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Abstract

In this paper we provide a new proof of strong convergence of resolvent operators associated with
boundary value problems on thin domains.
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1. Introduction

Since the pioneer work by Hale and Raugel [15], the investigation of the asymptotic
behaviour of the nonlinear dynamics of semilinear reaction–diffusion equations in
thin domains has received the attention of several authors, mainly interested in the
continuity of global attractors with respect to specific metrics; see [1, 7, 10–19] and
their references.

Arrieta and Carvalho [3] and Carvalho and Piskarev [9] systematised a process to
obtain the continuity of global attractors with respect to singular perturbations. Their
ideas are based on a rigorous study of convergence properties of the linear part of the
equation. Motivated by their ideas, in this paper we present a simple and direct proof
of the convergence of resolvent operators of the singular problem considered in [17].
Although we are aware that the result itself has been proved by other authors, for
example [1, 17], the point is that our combination of ideas presented in [1, 4] opens up
the possibility of treating other classes of singular problems, such as those in [2, 4, 8].

The paper is organised as follows: in Section 2 we present the functional analytic
setting of the problem and we state the main result, Theorem 2.1, which is proved in
Section 3.

2. Preliminaries

Let Ω be a smooth and bounded domain in Rm+n. A generic point of Ω will be
denoted by (x, y) ∈ Rm × Rn and ε will represent a small positive parameter.
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Considering the squeezing operator Φε : Rm+n→ Rm+n defined by Φε(x, y) = (x, εy),
we set up the thin domain Ωε := Φε(Ω), ε ∈ (0, 1), and we analyse convergence
properties of the solutions of the family of linear equations

−∆uε + uε = f ε in Ωε ,

∂uε

∂ηε
= 0 on ∂Ωε ,

where ηε denotes the outward unitary normal vector field to ∂Ωε .
In order to capture the limiting behaviour of uε as ε→ 0, we perform a dilatation

of the domain Ωε by a factor ε in the y-direction. Thus we obtain in Ω the equivalent
equations

−∆xu −
1
ε2

∆yu + u = f̂ ε in Ω,

∇xu · ηx +
1
ε2
∇yu · ηy = 0 on ∂Ω,

(2.1)

where f̂ ε(x, y) = f ε(x, εy), and η = (ηx, ηy) is the outward unitary normal vector field
to ∂Ω.

The relation between the spaces of functions defined in Ωε and those defined in Ω

is given by
Φ∗ε : L2(Ωε)→ L2(Ω), u 7→ u ◦ Φε ,

an isomorphism which restricts an isomorphism from H1(Ωε) onto H1(Ω).
Stressing the fact that the domains Ωε vary in accordance with the parameter

ε, collapsing themselves to a lower dimensional subset as ε→ 0, to preserve the
relative capacity of a measurable subset of Ωε we perform a dilatation of the (m + n)-
dimensional Lebesgue measure by a factor 1/ε. With this measure, namely

ρε :=
1
ε
× Lebesgue measure,

we introduce the Lebesgue and Sobolev spaces L2(Ωε ; ρε) and H1(Ωε ; ρε),
respectively. By considering in H1(Ω) the equivalent norm

‖u‖ε :=
(∫

Ω

(
|∇xu|2 +

1
ε2
|∇yu|2 + |u|2

)
dx dy

)1/2

,

it follows that the isomorphism

Φ∗ε : H1(Ωε ; ρε)→ H1
ε (Ω)

is indeed an isometry, where H1
ε (Ω) := (H1(Ω), ‖ · ‖ε). A similar observation can be

made regarding Φ∗ε : L2(Ωε ; ρε)→ L2(Ω).
We notice that H1

ε (Ω) is a Hilbert space with respect to the inner product

aε : H1
ε (Ω) × H1

ε (Ω)→ R,

aε(u, v) :=
∫

Ω

(
∇xu · ∇xv +

1
ε2
∇yu · ∇yv + uv

)
dx dy.
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This inner product induces a self-adjoint unbounded linear operator with compact
resolvent

