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ON /--REGULAR /--CONNECTED

NON-HAMILTONIAN GRAPHS

BRAD JACKSON AND T .D . PARSONS

Some methods are given for constructing regular r-valent

r-connected non-hamiltonian graphs; often the graphs are also

non-r-edge-colorable. The extent of the class of such graphs

constructible from these methods and previous methods is

discussed.

1. Introduction

In this paper the term "graph" excludes loops and multiple edges; and

"multigraph" allows multiple edges but excludes loops.

Let r J 3 be an integer, and let "rcnh" abbreviate "r-valent regular

r-connected non-hamiltonian", and let "re" abbreviate "r-valent regular

r-connected". For example, a 3c graph is cubic and 3-connected, while a

3cnh graph is 3c and non-hamiltonian.

Meredith [14] has constructed rcnh graphs for every r £ 3 ; in fact,

his method gives immediately an infinite family of rcnh graphs for each

r 2 3 .

Starting from Meredith's graphs, we shall give some methods of

constructing more rcnh graphs from them, so as to enlarge considerably the

family of known rcnh graphs. All the constructions can be described in

terms of operations of "cutting and splicing" graphs, familiar to many
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graph theorists.

2. Cutting and splicing

Let ff be a multigraph and v € V(H) . Then H ff v denotes the

object obtained from H by cutting out the vertex v but retaining the

"pendants" or "open-ended edges" previously incident to v (see Figure l);

it may be helpful to consider I as a "topological multigraph", so that

H ff v is just the topological space obtained from H by removing the

point v .

H ff v

FIGURE 1

If G is a multigraph and u f V(G) has the same valency r in G

as the vertex y has in H , then we let G{u, H ff v) denote any multi-

graph obtained from disjoint copies of G ff u and H ff v by pairing in a

one-to-one correspondence the r pendants of G ff u and H ff v and then

splicing together (that is, fusing into a single edge) each corresponding

pair of pendants (see Figure 2).

We say that G(u, H ff v) results from "substituting H ff v for u

in G ". (Once the pairing of the pendants is fixed, we have that

H(v, G ff u) = G(u, H ff y) , so that we could equally well think of the

operation as substituting G ff u for v in H .) In general, the multi-

graph G(u, H ff v) will depend on the pairing chosen for the pendants of

G ff u and H ff v , so that many different multigraphs will arise. When-

ever we make an assertion about G(u, H ff v) , we are making the assertion

for every such multigraph, independent of the pairing.
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G § u H § V

(M)
G{u, H # v)

FIGURE 2

If u., u., ..., u, € V(G) are distinct vertices and v. € v[n.) has

the same valency in H. as u. has in G , then we use the notation

G{U , H ff v ; ...; u,, H, It u,) for any multigraph resulting from the

substitution of disjoint copies of H. # v. for u. in G , for

i = X, 2, ..., k . Also we let G(H # v) denote any substitution of

disjoint copies of H ff v for every vertex of G , if G is regular of

the same valency as that of v in H .

Such constructions have appeared often in the literature, for example

in papers pf Chetwynd and Wilson [4], Gr'unbaum [7, pp. 33-3U], Isaacs [/I],

Thomassen [J6, p. 215], and Zamfirescu [J9, p. 233].

THEOREM 1. Let G and H be connected multigraphs, and let

u € V(G) and v € V(H) both have valency r . Let X = G{u, H ft v) .
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(A) If both G and H are r-connected, then so is X .

(B) If G and H are both r-edge-connected, then so is X .

(C) If r = 3 and either G or H is non-hamiltonian, then X is

non-hamiltonian.

(D) If there do not exist m 5 [r/2j cycles C' ..., C in H

such that v[Cj) n v[c.) = {v} for all i , j such that 1 5 i < j < m

m
and U V[c.) = V(H) , then X is non-hamiltonian.

i=l v

Proof. Parts (A), (B) are easy exercises whose proofs we shall omit.

Part (C) is the special case r = 3 of Part (D). We present the easy-

proof of (D).

Suppose C is a hamiltonian cycle in X . Then C uses some even

number 2m of the r edges joining G - u to H - v in X , and if we

"pinch together" all those r edges at their midpoints (to form a new

vertex there, of valency 2r ), and then discard the copy of G thereby

formed, then we get a copy of H in which the remaining parts of C form

a closed trail T each vertex of which has valency 2 in T except the

vertex v which has valency 2m in T . The trail T is composed of m

cycles C, ..., C having the properties forbidden by the hypotheses of

(D). This proves (D). •

Since multigraphs of the form G{H # y) and

G[u , H § v ; ...; u,, H, It vA can be obtained by a sequence of single

substitutions for vertices of G , the appropriate restatements of Theorem

1 hold for these multigraphs also, in place of G{u, H # v) .

