operator and for each co e ft, x e C and ux e F(co,x), with
d(x, Pux) = d(x,PoF(co,x)), we have d(x, ux) = d(x, F(co,x)).

(ii) PF is a random operator.

PROOF. By definition,

(5) F(co,x) = {ve T{fo,x) : \\v - Pv\\ = d(T(a>,x), Q).

As T is compact convex valued so F and PoF are also compact convex valued
multifunctions. We first show that C is (KR)-bounded with respect to PoF(cu, •)
for each co e Q. Let z e G(x0, P6F(a>,x0); C). Then z e C and there exists
y e PoF(<w, x0) such that

(6) l l z -y l l< l l z - JCo l | .

Since for any co € Q, y € PoF(o;, x0), there exists u e F(co, x0) £ T(co, x0) such that
y = Pu. From (5) and (6) we obtain

Hz - «ll < Hz -Pu\\ + II Pu - u|| < ||z - xoll + d(T(co, xo), Q-

It implies that z € G(x0, T(a>, x0); d(T(co, x0), C); C) where the last set is bounded
for each co 6 f2. Hence C is (KR)-bounded w.r.t. PoF(<w, •) for each co e £2.
(i) For any co e Q,x,y e C and ux e Fx with d(x, Pux) = d{x, PoF(co,x)),
we have by the condition (i) that d(x, ux) = d(x, F(co,x)). Since F(co, •) is *-
nonexpansive so for each y e C, there is a unique uy e F(co, y) with

(7) d(y,uy)=d(y,F(a>,y)) and d(ux, uy) < d(x, y).

As PoF(a>, v) is closed and convex for each co e Q and y 6 C, there exists a unique
Pvy e PoF(&>, y) such that for each co e ft, y e C, d(y, Pvy) = d(y, P6F(co, y)).
Again by the condition (i), d(y, vy) = d{y, F(co, y)). Uniqueness of uy in (7)
implies that vy = uy for each y e C. Hence by nonexpansiveness of P, we obtain
d(Pux, Puy) < d{ux, uy) < d(x, y).

Thus PoF : Q x C —*• CK(C) is a *-nonexpansive random operator. All the
conditions of Theorem 4.1 are satisfied so PoF has a random fixed point. That is there
exists a measurable map £ : £2 —>• C such that £(a>) € PoF(a>, £(<w)) for co 6 Q.
Therefore, there is v e F(w, %(w)) c T(w, t-(w)) such that £(u>) = Pv. Hence for
each co e Q,

d(T(co, f (<u)), O < d(£(fi>), T{fo, £(<«)) < U(co) - v\\

= \\Pv-v\\=d{na>,$((o)),C).
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(ii) Since each set F(co,x) is Chebyshev, so for all co e £2 and x e C, {w,} =
PF(co, x) e F(co, x). From the *-nonexpansiveness of F, we obtain

d(PF(co,x), PF(co, y)) = d(ux, uy) < d(x, y)

for each x, y e C and co e £2. It implies that PF : £2 x C -»• X is a nonexpansive
random operator. Since C is (KR)-bounded w.r.t. PoF((y, •), C is (KR)-bounded
w.r.t. PoPf (co, •) for each &> e £2. We have shown in the proof of Theorem 4.1
by using (4) that T(co, •) satisfies condition (A) if and only if PT(co, •) satisfies
condition (A). Thus PoPF(co, •) satisfies condition (A) because PoF(o;, •) satisfies
the same. Notice that PoPF : £2 x C —> C is a nonexpansive random operator.
By Corollary 4.2, it follows that PoPF has a random fixed point. That there is a
measurable map £ : £2 —> C such that £(a>) = P6PF(a>, £(&>)) for each a> e £2 and
hence £(<w) = PoPF(a>, £(o>)) e PoF(a>, £(a>)) for each co e £2. As in case (i), we
have d($(co), T(co, ^(w))) = d(T(co, ^ M ) , C) for each a> e Q. •

THEOREM 4.4. Suppose the hypotheses of Theorem 4.3 ZioW. Suppose that in
addition one of the following conditions is also satisfied:

(c) T(co, $co)) DC £ <j> for all a> e £2.
(d) T(co, x)HC ^<j>for each co e £2 and bx e dC.

(e) T is an inward map; that is, T(co, x) c Ic(x),for each co e Q andx e C.

(f) PT is a random operator and for each w € £2, x e C, there exists a number k
(real or complex, depending on whether the vector space X is real or complex) such
that\X\ < \andXx + (1 - X)T(co, x) c C.
(g) PT is a random operator and for each co e Q and for each x € C with

x ^ T(co, x), there exists y, depending on co andx, in Ic(x) such that

\\y - z\\ < \\x - z\\ for all ze T(co,x).