Aε : D(Aε) ⊂ L2(Ω)→ L2(Ω),

defined by
aε(u, v) = 〈Aεu, v〉, ∀v ∈ H1

ε (Ω), ∀u ∈ D(Aε),

where 〈u, v〉 =
∫

Ω
uv dx dy. It follows from the smoothness of ∂Ω that

D(Aε) =

{
u ∈ H2(Ω) : ∇xu · ηx +

1
ε2
∇yu · ηy = 0 almost everywhere in ∂Ω

}
,

and

Aεu = −∆xu −
1
ε2

∆yu + u, ∀u ∈ D(Aε).

Now, for u ∈ H1(Ω), we notice that

aε(u, u)
ε→0
−→


∫

Ω

(|∇xu|2 + |u|2) dx dy if ∇yu = 0,

∞ if ∇yu , 0.

Therefore, in order to establish a formal limit for aε , it is necessary to work in
a proper subspace of H1(Ω) × H1(Ω). In [17] the authors introduce the subspace
H1

s (Ω) := {u ∈ H1(Ω) : ∇yu = 0 almost everywhere in Ω} as well as the bilinear form
a0 : H1

s (Ω) × H1
s (Ω)→ R given by

a0(u, v) :=
∫

Ω

(∇xu · ∇xv + uv) dx dy, ∀u, v ∈ H1
s (Ω).

The subspace H1
s (Ω) is an infinite dimensional closed subspace of H1(Ω).

Defining L2
s(Ω) := H1

s (Ω)
L2(Ω)

, it follows that a0 defines a self-adjoint unbounded
linear operator with compact resolvent

A0 : D(A0) ⊂ L2
s(Ω)→ L2

s(Ω)

defined by
a0(u, v) = 〈A0u, v〉, ∀v ∈ H1

s (Ω), ∀u ∈ D(A0).

Analogously, it follows from the smoothness of ∂Ω that

D(A0) =

{
u ∈ H2(Ω) ∩ H1

s (Ω) :
∂u
∂η

= 0 almost everywhere in ∂Ω

}
,

and
A0u = −∆xu + u, ∀u ∈ D(A0).
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Now we have the elements to state the main result of this paper.

T 2.1. Given a bounded family f ε ∈ L2(Ω), there exists f 0 ∈ L2(Ω) such that,
up to subsequence,

lim
ε→0
‖A−1

ε f ε − A−1
0 f 0‖ε = 0.

R 2.2. After these considerations, at the limit where ε = 0, we must seek
solutions u ∈ H1

s (Ω) of the equations

−∆xu + u = f 0 in Ω,

∂u
∂η

= 0 on ∂Ω.

If each x-section Ωx := {y ∈ Rn : (x, y) ∈Ω} is a connected set, then such solutions
are of the form u(x, y) = v(x) almost everywhere in Ω, for a suitable function v defined
in P(Ω) := {x ∈ Rm : Ωx , ∅}. This justifies the expression ‘reduction of dimension’ in
such problems. Details can be found in [17].

3. Convergence results

In this section we are concerned with convergence properties of solutions of (2.1).
This means that, given f ε ∈ L2(Ω), we will deal with the family of linear problems

Aεu
ε = f ε ,

investigating convergence of uε as ε→ 0.
At first glance, we are able to prove the following weak convergence result.

L 3.1. Let f ε ∈ L2(Ω) be such that ‖ f ε‖L2(Ω) ≤ c for some constant c not
dependent on ε ∈ (0, 1). There exists f 0 ∈ L2

s(Ω) and u0 = A−1
0 f 0 ∈ H1

s (Ω) such that,
up to subsequence,

A−1
ε f ε

ε→0
−→ u0, w − H1(Ω) and s − L2(Ω).

P. Setting uε = A−1
ε f ε ∈ H1

ε (Ω),

aε(uε , v) = 〈 f ε , v〉, ∀v ∈ H1
ε (Ω).