We remark that if H is a planar graph, then in any topological

embedding of G in a surface 5 , when we cut out vertex u from G we

may cut out a small disk about u on S , and then a copy of H ft v can

be embedded on a small disk which is sewed back onto the boundary of the

resulting hole - so that G(u, H § v) is also embeddable on 5 .

Furthermore, if the embedding of G is cellular, then so is that of

G(u, H # v) . In particular, if both G and H are planar, then so is

G(u, H tt V) .
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As an example of an application of Theorem 1, if H is any 3cnh graph

(such as the Petersen graph) and G is any 3c graph, then every

G(u, H ft v) is a 3cnh graph. (Compare with Thomassen [76, p. 215] where

this operation is used for another purpose.

When H = K, , then G{u, H § v) is just the operation of "replacing

u by a triangle". This operation is well-known (see Grunbaum [6,

p. 11^6]). Starting from any planar 3cnh graph such as the Tutte graph

E'7], [2, p. l6l] and repeatedly applying this operation to vertices of

successive graphs, we would obtain infinitely many planar 3cnh graphs.

3. Meredith's construction

Let M = [K # v) . Then M is independent of the choice of

V € v[K ) , and there is a unique multigraph G[u, M ) , the "Meredith
r ,2? V

expansion of G at u ", determined by the multigraph G and the

r-valent vertex u of G '.

Meredith [74] proved that G{U, M ) is hamiltonian if and only if G

is hamiltonian, and further that for r-regular multigraphs G , the graph

(with no multiple edges!) G[M J is r-connected if and only if the

multigraph G is r-edge-connected. To construct rcnh graphs G[M) , it

therefore suffices to construct r-regular r-edge-connected non-

hamiltonian multigraphs G . Meredith constructed such multigraphs by

replicating edges carefully in the Petersen graph. Letting H = G[M ) ,

H- = H [M^] , H = H [M ) , and so on, one gets infinitely many rcnh

graphs for each r 2 3 . In fact, one has more flexibility than this, for

if G is an rcnh graph, then so is G, (w, M^) by Meredith's results and

Theorem 1 (A). Therefore substitutions by M may occur one vertex at a

time, giving G , G^ = ^^[u^, Mp) , G = G^u^, Mp) , and so on, as rcnh

graphs. (This is used for r = 3 by Ho I ton, McKay and Plummer [70].)

To extract the fullest generality from Meredith's construction, let us

define the notion of an "r-good" graph. An r-assignment for a graph G

is a function y : E(G) -*• {l, 2, 3, ...} such that the multigraph G * u ,

obtained by replacing each edge e = uv of G by p(e) multiple edges
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from u to v , is r-regular. An r-assignment V for G is an r-good

assignment for G , and the resulting multigraph G * p is an r-good

extension of G , if C * \i is r-edge-connected. We say G is r-good

if it has an r-good assignment.

In terms of our definition, Meredith showed that the Petersen graph is

r-good for every r > 3 , and that for every r-good extension G * y of

an r-good non-hamiltonian graph G , the graph [G * \i][M j is an rcnh

graph.

The question now arises as to which graphs are r-good, and in

particular which 3c graphs are r-good.

THEOREM 2. Every 3c graph is r-good for all r > 3 .

Proof. We shall prove the theorem for all r # 5 ; the case r = 5

is more involved, and we discuss it in Remark 1 below.

Let G be a cubic 3-connected graph. If y is an r-good assignment

for G , then for any integer m > 0 the function

u + m : E(G) -+ {l, 2, 3, ..-) defined by (u+m)(e) = p(e) + m , is clearly

an (r+3m)-good assignment. Therefore to show that G is r-good for all

r 2 3 such that r ^ 5 , it suffices to prove that G is r-good for

r = 3, h, 8 . Trivially, G is 3-good. By a well-known theorem of

Petersen [15], [Z, p. 79], [9, p. 89], G has a 1-factor F . Define

functions y, and on £(6) by

Vk(e) - •

and Pg(g) = 2p, (e) for all e £ E{G) . Clearly, the multigraphs G * y,

and G * \io are regular of valencies h and 8 , respectively. Let K

be any (minimal) edge cutset of G , and let s. = £ p.(e) for
3 aCV 3

3 = h, 8 . If \K\ > h , obviously s, 2 h and sQ > 8 . If |#| = 3 ,

then the two components of G — K each have an odd number of vertices

(since G is cubic), so some edge of F is in K , giving

3^ i 1 + 1 + 2 = It and s g > 2 + 2 + lt = 8 . It follows that G * u. and
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G * yo are U-edge-connected and 8-edge-connected, respect ively, so Go

is l»-good and 8-good. •

REMARK I. We first proved Theorem 2 only for all r 2 3 such that

r ^ 5 , via a longer argument involving the "Max-flow Min-cut Theorem" of

Ford and Fulkerson [5], and we conjectured that every 3c graph was 5-good.