(h) PT is a random operator and T is weakly inward.
(i) PT is a random operator and for each co € £2 and ue.dC with u = PoPT(co, u),

we have u = T(co, u).
(j) PT is a random operator and for each co € £2 and x € 3 C, there exists y e C,

such that \\z - y\\ < \\x - y\\ for all z e T(co, x).

Then % of parts (i) and (ii) of Theorem 4.3 is a random fixed point of T.

PROOF, (C) In each of the cases (i) and (ii) of Theorem 4.3, there exists a measurable
map £ : £2 -> C such that £ (co) e PoF(co, %(co)) for each co e £2.

As T(co, t-(co)) n C ^ 4> for each co e £2, there is y e T(co, %(co)) D C and

(8) 0 = d(y, C) = d(T(w, $(«;)), C).
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It follows from (8) that y e F(co, $(co)) for each co 6 Q. Thus if y0 € F(co,
then y0 € T(co, £(<u)). It further implies that y0 e T(co, f (co)) D C for each co e £2.
Therefore (8) holds for each y0 € F(a>, £(to)) and so F(co, %(co)) c C. It implies
that PoF(<w,|(ft;)) = F(co,$(co)) for each co e £2. Thus %(co) e PoF(co,$(co)) =
F(co, t=co)) c T(co, f (co)) for each <y e £2.
(d) Since £(&>) e PoF(co,%(co)) for each a> e £2, there exists y e F(co,t-(co))
such that P> = £(o>). If (̂<w) ^ dC for some a> e £2, then y e C, that is,
%(co) = y € F(co,$(co)) c 7(o;,|(&))); while if %(co) € dC, we have by our
assumption that T(co, |(a>)) D C ^ f Thus we have T(co, %(co)) D C 7̂  0 for each
u> e f2. So (c) holds and we are done.
(e) Suppose for some co e Q, T(co, %(co)) n C = <f>. Choose y e T(co, l;(co)) such
that \\y - $(a>))|| = d(T(a>, $(<»)), |(<u)).
Since y € Ic(t;(co)), there exist z e C and y > 0 such that y = f (<y) + y(z — £(w)).
Now y ^ C, we can assume that y > 1. Then

z = y / y + (1

where /3 = (1 - 1/r), 0 < ^ < 1. Thus

), f (a))), O < ||y - ((1 -

which is impossible. Thus, for each co € £2, 7(0), |(<u)) fl C ^ 0 . So (c) must hold,
(f) By definition of PT, we have Pr(o), JC) = {ux} e 7(w, J:) and

d(x, PAco,x)) = d(x, ux) = d(x, T(co,x)) < d(x, PAco,x))

for each co e £2, x e C. Thus it follows from d($(co), T(co), $(co))=d(T(co, ${co)), C)
that d(%(co), PT(co,Hco))) = d(PT(co,$(co)), C) for each co e £2. As PT(co,x) e
T(co,x),Xx + (1 — k)PT(co,x) € C for each co e £2, * e C and given X in (f). Hence
P r and so T has a random fixed point by [25, Theorem 4.9 (i)].

Similarly the parts (g)-(j) follow from the corresponding parts of [25, Theo-
rem 4.9 (ii)-(v)] respectively (see the proof of [5, Theorem 4.1]). •

For single valued map the concepts of *-nonexpansive and nonexpansive coincide
and the conditions (i) and (ii) in Theorem 4.3 are redundant. The continuous hemi-
compact maps satisfy condition (A). Thus the conclusion of [25, Theorem 4.3] for
nonexpansive random operator T without the assumptions: for each co e Q, T(co, C)
is bounded and I-PoT(tu, )(C) is a closed subset of X follows from the following:

COROLLARY 4.5. Let C be a nonempty separable closed convex subset of a Hilbert
space X and T : Q x C -*• X a nonexpansive random operator such thatPoT(co, •) is
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hemicompact for each co e ft. Suppose there exists x0 e C such that for each co e ft,
G(XQ, T(CO, XO), d(T(o), Xo), C); C) is bounded. Then there exists a measurable map
f : ft -> CSMC/I that for each we f t , ||f (a>) - 7(a>, f(a>))|| = rf(7"(a>, f(a>)), C).

For single valued map T, we have /V = T. Thus Theorem 4.4 reduces to the
following result which includes [25, Theorem 4.9] for nonexpansive random operators.

COROLLARY 4.6. Let Cbe a nonempty separable closed convex subset of a Hilbert
space X and F : f l x C - > X d nonexpansive random operator such that PoT(a>, •)
is hemicompact for each co 6 ft. Suppose there is x0 € C such that for each
co e ft, G(x0; T(w, xo);d(T(w, x0), C); C) is bounded and T satisfies any one of the
conditions (f)-(j) in Theorem 4.4. Then T has a random fixed point.
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