In particular, taking v = uε as a test function, it follows from Hölder’s inequality that

‖uε‖2H1(Ω) ≤ aε(uε , uε) ≤ ‖ f ε‖L2(Ω)‖u
ε‖H1(Ω),

which means
‖uε‖H1(Ω) ≤ c, ∀ε ∈ (0, 1).

Since H1(Ω) is a reflexive space and L2(Ω) ↪→ H1(Ω) compactly, taking a

subsequence if necessary, there exists u0 ∈ H1(Ω) such that uε
ε→0
−→ u0, weakly
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in H1(Ω) and strongly in L2(Ω). Moreover, noticing that aε(uε , uε) ≤ c2, one has that

‖∇yuε‖L2(Ω)n ≤ cε. Therefore, ∇yuε
ε→0
−→ 0 in L2(Ω)n which means that ∇yu0 = 0, proving

that actually u0 ∈ H1
s (Ω).

On the other hand, since ‖ f ε‖L2(Ω) ≤ c, there exists f 0 ∈ L2(Ω) such that, up to a
subsequence, f ε ⇀ f 0 in L2(Ω). Moreover, since∫

Ω

(∇xuε · ∇xϕ + uεϕ) dx dy
ε→0
−→

∫
Ω

(∇xu0 · ∇xϕ + u0ϕ) dx dy, ∀ϕ ∈ H1
s (Ω),

and ∫
Ω

(∇xuε · ∇xϕ + uεϕ) dx dy =

∫
Ω

f εϕ dx dy, ∀ϕ ∈ H1
s (Ω),

we obtain ∫
Ω

(∇xu0 · ∇xϕ + u0ϕ) dx dy =

∫
Ω

f 0ϕ dx dy, ∀ϕ ∈ H1
s (Ω),

that is, u0 = A−1
0 f 0. �

In the following lemma, similar to [1, Lemma 3.1], we strengthen the previous
convergence result.

L 3.2. Let f ε , uε , f 0 and u0 be as in Lemma 3.1. Then

lim
ε→0
‖uε − u0‖H1(Ω) = 0.

P. It follows from the weak convergence, uε ⇀ u0 in H1(Ω) (obtained in
Lemma 3.1), that

‖u0‖2H1(Ω) =

∫
Ω

(|∇xu0|2 + |u0|2) dx dy

≤ lim inf
ε→0

∫
Ω

(|∇xuε |2 + |∇yuε |2 + |uε |2) dx dy

≤ lim sup
ε→0

∫
Ω

(|∇xuε |2 + |∇yuε |2 + |uε |2) dx dy

≤ lim
ε→0

∫
Ω

(
|∇xuε |2 +

1
ε2
|∇yuε |2 + |uε |2

)
dx dy

= lim
ε→0

∫
Ω

f εuε dx dy

=

∫
Ω

f 0u0 =

∫
Ω

(|∇xu0|2 + |u0|2) dx dy = ‖u0‖2H1(Ω),

which proves the statement. �
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R 3.3. Although we can obtain Theorem 2.1 immediately from Lemma 3.2,
which is actually done in [1], we prefer to use the technique employed in [4–6] to
obtain the expected convergence result. We think it is possible in this way to consider
more classes of singular perturbations problems as reaction–diffusion equations in
dumbbell type domains [4–6] and reaction–diffusion equations with large diffusion
phenomena [8], besides estimating their rates of convergence [2].

L 3.4. Let f ε , uε , f 0 and u0 be as in Lemma 3.1. If

λε =
1
2
‖uε‖2ε −

∫
Ω

f εuε dx dy = min
ϕ∈H1(Ω)

{1
2
‖ϕ‖2ε −

∫
Ω

f εϕ dx dy
}
,

λ0 =
1
2
‖u0‖2H1(Ω) −

∫
Ω

f 0u0 dx dy = min
ϕ∈H1(Ω)

{1
2
‖ϕ‖2H1(Ω) −

∫
Ω

f 0ϕ dx dy
}
,

then limε→0 λε = λ0.