Carsten Thomassen (in a Private Communication) then pointed out to us the

simpler proof given above for r t 5 , and informed us that he had proved

the conjecture for the case r = 5 . His latter proof derives a

contradiction from the necessary properties of a minimal non-5-good 3c

graph.

It follows that for every 3cnh graph G and for every r > 3 we may

construct an rcnh graph [G * \i] [M_) , based on G , for every r-good

assignment M for G . Thus what Meredith did for the Petersen graph may

be done just as well for any 3cnh graph G serving as the "base" - and

there is a great variety of such graphs G .

4. Construction 1

Let k be an integer such that 1 < k S r , let H , H„, ..., H, be

disjoint copies of re graphs (possibly some pairs of these graphs are

isomorphic), and suppose further that H. is non-hamiltonian. Let B be

the complete bipartite graph with bipartition X u Y , where

X = {x1, . . . , xp) and Y = {z^, .. . , y^} . For i = 1, 2, .. . , k choose

a vertex v. in graph H. , and let UL , ..., w be the vertices adjacent
X- I* J. *

to v. in H. . Consider any graph C of the form

B[y±, Hx ti u1; ...; yk, H^ # ufc) . In Figure 3 (p. 212) we picture the

cases k = r and k < r .

THEOREM 3. The graph G is rcnh.

Proof. Clearly G is r-regular, and G is r-connected by Theorem

1 (A). It remains to show that G is non-hamiltonian. Suppose that G

has a hamiltonian cycle C . Then C - {x , ..., I ) is the disjoint union

of r paths P., ..., P . Any of these paths which consists of a single
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A. The case k = r B. The case k < r

FIGURE 3

point is either a w. or (if k < r ), a y-, . . And any such path-which

f i i\
is nontrivial must have both its endpoints in some set \w-,> •••» wr\ , a n d

must be contained entirely in some induced subgraph H. - v. . Since every

H. - v. (l £ i £ k) must have its vertices among those vertices of the
Is tr

paths P , ..., P , and since if k < r each y, . (for 1 £ j £ r-k )

must be some P. , we see that we may assume without loss of generality

that P. is a hamiltonian path in H. - v. for 1 5 i < k and (if

k < r ) that Pk+ . = yk+ . for 1 5 j 5 r-k . But then P is a

hamiltonian path in H - v , and the endpoints of P are in

\u-,, •••» w\ , so that u
1^1

u-i i s a hamiltonian cycle in H . This
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contradicts the hypothesis that H is rcnh. Therefore G is non-

hamiltonian, and the theorem is proved. O

We note that this construction requires an initial rcnh graph H^ ,

which can be obtained from Meredith's construction, based on any 3cnh

graph. Since there are many choices for H , for V £ V[H_J , and since

H , ..., B, are arbitrary re graphs, the construction is quite flexible in

creating new rcnh graphs. In particular, it can first be used to create

many new 3cnh graphs, which will be r-good and so in turn can be used to

create more rcnh graphs.

We remark that when k = 1 , the graph G = E)[y , H ft V ) is just

the same as the graph H [v , M ) obtained by performing a Meredith

expansion of u in H , as in Section 3.

5. Construction 2

Let k > |jr-2)/2] , and first construct a graph

G = B{y , H ti V.; ..., y,, H, # v-A as in Construction 1, but where we

require all of H., ..., H. to be rcnh, where j is some (fixed) integer
1 3

such that Q 5 k and j > |Jr-2)/2J . Next let H be an arbitrary re

graph and u an arbitrary vertex of H , and let J = H[V, G # x ) . The

graph J is the result of Construction 2.

THEOREM 4. The graph J is rcnh.

Theorem h follows at once from Theorem 1 and the following lemma.

LEMMA 5. Let m be an integer such that 1 5 m 5 [r/2j , and let G

be the rcnh graph described just prior to Theorem h. Then there do not

m
exist cycles C. , ..., C of G such that U v{c.) = V{G) and

* 1 m i=l 7'

1 5 p < q < m implies v{c ) n v{c ) = {xA .

Proof. Suppose that such cycles C , ..., C exist. Then they would

give a closed trail T in G in which vertex x would have valency 2m
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and every other vertex of T would have valence 2 in T . Now

T - {x , ..., x } consists of a family II of m + r - 1 disjoint paths,

each of which is either a single J/̂ +t (if k < r ) or else is contained

entirely in some induced subgraph H. - v. of G for i £ {l, ..., k} .

Furthermore, since every vertex outside {x , ..., x} must lie in exactly

one of these paths, every singleton y-r-.f is o n e °f 'the paths, and each

vertex set V[H.-V.) must be covered by those paths P € II such that

P cz v[H.-V.) , for 1 5 i 2 k . Since H. is non-hamiltonian for

1 S i S j , the graph H. - V. contains no hamiltonian path for
I' If

1 5 t S j . Therefore it takes at least two members of II to cover each

V[H.-V.) , for 1 2 i 5 j . Since it takes at least one member of II to

cover each V{H.-V.) for j 2 i 5 k , and to cover each 2/r.+i for

1 5 t < r-fc , we have that

|IT| > 2j + (k-j) + (r-k) = r + j > r + |jr-2)/2j .

But |ll| = m + r - 1 and m 2 [r/2j , so | IT J < |_r/2j + v - 1 , so that we

get r + |_(r-2)/2J < |_r/2j + r - 1 , a contradiction.

Therefore no such cycles C , ..., C exist. This proves the lemma,

and Theorem h follows. •

We see from Construction 2 that, if in Construction 1 enough of the

building blocks H. are rcnh, then the resulting rcnh graph G may be
Is

"substituted" into an arbitrary re graph H to create a new rcnh graph

J . This method has been refined to produce rcnh graphs whose longest

cycles contain an arbitrarily small fraction of the vertex set; we discuss

this briefly in the next section.

There are many special constructions for rcnh graphs, and we indicate

a few more, but omit the proofs.

Let L be the join of a cycle y-^Uo • • • VyH-i with r - 2

independent points x , ..., i , and let H. be rcnh and V. i. V[H.)

for i = 1, ..., r . Then L{yv ^ # i^; . ..; yp, Hy # vj is rcnh.
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Let H , H , H , #, be l»cnh, and l e t K be t h e complete graph wi th

v e r t i c e s y^ ( l < i < 5 ) . Then K^{yx, H^ ft v±; . . . ; y^, H^ # vj i s

Itcnh, for any choices of v. € v[H.) , 1 « i 5 U .v
Is

6. Longest cycles in rcnh graphs

Our work in this paper was motivated by a question of Babai. Let

1 (n) be the minimum length of a longest cycle in any re graph on exactly

n vertices. (The domain of the function Z is the set of all integers

n 2 r+1 if r is even, or all even n 2 r+1 if r is odd, since re

graphs exist precisely for these n , by a theorem of Harary [£].) Babai

asked [I] whether I (n) < n for some positive constant e and all

sufficiently large n for which I is defined. For the case r = 3 , it

was well-known that lim inf (log Z_(n))/log n < 1 ; and recently, Bondy

and Simonovits [3] showed that ea °S M < I An) < n ~e for all large n

and positive constants a, z .

Applying constructions first obtained while working on this paper, we

have been able now to answer Babai's question affirmatively for all r ?: 3

(see [72], [73]).

We remark that for those rcnh graphs G on n vertices whose longest

cycles have fewer than [n/rj vertices, the graphs H(v, G § x) will be

rcnh for any re graph H (similar to the phenomenon of our Construction

2).

7. Non-r-edge-colorable rcnh graphs

Meredith [74] noted that a regular r-valent multigraph H is

r-edge-colorable if and only if the multigraph fi[v, M ) is r-edge-

colorable (where we defined M in Section 3), and he obtained appropriate

multigraphs H by replicating edges in Petersen's graph so that H[M )

was an r-regular non-r-edge-colorable graph. Meredith constructed such a

graph (of order 20r - 10 ) for each r > 3 ; these were all non-

hamiltonian, of course, and all were r-connected except for the cases
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r = 5, 6, 7 . For any such graph G then, all of G , G[u , M } = G ,

G [u , M ) = G , and so on, are r-regular non-r-edge-colorable, so

Meredith constructed an infinite family of such graphs for each r > 3 ,

and these were also rcnh except for r = 5, 6, 7 •

To extract the fullest generality from Meredith's methods, let us

define a graph G to be r-nice if there is an r-assignment y for which

G * V (defined in Section 3) is non-r-edge-colorable; in this case we say

that y is an r-nice assignment for G , and that G * y is an v-nioe

extension of G , and then by Meredith's results, [G * u] [M ) will be an

r-regular non-r-edge-colorable graph, which will be non-hamiltonian if G

is non-hamiltonian, and r-connected if y is also r>-good. In terms of

our definition, for G the Petersen graph, Meredith constructed one

2"-nice extension G * y for each r 2 3 , such that these extensions were

also r-good for r 2 8 .