P. Taking u0 as a test function for λε and recalling that ∇yu0 = 0,

λε ≤
1
2
‖u0‖2H1(Ω) −

∫
Ω

f εu0 dx dy

=
1
2
‖u0‖2H1(Ω) −

∫
Ω

f 0u0 dx dy −
∫

Ω

( f ε − f 0)u0 dx dy

= λ0 −

∫
Ω

( f ε − f 0)u0 dx dy,

which leads to
lim sup
ε→0

λε ≤ λ0.

On the other hand,

λ0 =
1
2

∫
Ω

(|∇xu0|2 + |u0|2) dx dy −
∫

Ω

f 0u0 dx dy

=
1
2

∫
Ω

(|∇xu0 − ∇xuε + ∇xuε |2 + |u0 − uε + uε |2) dx dy −
∫

Ω

f 0(u0 − uε) dx dy

−

∫
Ω

( f 0 − f ε)uε dx dy −
∫

Ω

f εuε dx dy

=
1
2

∫
Ω

(|∇xu0 − ∇xuε |2 + |u0 − uε |2) dx dy +

∫
Ω

(∇xu0 − ∇xuε) · ∇xuε dx dy

+
1
2

∫
Ω

|∇xuε |2 dx dy +

∫
Ω

(u0 − uε)uε dx dy +
1
2

∫
Ω

|uε |2 dx dy

−

∫
Ω

f 0(u0 − uε) dx dy −
∫

Ω

( f 0 − f ε)uε dx dy −
∫

Ω

f εuε dx dy

≤
1
2
‖u0 − uε‖2H1(Ω) + λε +

∫
Ω

(∇xu0 − ∇xuε) · ∇xuε dx dy +

∫
Ω

(u0 − uε)uε dx dy

−

∫
Ω

f 0(u0 − uε) dx dy −
∫

Ω

( f 0 − f ε)uε dx dy
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≤
1
2
‖u0 − uε‖2H1(Ω) + λε + ‖∇xu0 − ∇xuε‖L2(Ω)‖∇xuε‖L2(Ω) + ‖u0 − uε‖L2(Ω)‖u

ε‖L2(Ω)

+ ‖ f 0‖L2(Ω)‖u
0 − uε‖L2(Ω) −

∫
Ω

( f ε − f 0)uε dx dy,

which leads to λ0 ≤ lim infε→0 λ
ε , proving the lemma. �

C 3.5 (Proof of Theorem 2.1). If f ε , uε , f 0 and u0 are as in Lemma 3.1 then

lim
ε→0
‖uε − u0‖ε = 0.

P. Inspired by the proof of Lemma 3.4 and recalling that ∇yu0 = 0,

λε =
1
2
‖uε‖2ε −

∫
Ω

f εuε dx dy

=
1
2
‖uε − u0 + u0‖2ε −

∫
Ω

f ε(uε − u0) dx dy −
∫

Ω

( f ε − f 0)u0 dx dy −
∫

Ω

f 0u0 dx dy

=
1
2
‖uε − u0‖2ε +

1
2
‖u0‖2H1(Ω) +

∫
Ω

(∇xuε − ∇xu0) · ∇xu0 dx dy +

∫
Ω

(uε − u0)u0 dx dy

−

∫
Ω

f 0u0 dx dy −
∫

Ω

f ε(uε − u0) dx dy −
∫

Ω

( f ε − f 0)u0 dx dy

=
1
2
‖u0 − uε‖2ε + λ0 +

∫
Ω

(∇xu0 − ∇xuε) · ∇xuε dx dy +

∫
Ω

(u0 − uε)uε dx dy

−

∫
Ω

f ε(uε − u0) dx dy −
∫

Ω

( f ε − f 0)u0 dx dy.

The result follows by arguing as in Lemma 3.4, recalling that λε
ε→0
−→ λ0. �
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