Of course if G has odd order and G * \i is r-regular (so r is

even), then G * y will trivially be non-r-edge-colorable; thus the

question of r-nice extensions is interesting only for graphs G of even

order.

Many of the rcnh graphs arising from our constructions will be non-r-

edge-colorable, as follows from Lemma 6 and its Corollary 7, below. Lemma

6 is trivial; when r = 3 , it is the same as the well-known (and equally

trivial) "Parity Lemma" (see [4]), but for r > 3 it has stronger

hypotheses and a stronger conclusion than the "Generalized Parity Lemma".

LEMMA 6. Let r > 3 and let G be a connected v-vegulav

multigraph with a proper r-edge coloring using the colors 1, 2, ..., r .

Suppose that K is an edge-cutset of cardinality r , such that at least

one of the components of G - K has odd order. Then K contains one edge

of each color i 3 for i = 1, 2, . . . , r .

Proof. The edges of color i form a 1-factor F. in G , but at

least one component of G - K cannot contain any 1-factor, so K

contains an edge of F. . D
1r

COROLLARY 7. Let G and H be connected r-regular multigraphs at

least one of which has even order. Let u i V(G) and v € V(H) . Then
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G(u, H # v) is v-edge-colorable if and only if both G and H are

r-edge-colorable. D

It follows that if, say, in our Construction 1 one of the graphs H.
I*

is of even order and non-r-edge-colorable, then the resulting graph G

will be rcnh and non-r-edge-colorable. Similar remarks apply to the other

constructions.

Because of its connection with the famous "four color problem", the

construction of cubic non-3-edge-colorable graphs has received much

attention. Certain such graphs have been called "snarks", and similarly

certain r-regular non-r-edge-colorable graphs have been called "r-snarks"

or "supersnarks" [4]. The r-regular non-r-edge colorable graphs

constructed by Meredith are examples of r-snarks.

The definitions of "snark" and "r-snark" are burdened with various ad

hoc conditions designed to exclude so called "trivial" r-regular non-r-

edge-colorable graphs. In Isaacs' paper [//], much ado is made about what

should or should not be considered "trivial", and infinite families of

"non-trivial" snarks are constructed. Such usage of the word "trivial" is

fraught with difficulties, in our opinion; for, what mathematicians regard

as trivial changes with the passage of time (a fact noted also by Isaacs).

Consequently, the definitions of "elusive" objects such as "snarks" will

become increasingly encumbered by ad hoc exclusions. For example, in light

of our Lemma 6, it seems that the definition of "r-snark" for r > 3 in

[4] should further exclude the existence of cutsets K of the type in our

lemma.

It seems more productive to regard certain objects as "primitive" or

"irreducible" (rather than "trivial") with respect to some specified set of

constructions or operations; if this is done, then truly few primitive

m e n graphs, or r-regular non-r-edge-colorable graphs, are known.

8. Concluding remarks

We conclude with some questions for further research.

It is natural to want to be able to characterize the objects of some

family - such as renh graphs, or r-regular non-r-edge-colorable graphs -

as being constructible from some more tractable family of "primitive"
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objects by means of some finite list of computable constructions or

operations. Sometimes this can be done completely, such as in the

fundamental theorem of arithmetic where the primitives are-primes, and in

the fundamental theorem of algebra where the primitives are monic linear

polynomials and complex constants. We know of no such characterization of

rnch graphs, even relative to a large family of primitives such as the re

graphs.

In our constructions, the primitives are the re graphs and the

"smallest" renh graphs relative to decompositions of graphs G(u, H § v)

into graphs G, H having each more than one vertex. In turn, these

smallest renh graphs arose from Meredith's construction, for which the

primitives could be regarded as arising from smallest 3cnh graphs G from

the operation [G * p] [M ) for r-good assignments y • Do all 3cnh

graphs arise somehow from the Petersen graph? Tutte [IS] has conjectured

that every bridgeless cubic graph which is not 3-edge-colorable contains a

subgraph contractible to the Petersen graph.

Does our Theorem 2 generalize to "Every fe-regular fc-connected graph

is r-good for all r > k "? Which graphs G of even order have r-nice

assignments for all appropriate values of r ? In particular, given any

3cnh graph, for which r 2 3 must it have an r-nice assignment?
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